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Preface

Our interest in the field of seismic isolation began over 25 years ago in 1967,
when a group at the (then) DSIR Physics and Engineering Laboratory, working
in the field of earthquake engineering research, became involved in design studies
for w ‘stepping bridge” over the Rangitikei River. The system adopted included
steel-beam dampers and laminated-rubber components. The utilisation of similar
components was then considered as a means of providing seismic isolation for a
proposed building in Wellington, namely the William Clayton Building.

IFarly in the seismic isolation programme, a fruitful interaction developed with
4 proup engaged in materials science research at the same laboratory whose ex-
pertise included the behaviour of plastically deforming metals. They developed a
tnnpe ol isolator components based on the plastic deformation of lead, including
lenad extrusion dampers first used in the isolated Aurora Terrace and Bolton Street
overbridges in Wellington and lead-rubber isolators which were the final choice
[or wolation of the William Clayton building.

Interaction between members of the two groups consolidated over the years and
ledd 1o the further development, proving and application of isolation systems. At the
sine time, theoretical approaches necessary for the description and understanding
ol the seismic responses and performance of isolated structures were developed.
Over the years the level of sophistication has increased but the general approach has
not changed. This book is the product of our extensive involvement and experience
i the seismic isolation field.

e book includes mathematical analysis of the seismic responses of isolated
stinctures, which is oriented to give a clear understanding of the processes involved;
dincussion of various isolation systems, particularly those which have been devel-
aped i our laboratory; guidelines to provide initial isolator parameter values for
chgineers or architects wishing to incorporate seismic isolation into their designs;
and o deseription of the application of the concept of seismic isolation worldwide.

Muny ol our devices have been installed in real structures, both in New Zealand
and overseas. The remarkably rapid technology transfer has been in large part due
t the close working relationships which have developed over the years between
o researchers and design engineers in this field worldwide. We should like to
thank these colleagues for their contribution to this book, both indirectly, through
colluboration over the years, and directly, by supplying us with information and
photographs, primarly for Chapter 6,
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We should also like to thank the support staff at DSIR Physical Sciences for the
devoted effort which has made this book possible.
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Frequently used Symbols and
Abbreviations

A

LU

tuning parameter for combined primary-secondary system, namely
(wp — o) /w,.

analogue to B, for multimode primary-secondary systems.
elastic-phase participation factor at position r in mode n.

mode-n participation factor at position z.

mode-n participation factor at top floor of structure (position N).
weighting factor for the nth mode of vibration.

participation factor vector.

isolated mode weight factor.

unisolated mode weight factor.

participation factor for response to ground excitation for a mass at level r
of a structure vibrating in the nth mode.

yielding-phase participation factor at position r in mode n.
shear strain of rubber disc.

interaction parameter of combined primary-secondary system, given by
my/mp.

‘engineering’ shear strain.

interaction parameter, analogue to y, for multimode primary-secondary
systems.

- wave number of mode 1, possibly complex.

shear-strain coordinate ol yield point.
difference between nth root of equation (4.17) and (n — 1m.

= non-classical damping parameter in combined primary-secondary system.

analogue oy, for multimode primary-secondary systems.

/= ratio ol frequencies of rigid-mass isolated structure and first-
maode unisolated structure, used for expressing orders of perturbation.

= strain = (increment in length)/original length).

maximum amplitude ol eycelie strain.

< strnin coordinate of yield point,

variation ol spatial phase of modean displacement down shear beam.
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FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

damping of secondary structure.

damping of primary structure.

average damping of combined primary-secondary system, given by
&= (;p = gs)/z'

damping difference of combined primary-secondary system, given by
L= 4';9 =&y

fraction of critical viscous damping of (unisolated) fixed-base mode n.
velocity- (viscous-) ‘damping factor” or ‘fraction of critical damping’ for
single-mass oscillator.

velocity-damping factor for isolator.

‘effective’ damping factor of bilinear isolator, given by sum of velocity-
and hysteretic-damping factors.

velocity-damping factor in ‘elastic’ region of bilinear isolator.

velocity-damping factor in “plastic” or “yielded-phase’ region of bilinear
isolator.
hysteretic damping factor of bilinear isolator.

fraction of critical viscous damping of mode »: also called mode-n damping
factor.

modal mass of free-free mode j.
l.l;ro[MII.IJu.

jth modal mass of secondary system = ¢!, [M.]@,;.
modal (relative displacement) coordinate for mode n at time r.
uniform density of shear beam representing a uniform shear structure.

nominal stress, as used in ‘scaled’ (o—€) curves for steel dampers in
Chapter 3.

stress = force/area.
stress coordinate of yield point.

nominal shear stress, as used in ‘scaled’ (o-€) curves for steel dampers in
Chapter 3.

shear stress = (shear force)/area.

shear-stress coordinate of yield point.

i, ... Py, ...¢n] the mode shape matrix, a function of space, not time.
mode shape in the nth or mth mode of vibration.

mode shape at the rth level of the structure during the nth mode of
vibration,

elastic-phase modal shape at position 7 in mode n.
yielding-phase modal shape at position r in mode n.

shape of mode n, used interchangeably with u,(z, 1); normalised (o unity
at the top level,

phase angle of jth component of the nth mode participation factor vector ',

(circular) frequency of secondiny structure.

FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

@y
w,
@pi
D

@ (U)

WFFn

WFB1

L

A

A

Ap
a,(1)
A

b

iy, (1)

il:d:ﬂ
T

c(r, s)

xvii

« (circular) frequency of primary structure.

average frequency of combined primary-secondary system, given by
wy = (wp+ w,) /2.

- analogue to ;, for multimode primary-secondary systems.
- analogue 1o w,, for multimode primary-secondary systems.

unisolated undamped first-mode natural (circular) frequency, the same as
xny-

mode-n natural (circular) frequency with ‘free—free’ boundary conditions.
isolator frequency = J(K.JM) for a rigid mass M.

natural (circular) frequency of (unisolated) fixed-base mode 1, equivalent
{1} t!)|{U )

natural (circular) frequency of (unisolated) fixed-base mode n.

undamped natural (circular) frequency of mode #, related to frequency f.
by @, = 2% fs-

damped natural (circular) frequency of single-mass oscillator.

undamped natural (circular) frequency of single-mass oscillator, or ath-

mode natural frequency of multi-degree-of-freedom linear oscillator.

area of rubber bearing in Chapter 3.

= cross-sectional area of shear beam representing a uniform shear structure.

area of bilinear hysteresis loop.
absolute acceleration of mode n.

= overlap area of rubber bearing in Chapter 3.

subscript denoting base isolator.
relative velocity of base mass with respect to ground.

= subscript denoting bilinear isolator.

‘bulge factor’ describing the ratio S, /S, of total shear to first-mode shear
at level r in a structure, particularly at mid-height.

interlevel velocity-damping coefficient, defined only for r > s.

coefficient of velocity-damping for a base isolator, with units such as
Nm's=kgs.

‘correction factor’ linking displacement of bilinear isolator to equivalent
spectral displacement.

stiffness-proportional damping coefficient of shear beam representing a
uniform shear structure,

overall stiffness-proportional damping coefficient ¢; A/L of uniform shear
structure.

mass-proportional damping coefficient of shear beam representing a uniform
shear structure.

overall mass-proportional damping coefficient ¢,, AL of uniform shear
structure.

element of damping coefficient matrix.

damping coefficient matrix, with elements ¢, related to c(r, s).
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xviii FREQUENTLY USED SYMBOLS AND ABBREVIATIONS FREQUENTLY USED SYMBOLS AND ABBREVIATIONS xix
e = subscript used to denote ‘elastic-phase’. L = length of shear beam representing a uniform shear structure.
= subscript used to denote *experimental model” in ‘scaled’ (o-€) or (r-y) m = mass of single-mass oscillafor.
curves for steel dampers in Chapter 3. M = mass pAL of uniform shear structure.
E = Young's modulus = o//€ in clastic region. M = total mass of structure; together with the mass of the isolator this gives M.
f = ‘fi::p-:rcsali:gc;mm.;s used in ‘scaled’ (0-€) or (r-y) curves for steel " = kcllor (ased ki
F = force or shear-force, as obtained from ‘scaled’ (o—€) or (t-y) curves for ny, = mass of primary structure.
steel dampers in Chapter 3. ", = mass at rth level
FA (T, &) = floor-acceleration spectrum at rth level of a structure, = M/N for a uniform structure with N levels.
Fy = isolator force arising from bilinear resistance to displacement. ", = mass of secondary structure,
F = residual force in elastic phase of bilinear isolator. M = total mass of structure plus isolator.
FB = subscript denoting ‘fixed-base’ boundary condition corresponding to no [M] = mass matrix.
Solation. N = ber of masses in discrete linear system
FF = subscript denoting “free-free’ boundary condition corresponding to perfect ' e 2 ST
isolation. Xa(2) = maximum absolute seismic acceleration of mode n at position z.
FFn = subscript denoting mode-n ‘free-free’ vibration. n* = complex conjugate associated with mode n.
",.(:) = max!mum 'jwelsn.uc force per unit height, at height = of mode n. NI = non-linearity factor.
F = oo Teia Load. o G e o, ERCr OM _(z) = overturning moment at height = of mode n.
Fra = maximum seismic force of mode n at the rth point of a structure. : ; ; .
! L ey . . OM,, = maximum overturning moment at point r, and height &, of mode n of a
Ky = residual force in yielding phase of bilinear isolator. b
G = shear modulus = 7/y in elastic region. P = subscript used to denote ‘primary’ in primary-secondary systems.
G = constant shear modulus of shear beam representing a uniform shear p = extrusion pressure in Chapter 3.
Go i i,r;:;f;u;'is e power spectrum level [ = subscript used to denote ‘pro(zmype’ in ‘scaled’ (o — ¢€) or (r — y) curves
' for steel dampers in Chapter 3.
h, = hei ; i
f ?;:ght Of;l_h IFV?I (Tf : s‘ru{:mm 5 ' 4 = peak factor, namely ratio of peak response to RMS response.
= of isolation” or ‘isolation ratio” gi = =
T f}icw_ isolation ratio” given by wrmi/wy = To/ Trsy r, = amplitude-scaling factor such that iig(t) = Pyiigs censo(t/ Py)-
k = stiffness of single-mass oscillator. Ps = complex frequency of mode n, see equation (4.7).
K = overall stiffness GA/L of uniform shear structure. P = zeroth-order term in the perturbation expression for the complex frequency.
k(r. s) = interlevel stiffness, such that k(r,r — 1) = KN for a N-mass uniform Pai = ith term in perturbation expression for nth-mode complex frequency.
stetaching: sd (1, 0) == K, A0-it3s Inglated. " = frequency-scaling factor such that iig(t) = Pyiig cearo(t/ Pp)-
ky 5 ?uﬂ'ncss c"f ’""m ISO’]aI(?I'. e P = peak factor for secondary structure when mounted on primary structure.
Ks - e.ﬂ'ecme e L of bilinear 1solator: A = peak flactor for secondary structure when mounted on the ground.
Ku(r) = stifness of rbber component of lead-rubber bearing. (] = force across Coulomb slider at which it yields.
K = ‘initial” or ‘elastic’ stiffness of bilinear isolator. . A : / - :
A e T = § 0, = yield force at which changeover from elastic to plastic behaviour occurs, at
Ky = p.ost-yleld or lplasnc stiffness of bilinear isolator. yield displacement X,.
K. = :,::it;::l{::szo;cs;prlng introduced to isolator to reduce higher-mode responses = shear-force coordinate of yield point.
K, = sltiffness of nth “spring” in discrete linear chain system, O/ W = yield force-to-weight ratio of bilincar isolator.
k., = eleinent of stiffness matrix. 5 = shape factor of elastomeric bearing = (loaded area)/(force-free area).
K] = stiffness matrix, with elements &,, related to k(r, 5). Notl, 5y = spectral absolute acceleration for period T and damping £, as seen on

length-scaling fuctor, as used in ‘scaled’ (o-€) or (r-y) curves for steel
dampers in Chapter 3

M

response spectrum, Figure 2.1,

maximum base-level shear,
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h A

St
Sl &)

i max
Sp(2)

L
Sv(T.g)

Ty
T,
T,(U)
u

u(z, t)

u(z.r)
uy

Uy, (1)
iy, iy(1)
Upjo

Ly (1)

ut.!ﬂ
“t.m

Upp,(z,1)
uppa (2, 1)

lig, dig(r)
ULm U{\'n

1,(z)

y(z, 1)

FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

= maximum base shear in mode n.
= spectral relative displacement for period T and damping ¢, as seen on

response spectrum, Figure 2.1.

= maximum shear at any position, in mode n.

= maximum seismic shear at height z of mode n.

= maximum shear force at the rth point of a structure oscillating in mode n.
= spectral relative velocity for period T and damping ¢.

= time.

= superscript indicating ‘transpose’.

= natural period.

= unisolated undamped first-mode period, the same as Tgp,.

= natural period of linear base isolator = 27 /ax,.

= ‘effective’ period for bilinear isolator.

= period associated with Ky, in “elastic” region of bilinear isolator.
= period associated with Ky, in ‘plastic’ region of bilinear isolator.

= isolated nth period.

= unisolated nth period.

= vector containing the displacements u,.

= relative displacement, at position z in the structure, in .Ihe horizont:a]
x direction, with respect to the ground at time f; often written as u, without
arguments, in the differential form of the equation of mouon:

= relative acceleration with respect to ground of position z at time f.

= displacement of bilinear isolator.

= relative displacement of base mass with respect to ground.

= acceleration of base mass with respect to ground.

= base displacement in free-free mode ;.

= nth-mode relative displacement, with respect to ground, at base of structure
at time /.

= elastic-phase displacement at position r in mode n.

= elastic-phase relative acceleration at position r in mode n.

= fixed-base mode-n relative displacement with respect to ground at position =
at time 1. )

= ‘free-free’ mode-n relative displacement with respect to ground, at
position z and time /.

= ground acceleration.

= amplitude of nth-mode displacement at position = = L (top of shear beam)
(possibly complex); amplitude at top of discrete N-component slmcu_m', :

= nth mode shape, used interchangeably with ¢, (2); usually normalisation is
not defined, A

= mode-n relative displacement, with respect 1o ground, ol position = at
time /,

COMMONLY USED ABBREVIATIONS

XXi
W = zeroth-order term in the perturbation expression for the mode shape.
My = displacement of secondary structure mounted on the primary structure,
ity = acceleration of secondary structure mounted on the primary structure,
(1) = (1) = displacement of mode n at rth level of the structure, where ¢,,
is the spatial variation and &, is the time variation.
i, = displacement of secondary structure mounted on the ground.
it = acceleration of secondary structure mounted on the ground.
Uy rn = yielding-phase displacement at position r in mode n.
iy y = yielding-phase relative acceleration at position r in mode n.
u, = displacement vector for discrete linear system in nth mode.
v = vector comprising the relative velocity and relative displacement vectors,
Vo = vector v for mode n.
14 = total weight of structure.
X = displacement, as obtained from ‘scaled’ (o—€) or (t-y) curves for steel
dampers in Chapter 3.
Xy = maximum relative displacement of isolator or of base of isolated structure.
X v = maximum mode-n relative displacement at top floor of structure (position
N).
X, = peak response of primary structure when mounted on the ground.
Xp(RMS) = RMS response of primary structure when mounted on the ground.
Xps = peak response of secondary structure when mounted on primary structure.
X$ = maximum relative displacement with respect to ground at any level r.
Xou = peak value of mode-n relative displacement at the rth point of a structure.
X, = peak response of secondary structure when mounted on the ground.
X{(RMS) = RMS response of secondary structure when mounted on the ground.
Xy = yield displacement of bilinear isolator.
X, = displacement coordinate of yield point.
X = peak value of mode-n absolute acceleration at the rth point of a structure,
X5 = peak value of mode-n relative velocity at the rth point of a structure.
z = vertical coordinate; height of a point in a structure,
Zy(1) = relative displacement response, of one-degree-of-freedom oscillator of
undamped natural frequency w, and damping &,, to ground acceleration
iy (t).

COMMONLY USED ABBREVIATIONS

cQC = abbreviation for ‘Complete Quadratic Combination’, a method of adding
responses of several modes.
DSIR = Department of Scientific and Industrial Research,

New Zealand,
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LRB
MDOF
MWD
PEL

SRSS

1DOF
2DOF

FREQUENTLY USED SYMBOLS AND ABBREVIATIONS

lead-rubber bearing.
abbreviation for multiple-degree-of-freedom.
Ministry of Works and Development, New Zealand, now Workscorp.

Physics and Engineering Laboratory of the DSIR, later DSIR Physical
Sciences.
polytetrafluoroethylene.

abbreviation for ‘Square Root of the Sum of the Squares’, a method of
adding responses of several modes.
abbreviation for one degree of freedom.

abbreviation for two degrees of freedom.

1 Introduction

1.1 SEISMIC ISOLATION IN CONTEXT

A large proportion of the world’s population lives in regions of seismic hazard,
il sk from earthquakes of varying severity and varying frequency of occurrence.
Itarthquakes cause significant loss of life and damage to property every year.

Many aseismic construction designs and technologies have been developed over
(he years in attempts to mitigate the effects of earthquakes on buildings, bridges
und potentially vulnerable contents. Seismic isolation is a relatively recent, and
evolving, technology of this kind.

Seismic isolation consists essentially of the installation of mechanisms which
decouple the structure, and/or its contents, from potentially damaging earthquake-
induced ground, or support, motions. This decoupling is achieved by increasing the
(lexibility of the system, together with providing appropriate damping. In many, but
not all, applications the seismic isolation system is mounted beneath the structure
und s referred to as ‘base isolation’.

Although it is a relatively recent technology, seismic isolation has been well
cviluated and reviewed (e.g. Lee and Medland, 1978; Kelly, 1986; Anderson 1990);
I been the subject of international workshops (e.g. NZ-Japan Workshop, 1987;
LIS Japan Workshop, 1990; Assisi Workshop, 1989; Tokyo Workshop, 1992); is
imeluded in the programmes of international, regional and national conferences on
Lurthguake Engineering (e.g. 9th and 10th WCEE World Conferences on Earth-
(uike Engineering, Tokyo, 1988, Madrid, 1992; Pacific Conferences, 1987, 1991;
F'ourth US Conference, 1990); and has been proposed for specialised applications
(0 SMIRT-11, Tokyo, 1991).

Seismic isolation may be used to provide effective solutions for a wide range
ol geismic design problems. For example, when a large multistorey structure has
i critical Civil Defence role which calls for it to be operational immediately after
iovery severe earthquake, as in the case of the Wellington Central Police Station
(iee Chapter 6), the required low levels of structural and non-structural damage
iy be achieved by using an isolating system which limits structural deformations
i ductility demands to low values. Again, when a structure or substructure is
mherently non-ductile and has only moderate strength, as in the case of the news-
prper printing press at Petone (see Chapter 6), isolation may provide a required
level of carthquake resistance which cannot be provided practically by earlier aseis-
e fechnigues, Carelul studies have been made of classes of structure for which
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seismic isolation may find widespread application. This has been found to include
common forms of highway bridges.

The increasing acceptance of seismic isolation as a technique is shown by the
number of retrofitted seismic isolation systems which have been installed. Examples
in New Zealand are the retrofitting of seismic isolation to existing bridges and to
the electrical capacitor banks at Haywards (see Chapter 6), while the retrofitting of
isolators under the old New Zealand Parliamentary Buildings is being considered at
present (June 1992). Many old monumental structures of high cultural value have
little earthquake resistance. The completed isolation retrofit of the Salt Lake City
and County Building in Utah is described in some detail in Chapter 6.

Isolation may often reduce the cost of providing a given level of earthquake
resistance. The New Zealand approach has been to design for some increase in
earthquake resistance, together with some cost reduction, a typical target being
a reduction by 5% of the structural cost. Reduced costs arise largely from re-
duced seismic loads, from reduced ductility demand and the consequent simplified
load-resisting members, and from lower structural deformations which can be ac-
commodated with lower-cost detailing of the external cladding and glazing.

Seismic isolation thus has a number of distinctive beneficial features not pro-
vided by other aseismic techniques. We believe that seismic isolation will increas-
ingly become one of the many options routinely considered and utilised by en-
gineers, architects and their clients. The increasing role of seismic isolation will
be reflected, for example, in widespread further inclusion of the technique in the
seismic provisions of structural design codes.

When seismic isolation is used, the overall structure is considerably more flex-
ible and provision must be made for substantial horizontal displacement. It is of
interest that, despite the widely varying methods of computation used by differ-
ent designers, a consensus is beginning to emerge that a reasonable design dis-
placement should be of the order of 50-400 mm, and possibly up to twice this
amount if ‘extreme’ earthquake motions are considered. A ‘seismic gap’ must be
provided for all seismically isolated structures, to allow this displacement during
earthquakes.

It is imperative that present and future owners and occupiers of seismically
isolated structures are aware of the functional importance of the seismic gap and
the need for this space to be left clear. For example, when a road or approach
to a bridge is resealed or resurfaced, extreme care must be taken to ensure that
sealing material, stones etc. do not fall into the seismic gap. In a similar way, the
seismic gap around buildings must be kept secure from rubbish, and never used as
a convenient storage space.

All the systems presented in this book are passive, requiring no energy input
or interaction with an outside source. Active seismic isolation is a different ficld,
which confers different aseismic features in the face of a different set of prob-
lems. As it develops, it will occupy a niche among aseismic structures which will
be different from that occupied by structures with passive isolation. In a typical
case. a mass which is o fraction ol o per cent of the structural mass is driven
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with large accelerations so that the reaction to its inertia forces tends to cancel
ihe effects of inertia forces arising in” the structure as a result of earthquake ac-
celerations. Such a system may be a practical, but expensive, means of reducing
the effective seismic loads during moderate, and in some locations frequent, earth-
(uakes. Practical limitations on the size and displacements of the active mass would
normally render the system much less effective during major earthquakes. More-
over, it is difficult to ensure the provision of the increasing driving power required
during earthquakes of increased severity. In principle, such an active isolation sys-
(em might be used to complement a passive isolation system in certain special
cises. For example, a structure with passive seismic isolation may be satisfactory
in all respects, except that it may contain components which are particularly vul-
nerable to high-frequency floor-acceleration spectra. The active-mass power and
displacement requirements for the substantial cancellation of these short-period
low-acceleration floor spectra may be moderate, even when the earthquake is very
severe. Moreover, such moderate power might be supplied by an in-house source,
with its dependability increased by the reduced seismic attack resulting from iso-
lation.

A number of factors need to be considered by an engineer, architect or client
wishing to decide whether a proposed structure should incorporate seismic isolation.
I'he first of these is the seismic hazard, which depends on local geology (proximity
lo faults, soil substructure), recorded history of earthquakes in the region, and any
known factors about the probable characteristics of an earthquake (severity, period,
¢le). Various proposed solutions to the design problem can then be put forward,
with a variety of possible structural forms and materials, and with some designs
mcorporating seismic isolation, some not. The probable level of seismic damage
cin then be evaluated for each design, where the degree of seismic damage can be
broadly categorised as:

(1) minor
(2) repairable (up to about 30% of the construction cost)
(1) not repairable, resulting in the building being condemned.

I'he whole thrust of seismic isolation is to shift the probable damage level from (3)
or (2) towards (1) above, and thereby to reduce the damage costs, and probably also
the insurance costs. Maintenance costs should be low for passive systems, though
they may be higher for active seismic isolation. As discussed above, the construc-
tion costs including seismic isolation usually vary by +5-10% from unisolated
options.

The total *costs’ and “benelits” of the various solutions can then be evaluated,
where the analysis has to include the “value’™ of having the structure or its contents
i as good as possible a condition alter an carthquake, and the reduced risk of
casualties with reduced damage (o the structure. In many cases such additional
benelits may well follow the adoption of the seismic isolation option,
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1.2 FLEXIBILITY, DAMPING AND PERIOD SHIFT

The ‘design earthquake’ is specified on the basis of the seismicity of a region, the
site conditions, and the level of hazard accepted (for example, a ‘400-year return
period’ earthquake for a given location would be expected to be less severe than one
which occurred on average once every 1000 years). Design earthquake motions for
other seismic areas of the world are often similar to that experienced and recorded
at El Centro, California, in 1940, or to scalings of this motion, such as ‘1.5 El
Centro’. The spectrum of the El Centro accelerogram has large accelerations at
periods of 0.1-1 s. Other earthquake records, such as that at Pacoima Dam in 1971
or ‘artificial’ earthquakes A1 or A2, are also used in specifying the design level.

It must also be recognised that occasionally earthquakes give their strongest
excitation at long periods. The likelihood of these types of motions occurring at
a particular site can sometimes be foreseen, such as with deep deposits of soft
soil which may amplify low-frequency earthquake motions, the old lake bed zone
of Mexico City being the best known example. With this type of motion, flexible
mountings with moderate damping may increase rather than decrease the structural
response. The provision of high damping as part of the isolation system gives an
important defence against the unexpected occurrence of such motions.

Typical earthquake accelerations have dominant periods of about 0.1-1 s as
shown in Figure 2.1, with maximum severity often in the range 0.2-0.6 s. Struc-
tures whose natural periods of vibration lie within the range 0.1-1 s are therefore
particularly vulnerable to seismic attack because they may resonate. The most im-
portant feature of seismic isolation is that its increased flexibility increases the
natural period of the structure. Because the period is increased beyond that of the
earthquake, resonance and near-resonance are avoided and the seismic acceleration
response is reduced.

This period shift is shown schematically in Figure 1.1(a) and in more detail in
Figure 2.1. The ‘isolation ratio’ (‘degree of isolation’) /, which governs so many
aspects of seismic response, is a measure of the period shift produced by isolation.

The increased period and consequent increased flexibility also affects the hor-
izontal seismic displacement of the structure, as shown in Figure 1.1(b) for the
simplest case of a single-mass rigid structure, and as shown in more detail in
Figure 2.1. Figure 1.1(b) shows how excessive displacements are counteracted by
the introduction of increased damping. Real values of the maximum undamped
displacement for isolated structures could be as large as 1 m in typical strong earth-
quakes; damping typically reduces this to 50-400 mm, and this is the displacement
which has to be accommodated by the ‘seismic gap.” The actual motion of parts
of the structure depends on the mass distribution, the parameters of the isolating
system, and the ‘participation’ of various modes of vibration. This is discussed in
detail in Chapters 2 and 4.

Seismic isolation is thus an innovative aseismic design approach aimed at pro-
tecting structures against damage from carthquakes by limiting the carthquake at-
tack rather than resisting it. Conventional approaches to aseismic design provide a
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Figure 1.1 Effect of increasing the flexibility of a structure: (a) The increased period and
damping lower the seismic acceleration response; (b) The increased period
increases the total displacement of the isolated system, but this is offset to
a large extent by the damping. (After Buckle and Mayes, 1990.)

structure with sufficient strength, deformability and energy-dissipating capacity to
withstand the forces generated by an earthquake, and the peak acceleration response
ol the structure is often greater than the peak acceleration of the driving ground
motion. On the other hand, seismic isolation limits the effects of the earthquake
attack, since a flexible base largely decouples the structure from the horizontal mo-
tion of the ground, and the structural response accelerations are usually less than
the ground accelerations. The forces transmitted to the isolated structure are further
ieduced by damping devices which dissipate the energy of the earthquake-induced
motons.

Figure 1.2(a) illustrates the seismic isolation concept schematically. The building
on the left is conventionally protected against seismic attack and that on the right
has been mounted on a seismic isolation system. The performance of a pair of
real test buildings of this kind, at Tohoku University, Sendai, Japan, is described
i Chapter 6, Similar schematic diagrams can be drawn to illustrate the seismic
isolation of bridges and of parts of buildings which contain delicate or potentially
hazardous contents,

In Figure 1.2¢a) it can be seen that large seismic forces act on the unisolated,
conventional structure on the left, causing considerable deformation and cracking in
the structure, In the isolated structure on the right, the forces are much reduced, and
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Figure 1.2 (a) Schematic seismic response of two buildings; that on the left is conven-
tionally protected against earthquake, and that on the right has been mounted
on a seismic isolation system. (b) Maximum base shear for a single-mass
structure, represented as a linear resonator, with and without seismic isola-
tion. The structure is subjected to P, times the El Centro NS 1940 accelero-
gram (From Skinner and McVerry, 1975.)

most of the displacement occurs across the isolation system, with little deformation
of the structure itself, which moves almost as a rigid unit. Energy dissipation in the
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isolated system is provided by hysteretic or viscous damping. For the unisolated
system, energy dissipation results mainly from structural damage.

Figure 1.2(b) illustrates the reduction of earthquake-induced shear forces which
can be achieved by seismic isolation. The maximum responses of seismically iso-
lated structures, as a function of unisolated fundamental period, are shown by a
solid line and those of the unisolated structures as a dotted line, with results shown
lor three scalings of the El Centro NS 1940 earthquake motion. It is seen that
seismic isolation markedly reduces the base shear in all cases.

It can also be shown, as discussed in Section 4.5, that seismic isolation is very
effective in reducing the effects of earthquake-induced motion on torsionally un-
balanced buildings. The key design consideration in this case is that the centre of
stiffness of the isolator should be placed below the centre of mass of the structure.

1.3 COMPARISON OF CONVENTIONAL AND SEISMIC
ISOLATION APPROACHES

Many of the concepts of seismic isolation using hysteretic isolators are similar to
the conventional failure-mode-control approach (‘capacity design’) which is used
in New Zealand for providing earthquake resistance in reinforced concrete and
steel structures. In both the seismic isolation and failure-mode-control approaches,
specially selected ductile components are designed to withstand several cycles
well beyond yield under reversed loading, the yield levels being chosen so that
the forces transmitted to other components of the structure are limited to their
clastic, or low ductility, range. The yielding lengthens the fundamental period of
the structure, detuning the response away from the energetic period range of most of
the earthquake ground motion. The hysteretic behaviour of the ductile components
provides energy dissipation to damp the response motions. The ductile behaviour
of the selected components ensures sufficient deformation capacity, over a number
of cycles of motion, for the structure as a whole to ride out the earthquake attack.

However, seismic isolation differs fundamentally from conventional seismic de-
sign approaches in the method by which the period lengthening (detuning) and
hysteretic energy-dissipating mechanisms are provided, as well as in the philoso-
phy of how the earthquake attack is withstood.

In well designed conventional structures, the yielding action is designed to occur
within the structural members at specially selected locations (‘plastic hinge zones’),
e.g. mostly in the beams adjacent to beam-column joints in moment-resisting frame
structures. Yielding of structural members is an inherently damaging mechanism,
even though appropriate selection of the hinge locations and careful detailing can
ensure structural integrity. Large deformations within the structure itself are re-
quired to withstand strong earthquake motions. These deformations cause problems
for the design of components not intended to provide seismic resistance, because
it is difficult to ensure that unintended loads are not transmitted to them when the
structure is deformed considerably from its rest position. Further problems occur
in the detailing of such items as windows and partitions, and for the seismic design
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of building services. In the conventional approach, it is accepted that considerable
earthquake forces and energy will be transmitted to the structure from the ground.
The design problem is to provide the structure with the capacity to withstand these
substantial forces.

In seismic isolation, the fundamental aim is to reduce substantially the trans-
mission of the earthquake forces and energy into the structure. This is achieved
by mounting the structure on an isolating layer (isolator) with considerable hori-
zontal flexibility, so that during an earthquake, when the ground vibrates strongly
under the structure, only moderate motions are induced within the structure itself,
Practical isolation systems must trade off between the extent of force isolation and
acceptable relative displacements across the isolation system during the earthquake
motion, As the isolator flexibility increases, movements of the structure relative
to the ground may become a problem under other vibrational loads applied above
the level of the isolation system, particularly wind loads. Acceptable displacements
in conjunction with a large degree of force isolation can be obtained by provid-
ing damping, as well as flexibility in the isolator. A seismic isolation system with
hysteretic force-displacement characteristics can provide the desired properties of
isolator flexibility, high damping and force-limitation under horizontal earthquake
loads, together with high stiffness under smaller horizontal loads to limit wind-
induced motions. A further trade-off is involved if it is necessary to provide a
high level of seismic protection for potentially resonant contents and substructures,
where increased isolator displacements and/or structural loads are incurred when
providing this additional protection.

1.4 COMPONENTS IN AN ISOLATION SYSTEM

The components in a seismic isolation system are specially designed, distinct from
the structural members, and installed generally at or near the base of the struc-
ture. However, in bridges, where the aim is to protect relatively low-mass piers
and their foundations, they are more commonly between the top of the piers and
the superstructure. The isolator’s viscous damping and hysteretic properties can be
selected to maintain all components of the superstructure within the elastic range,
or at worst so as to require only limited ductile action. The bulk of the over-
all displacement of the structure can be concentrated in the isolator components,
with relatively little deformation within the structure itself, which- moves largely
as a rigid body mounted on the isolation system. The performance can be further
improved by bracing the structure to achieve high stiffness, which increases the
detuning between the fundamental period of the superstructure and the effective
period of the isolated system and also limits deformations within the structure itself.
Both the forces transmitted to the structure and the deformation within the structure
are reduced, and this simplifies considerably the seismic design of the superstruc-
ture, its contents and services, apart from the need for the service connections (o
accommodate the large displacements across the isolating layer.

Figure 1.3 is a schematic representation of the two major models encountered in
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the practical design of seismic isolating systems. Figure 1.3(a) represents a linear
damped isolator by means of a linear spring and ‘viscous damper’. The resultant
[orce-displacement loop has an effective slope (dashed line) which is the “stiffness’,
or inverse flexibility, of the isolator. Figure 1.3(b) represents a ‘bilinear’ isolator
s Iwo linear springs, one of which has a ‘Coulomb damper’ in series with it. The
resultant hysteresis loop is bilinear, characterised by two slopes which are the ‘ini-
tinl” and ‘yielded’ stiffnesses respectively, corresponding to the elastic and plastic
deformation of the isolator. This is discussed in more detail in Chapters 2, 3 and 4.

A variety of seismic isolation and energy dissipation devices has been devel-
oped over the years, all over the world. The most successful of these devices also
satisfy an additional criterion, namely they have a simplicity and effectiveness of
design which makes them reliable and economic to produce and install, and which
incorporates low maintenance, so that a passively isolated system will perform sat-
isfactorily, without notice or forewarning, for 5-10 s of earthquake activity at any
stage during the 30- to 100-year life of a typical structure. In order to ensure that
the system is operative at all times, we suggest that zero or low maintenance be
part of good design. Detailed discussion of the material and design parameters of
seismic isolation devices is given in Chapter 3.
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damper
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1.5 PRACTICAL APPLICATION OF THE SEISMIC
ISOLATION CONCEPT

The seismic isolation concept for the protection of structures from earthquakes has
been proposed in various forms at numerous times this century. Many systems have
been put forward, involving features such as roller or rocker bearings, sliding on
sand or talc, or compliant first-storey columns, but these have generally not been
implemented.

The practical application of seismic isolation is a new development pioneered by
a few organisations around the world in recent years. The efforts of these pioneers
are now blossoming, with seismic isolation becoming increasingly recognised as a
viable design alternative in the major seismic regions of the world.

The authors’ group at DSIR Physical Sciences, previously the Physics and
Engineering Laboratory of the Department of Scientific and Industrial Research
(PEL, DSIR) in New Zealand, has pioneered seismic isolation, with research start-
ing in 1967. Several practical techniques for achieving seismic isolation and a
variety of energy-dissipating devices have been developed and implemented in
over 40 structures in New Zealand, largely through the innovative approach and
co-operation of engineers of the Ministry of Works and Development (MWD), as
well as private structural engineering consultants in New Zealand.

All the techniques developed at DSIR Physical Sciences have had a common
element, in that damping has been achieved by the hysleretic working of steel or
lead (see Chapter 3). Flexibility has been provided by a variety of means: transverse
rocking action with base uplift (South Rangitikei railway bridge, and chimney at
Christchurch airport); horizontally flexible lead-rubber isolators (William Clayton
Building; Wellington Press Building, Petone, and numerous road bridges); and
flexible sleeved-pile foundations (Union House in Auckland and Wellington Central
Police Station). Hysteretic energy dissipation has been provided by various steel
bending-beam and torsional-beam devices (South Rangitikei Viaduct, Christchurch
airport chimney, Union House, Cromwell bridge and Hikuwai retrofitted bridges);
lead plugs in laminated steel and rubber bearings (William Clayton Building and
numerous road bridges); and lead-extrusion dampers (Aurora Terrace and Bolton
Street motorway overpasses in Wellington and Wellington Central Police Station).
More details of these structures are given in Chapter 6.

Before their use in structures, all these types of device had been thoroughly
tested at full scale at DSIR Physical Sciences, in dynamic test machines under
both sinusoidal and earthquake-like loadings. Other tests have been performed at
the Universities of Auckland and Canterbury. Shaking-table tests of elastomeric
and lead-rubber bearings and steel dampers have been performed at the Univer-
sity of California, Berkeley, and in Japan on large-scale model structures. Quick-
release tests on actual structures containing these types of bearings and damping
devices have been performed in New Zealand and Japan. Some seismically isolated
structures have now (1992) performed successfully during real, but so far minor,
carthquake motions.
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A number of organisations around the world have developed isolation systems
different from those at DSIR Physical Sciences. Most have used means other than
the hysteretic action of ductile metal components to obtain energy dissipation,
force limitation and base flexibility. Various systems have used elastomeric bear-
ings without lead plugs, damping being provided either by the use of high-loss
rubber or neoprene materials in the construction of the bearings or by auxiliary
viscous dampers. There have been a number of applications of frictional sliding
systems, both with and without provision of elastic centring action. There has been
substantial work recently on devices providing energy dissipation alone, without
isolation, in systems not requiring period shifting, either because of the substantial
force reduction from large damping or because the devices were applied in inher-
ently long-period structures, such as suspension bridges or tall buildings, where
isolation itself produces little benefit. There has also been work on very expensive
mechanical linkage systems for obtaining three-dimensional isolation.

Seismic isolation has often been considered as a technique only for ‘problem’
structures or for equipment which requires a special seismic design approach. This
may arise because of their function (sensitive or high-risk industrial or commercial
facilities such as computer systems, semiconductor manufacturing plant, biotech-
nology facilities and nuclear power plants); their special importance after an earth-
quake (e.g. hospitals, disaster control centres such as police stations, bridges pro-
viding vital communication links); poor ground conditions; proximity to a major
fault; or other special problems (e.g. increasing the seismic resistance of existing
structures). Seismic isolation does indeed have particular advantages over other
approaches in these special circumstances, usually being able to provide much bet-
ter protection under extreme earthquake motions. However, its economic use is by
no means limited to such cases. In New Zealand, the most common use of seis-
mic isolation has been in ordinary two-lane road bridges of only moderate span,
which are by no means special structures, although admittedly the implementa-
tion of seismic isolation required little modification of the standard design which
already used vulcanised laminated-rubber bearings to accommeodate thermal and
other movements.

1.6 TOPICS COVERED IN THIS BOOK

In this book we seck to present a parallel development of theoretical and practical
aspects of seismic isolation. Thus in Chapter 2 the main concepts are defined, in
Chapter 3 details of various devices are given, Chapter 4 explores the theoretical
concepts in more detail, Chapter 5 presents guidelines for design and Chapter 6
gives some details of seismically isolated structures worldwide.

In Chapter 2 the principal seismic response features conferred by isolation are
outlined, with descriptions and brief explanations, which often anticipate the more
extensive studies and discussions which appear in Chapter 4. Seismic response
spectra are introduced as the maximum seismic displacements and accelerations
of linear l-mass damped vibrators. It is later shown that these spectra give good
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approximations 1o the maximum displacements, accelerations and loads of struc-
tires mounted on linear isolation systems, which respond approximately as rigid
misses with little deformation and little higher-mode response. The spectra vary
idepending on the accelerogram used to excite the seismic response, with El Centro
NS 1940, or appropriately scaled versions of this design earthquake, being used
most commonly throughout this book.

When the single mass is mounted on a bilinear isolation system, the maximum
seismic displacement and acceleration responses can be represented in terms of
‘effective’ periods and dampings. This concept is an oversimplification but is valid
for a wide range of bilinear parameters. It is convenient to introduce an ‘isolator
non-linearity factor’ NL, which is defined in terms of the force-displacement hys-
teresis loop. However, unlike the case with linear isolation, many bilinear isolation
systems result in large higher-mode effects which may make large or even domi-
nant contributions to the maximum seismic loads throughout the isolated structure.
They may also result in relatively severe appendage responses, as given by floor-
acceleration spectra, for periods below 1.0 s.

The above and other features of the maximum seismic responses of isolated
structures are illustrated at the end of Chapter 2 by seven case studies, as sum-
marised in Table 2.1 and Figure 2.7 and further by Table 2.2. Features examined
include the maximum seismic responses of a simple uniform shear structure and
of |-mass top-mounted appendages, when the structure is unisolated and when it
is supported on each of six isolation systems. The responses given for individual
‘modes’ appropriate to the yielding phase have been evaluated using the mode-
sweeping technique described later in Chapter 4.

Chapter 3 presents details of seismic isolation devices, with particular reference
to those developed in our laboratory over the past 25 years, including steel-beam
dampers, lead extrusion dampers and lead-rubber bearings. The treatment discusses
the material properties on which the devices are based, and outlines the principal
features which influence the design of these devices.

Chapter 4 comprises a more detailed analysis and expansion of ideas put forward
in Chapter 2. It begins with a discussion of the modal features and seismic responses
of linear structures mounted on linear isolators. Studies include the examination
of non-classical higher modes which arise when the isolator damping is high and
the structural damping is low. The concept of the ‘degree of isolation’ /, which
controls the extent to which isolation changes the modal features, is introduced.
The degree of isolation depends on the relative flexibilities of the isolator and the
structure, and is conveniently expressed as the ratio of the isolator period (as given
with a rigid structure) to the unisolated structural period (as obtained with a rigid
isolator). If / = 0 then the structure is unisolated and if / = oc then it is completely
isolated. In practice, a value of / > 2 gives “well isolated” modal features.

The main thrust of Chapter 4 is to increase our knowledge and understanding of
the consequences of seismic isolation, A preliminary database comprising 81 cases
of different isolator and structural parameters is used to establish concepts and to
simplify the evaluation of various features of isolated structures which may be
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important for design. Considerable attention is given o the responses _of s'ubsuuc-
{ures for unisolated and variously isolafed structures. The extent to which isolators
imuy reduce the seismic responses which torsional unbalance confers on unisolated
sruetures is also examined. '

(‘hapter 5 outlines an approach to the seismic design of isolated structures, using
the results developed in previous chapters. The simple guidelines have the primary
aim of enabling a designer to arrive at suitable starting parameters which can then
bw refined by computation. ] it

Chapter 6 presents information on the world-wide use of seismic isolation in
buildings. bridges and special structures which are particularly vulnerable to earth-
(uakes. The information has been compiled with the help of colleagues around Fhe
world. who have enabled us to build up a picture of the isolation approaches which
live been adopted in response to a wide range of seismic design problems; we
<hould like to thank these colleagues for their contributions.

It is clear that engineers, architects and their clients all over the world are
building up extensive experience in the development, design and Polemial uses
of isolation systems. In time, these isolated structures will also provide a steadily
increasing body of information on the performance of seismically isolated systems
during actual earthquakes. In this way the evolving technology of seismic isolation
miy contribute to the mitigation of earthquake hazard worldwide.
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2 General Features of Structures
with Seismic Isolation

2.1 INTRODUCTION

I'or many structures the severity of an earthquake attack may be lowered dramat-
icnlly by introducing a flexible isolator as indicated by Figure 1.1. The isolator
Increases the natural period of the overall structure and hence decreases its accel-
criation response to earthquake-generated vibrations. A further decrease in response
oceurs with the addition of damping. This increase in period, together with damp-
ing, can markedly reduce the effect of the earthquake, so that less-damaging loads
nnd deformations are imposed on the structure and its contents.

This chapter examines the general changes in vibrational character which
different types of seismic isolation confer on a structure, and the consequent
changes in seismic loads and deformations. The study is greatly assisted by
considering structural modes of vibration and earthquake response spectra, an
upproach which has proved very effective in the study and design of non-
inolated aseismic structures (Newmark and Rosenblueth, 1971; Clough and Penzien,
1975).

The seismic responses of linear structures in general are introduced early to
provide the concepts used throughout Chapters 2, 4 and 5. Attention is also given
[0 seismic response mechanisms since they assist in understanding the seismic
responses of isolated structures and how they are related to the responses of similar
structures which are not isolated. The general consequences of seismic isolation
ire illustrated using six different isolation systems.

This chapter provides an introduction to the more systematic study in Chapters 4
und 5. 1t leads to some useful approaches for the study of seismic isolation, gives
i greater understanding of the mechanisms involved, and indicates some useful de-
sign approaches. The discussions throughout this chapter assume simple torsionally
balanced structures in which the structural masses at rest are centred on a vertical
line, as illustrated in Figures 2,127,
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2.2 ROLE OF EARTHQUAKE RESPONSE SPECTRA AND
VIBRATIONAL MODES IN THE PERFORMANCE OF
ISOLATED STRUCTURES

2.2.1 Earthquake response spectra

The horizontal forces generated by typical design-level earthquakes are greatest
on structures with low flexibility and low vibration damping. The seismic forces
on such structures can be reduced greatly by supporting the structure on mounts
which provide high horizontal flexibility and high vibration damping. This is the
essential basis of seismic isolation. It can be illustrated most clearly in terms of
the response spectra of design earthquakes.

The main seismic attack on most structures is the set of horizontal inertia forces
acting on the structural masses, these forces being generated as a result of hor-
izontal ground accelerations. For most structures, vertical seismic loads are rela-
tively unimportant in comparison with horizontal seismic loads. For typical design
carthquakes, the horizontal accelerations of the masses of simple shorter-period
structures are controlled primarily by the period and damping of the first vibra-
tional mode, i.e. that form in which the system resonates at the lowest frequency.
The dominance of the first mode occurs in isolated structures, and in unisolated
structures with first-mode periods of up to about 1.0 s, a period range which in-
cludes most structures for which isolation may be appropriate. Neglecting the less
important factors of mode shape and the contribution of higher modes of vibration,
the seismic acceleration responses of the isolated and unisolated structures may be
compared broadly by representing them as single-mass oscillators which have the
periods and dampings of the first vibrational modes of the isolated and unisolated
structures respectively.

The natural (fundamental) period T, natural frequency @ and damping factor £
of such a single-mass oscillator, of mass m, are obtained by considering its equation
of motion

mii + cut + ku = —miig (2.1)

where u is the displacement of the single-mass oscillator relative to the ground,
ug is the ground displacement, k is the ‘spring stiffness’ and c¢ is the ‘damping
coefficient’.

The natural (fundamental) frequency of undamped, unforced oscillations (c = 0
and iiy = 0) is

w? =k/m 2.2)

or
T =21 /(m/k). (2.3)

The solution for damped, unforced oscillations is

wome Ae M aog(wat -+ 8)
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where

W} = (k/m) — (c/2m)*

i where A and & are constants representing the initial displacement amplitude
and initial phase of the motion.

The damped, unforced oscillation has thus a lower frequency wy lhar‘i t?ne natural
[requency @, and wy decreases as the value of the damping coefficient ¢ 1s mcrf:ased.
I{ ¢ is increased to a ‘critical value’ ¢, such that wy = 0, the system will not

oscillate. The critical damping is given by
it — 2~ﬂmk).

A ‘damping factor’ ¢ can then be defined which expresses the damping as a
{raction of critical damping

r=clea=c/ [2ﬂmk)] = ¢/2mw = T /4nm. 2.4)
The equation of motion can then be divided by m to give
e %
U+ —u+ —u=—lg
m m

wr

i + 2w + w'u = —iig. (2.5)

For this (damped, forced) dynamic system, the displacement response lol ground
accelerations may be given in closed form as a Duhamel integral, obtained by
expressing iig(f) as a series of impulses and summing the irqpu{se responses.of
(he system. When the system starts from rest at time [ = 0, this gives the relative
displacement response as

f
u(t) = ﬁ(”wd)f iis(r)exp[—-{w(t — 1)) sinwq(r — 7)dr. (2.6)
0

By successive differentiation, similar expressions may be ‘t.)bta.i.ned for the‘ rela-
live velocity response i and the total acceleration response i + Ug. Fm" particular
values of @ and &, the responses to the ground accelerations of a given earth-
quake may be obtained from step-by-step evaluation of Equation (2.6) or from
other evaluation procedures. .

Since structural designs are normally based on maximum responses, a conve-
nient summary of the seismic responses of single-mass oscillators is ol:‘ilamcd by
recording only the maximum reyponses for a set of values of the oscillator pa-
cameters @ (or T) and &, These maximum responses are the earthquake response
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spectra. They may be defined as follows: 16 - . : :

SA(T, &) = (it + 5ig)(r)max: Sv(T, £) = u(t)may; Sp(T. &) = u(t)max-

2.7
Such spectra are routinely calculated and published for important accelerograms
e.g. EERL Reports (1972-5). Figure 2.1 shows response spectra for various damp-
ing factors (0, 2, 5, 10 and 20% of critical) for a range of earthquakes. Figure 2.1(a)
shows acceleration response spectra for the accelerogram recorded in the SO°E di-
rection at El Centro, California, during the 18 May 1940 earthquake (often referred
to as ‘El Centro NS 19407). This accelerogram is typical of those to be expected on
ground of moderate flexibility during a major earthquake. The El Centro accelero-
gram is used extensively in the following discussions because it is typical of a wide
range of design accelerograms, and because it is used widely in the literature as a
sample design accelerogram.

Seismic structural designs are frequently based on a set of weighted accelero- = T
grams, which are selected because they are typical of site accelerations to be ex-
pected during design-level earthquakes. The average acceleration response spectra : 3 = 5
for such a set of eight weighted horizontal acceleration components are given in ¢ @ y { y
Figure 2.1(b). Each of the eight accelerograms has been weighted to give the same Piiieg) el
area under the acceleration spectral curve, for 2% damping over the period range 16
from 0.1-2.5 s, as the area for the El Centro NS 1940 accelerogram (Skinner,
1964).

Corresponding response spectra can be presented for maximum displacements
relative to the ground, as given in Figure 2.1(c). These displacement spectra show
that, for this type of earthquake, displacement responses increase steadily with
period for values up to about 3.0 s. As in the case of acceleration spectra, the
displacement spectral values decrease as the damping increases from zero. The
spectra shown in Figure 2.1(b) and (c) are more exact presentations of the concept
illustrated in Figure 1.1.

While the overall seismic responses of a structure can be described well in terms
of ground response spectra, the seismic responses of a lightweight substructure can
be described more easily in terms of the response spectra of its supporting floor.
Floor-response spectra are derived from the accelerations of a point or ‘floor’ in the
structure, in the same way that earthquake-response spectra are derived from ground
accelerations. Thus they give the maximum response of lightweight single-degree-
of-freedom oscillators located at a particular position in the structure, assuming that
the presence of the oscillator does not change the floor motion. It is also possible to

Sa Spectral acceleration | ms™2 |
(+-]
1

T T I 1

Ims™|

S, Spectral acceleration

; periy . : b

derive floor spectra which include interaction effects. Floor-response spectra tend ) Period [sec]

to have peaks in the vicinity of the periods of modes which contribute substantial Figure 2.1 Response spectra for various damping factors. In each figure, the curve with
acceleration to that floor. the largest values has 0% damping and successively lower curves are for

ach is i ; s damping factors of 2, 5, 10 and 20% of critical. (a) Acceleration response
AT SESPORAC pectuat nprosch s Dacd ironghous itk COOK 0 METESAE undEy spectrum for El Centro NS 1940, (b) Acceleration response spectrum for the

standing of the factors which influence the s.msm.lc responses pf |sol_aled slryclures. weighted average of eight accelerograms (EI Centro 1934, El Centro 1940,
The response spectrum approach also assists in the seismic design of isolated Olympia 1949, Taft 1952). The symbols U and I refer to unisolated and
structures, as described in Chapter 5, since it allows separate consideration of the isolated structures respectively, (¢) Displacement spectra corresponding to
character of design earthquakes and of earthquake-resistant structures. A technique Figure 2.1(b)
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Figure 2.1 (continued)

which is given some emphasis is the extension of the usual response spectrum
approach for linear isolators to the case of bilinear isolators.

2.2.2 General effects of isolation on the seismic responses of structures

The first mode of a simple isolated structure is very different from all its other
modes, which have features similar to each other. We treat the first mode separately
from all the other modes, which are usually referred to herein as “higher modes’.
The first-mode period and damping of an isolated structure, and hence its seismic
responses, are determined primarily by the characteristics of the isolation system
and are virtually independent of the period and damping of the structure.

In the first isolated mode the vertical profiles of the horizontal displacements
and accelerations are approximately rectangular, with approximately equal motions
for all masses (see Figure 2.5). Hence an isolated structure may be approximated
by a rigid mass when assessing the seismic responses of its first vibrational mode.

Except for special applications, the seismic responses of structures with linear
isolation can be described in terms of earthquake-response spectra, and the simple
first mode of vibration. When the isolation is strongly non-linear, many important
seismic responses can still be described in terms of mode 1, but higher modes can
be of importance.

Figure 2.1(a) and (b) show acceleration response spectra for typical design earth-
quakes. It is seen that these maximum accelerations, and hence the general inertia
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attacks on structures, are most severe when the first vibrational period of the struc-
{ure is in the period range from about 0.1-0.6 s and when the structural damping
i low. This period range is typical of buildings which have from 1 to 10 storeys.
I'ie shaded area marked (U) in Figure 2.1(b) gives the linear acceleration spectral
responses for the range of first natural periods (up to about 1.0 s) and structural
dampings (up to about 10% of critical) to be expected for structures which are
promising candidates for seismic isolation. Similarly, the shaded area marked (D
i Figure 2.1(b) gives the acceleration spectral responses for the range of first-mode
periods and dampings which may be conferred on a structure by isolation systems
ol the types described in Chapter 3.

A comparison of the shaded areas for unisolated and isolated structures in
I'igure 2.1(b) shows that the acceleration spectral responses, and hence the pri-
mary inertia loads, may well be reduced by a factor of 5 to 10 or more by intro-
ducing isolation. While higher modes of vibration may contribute substantially to
{he seismic accelerations of unisolated structures, and of structures with non-linear
\solation, this does not seriously alter the response comparison based on the shaded
sreas of Figure 2.1(b). This figure therefore illustrates the primary basis for seismic
isolation.

The contributions of higher modes to the responses of isolated structures are
described in general terms below, and in more detail later in this chapter and in
Chapter 4.

Almost all the horizontal seismic displacements, relative to the ground, are
Jue to the first vibrational mode, for both unisolated and isolated structures. The
Jeismic displacement responses for unisolated and isolated structures are shown in
Figure 2.1(c) by the shaded areas (U) and (I) respectively. These shaded areas have
{he same period and damping ranges as the corresponding areas in Figure 2.1(b).
As noted above, the first-mode period and damping of each isolated structure de-
pend almost exclusively on the isolator stiffness and damping. Figure 2.1(c) shows
u considerable overlap in the displacements which may occur with and without iso-
lution. This may arise when high isolator damping more than offsets the increase
in displacement which would otherwise occur because the isolator has increased
the overall system flexibility.

Morcover, while displacements without isolation normally increase steadily over
(he height of a structure, the displacements of isolated structures arise very largely
(tom isolator displacements, with little deformation of the structure above the iso-
lntor, giving the approximately rectangular profile of mode 1. Figure 2.1(c) shows
(hat isolator displacements may be quite large. The larger displacements may con-
(ribute substantially to the costs of the isolators and to the costs of accommodating
(he displacements of the structures, and therefore isolator displacements are usually
un important design consideration.

A convenient feature of the large isolator displacements is that the isolator loca-
tion provides an effective and convenient location for dampers designed to confer
high damping on the dominant first vibrational mode. Moreover, some dampers
require large strokes 1o be effective. Such damping reduces both the accelerations
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which attack the structure and the isolator displacements, for which provision must
be made.

2.2.3 Parameters of linear and bilinear isolation systems

A typical isolated structure is supported on mounts which are considerably more
flexible under horizontal loads than the structure itself. It is assumed here that the
isolator is at the base of the structure and that it does not contribute to rocking
motions. Other locations for isolators are discussed in Chapter 5. As a first approx-
imation, the structure is assumed to be rigid, swaying sideways with approximately
constant displacement along its height, corresponding to the first isolated mode of
vibration.

Some isolation systems used in practice are “damped linear’ systems such as
those presented in Equations (2.1) and (2.5). However, an alternative approach, for
the provision of high isolator flexibility and damping, is to use non-linear hysteretic
isolation systems, which also inhibit wind sway. Such non-linearity is frequently
introduced by hysteretic dampers, or by the introduction of sliding components to
increase horizontal flexibility, as discussed in Chapter 3. These isolation systems
can usually be modelled approximately by including a component which slides with
friction and gives a bilinear force-displacement loop when the model is cycled
at constant amplitude. Models of linear and bilinear isolation systems, with the
structure modelled by its total mass M, are shown in Figures 2.2(a) and 2.3(a).

The linear isolation system (Figure 2.2) has shear stiffness K}, and its coefficient
of (viscous-) velocity-damping is Cy, where the subscript b is used to label param-
eters of the linear isolator. These parameters may be related to the mass M or the
weight W of the isolated structure using Equations (2.3) and (2.4). This gives the
natural period Ty, and the velocity damping factor &,

Ty =27/ (M/Ky) (2.8a)

and
& = GoThy/(4n M). (2.8b)

Figure 2.2(b) shows the ‘shear force’ versus ‘displacement’ hysteresis loop of
such a damped linear isolator, which is traversed in the clockwise direction as
the shear force and displacement cycle between maximum values +S}, and +X,
respectively. The ‘effective stiffness’ of the isolator is then defined as

Ky = Su/ Xp. 2.9

The design values chosen for T, and &, will usually be based on a compromise
between seismic forces, isolator displacements, their effects on seismic resistance
and the overall costs ol the isolated structure.

When the isolator velocity-damping is quite high, say &, greater than 20%,
higher-mode acceleration responses may become important, especially regarding
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Figure 2.2 Schematic representation of a damped linear isolation system. (a) Structure
of mass M supported by linear isolator of shear stiffness Ky, with velocity
damper (viscous damper) of coefficient Cy. (b) Shear force S versus dis-
placement X showing the hysteresis loop and defining the secant stiffness
of the linear isolator: Ky = Sp/Xs. (¢) Linear isolator with high damping
coefficient and higher-mode attenuator K,

floor-acceleration spectra. Such an increase in higher-mode responses may be
largely avoided by anchoring the velocity dampers by means of components of
appropriate stiffness K., as modelled in Figure 2.2(c).

The bilinear isolator model (Figure 2.3(a)) has a stiffness Kp; without sliding
(the ‘initial’ or ‘elastic-phase’ stiffness), and a lower stiffness Ky during sliding
or yielding (the “post-yield” or ‘plastic-phase” stiffness). By analogy with the linear
case, these stiffnesses can be related to corresponding periods of vibration of the
system:

Tin, Too = 27/ (M/Kin), 21/ (M/ K1o). (2.102)
Corresponding damping factors can also be defined:

Loty Sz = Oy /(A M), CyTya /(A M). (2.10b)
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(b) Spifrnsezasecs

(c)

Figure 2.3 Schematic representation of a bilinear isolation system. (a) Structure of mass
M supported by bilinear isolator which has linear ‘spring’ components of
stiffnesses Ky and Ky, together with a sliding (Coulomb) damper com-
ponent. (b) Shear force versus displacement showing the bilinear hysteresis
loop and defining the secant stiffness of the bilinear isolator: Kg = S,/ Xp.
The ‘initial” or ‘elastic-phase” and ‘post-yield" or ‘plastic-phase’ stiffnesses
Ky and Ky, respectively are the slopes (gradients) of the hysteresis loop as
shown, and (X, Q,) is the yield point. (¢c) Comparison of linear hysteresis
loop with a circumscribed rectangle, to enable definition of the non-linearity
factor NL

An additional parameter required to define a bilinear isolator is the yield ratio
Oy/ W, relating the yield force Qy of the isolator (Figure 2.3(b)) to the weight W
of the structure. Yielding occurs at a displacement X, given by Q,/Ky;. When
the design earthquake has the severity and character of the El Centro NS 1940
accelerogram it has been found that a yield ratio Q,/W of approximately 5%
usually gives suitable values for the isolator forces and displacements. In order
to achieve corresponding results with a design accelerogram which is a scaled
version of an El Centro like accelerogram, it is necessary to scale Qy/W by the
same factor, as described in Chapters 4 and 5.

Itis found useful to deseribe the bilinear system using ‘effective’ values, namely
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an appropriately defined ‘effective’ period Ty and ‘effective’ damping factor g.
The subscript B is used for these effective values of a bilinear isolator.

The effective bilinear values Ty and ¢p are obtained with reference to the ‘shear
[orce” versus ‘displacement” hysteresis loop shown in Figure 2.3(b). This balanced-
displacement bilinear loop is a simplification used to define these parameters of
bilinear isolators. In practice, the reverse displacements, immediately before and
alter the maximum displacement X, will have lower values. In general, the concept
ol these ‘effective’ values is a gross approximation, but it works surprisingly well.
Nole also that the simplified bilinear loop shown does not include the effects of
velocity-damping forces. The damping shown is ‘hysteretic’, depending on the area
ol the hysteresis loop. '

The ‘effective’ stiffness Ky (also known as the ‘secant’ stiffness) is defined as
Ihe diagonal slope of the simplified maximum response loop shown in Figure 2.3(b):

KB — Sb,-"Xb. (2]]3.)

T'his gives the effective period

Ty = 27/ (M/Kg). (2.11b)

An equivalent viscous-damping factor &, can be defined to account for the
hysteretic damping of the base. Any actual viscous damping &, of the base must
be added to &, to obtain the effective viscous-damping factor ¢ for the bilinear
system. In practice &, is usually larger than &, i.e. the damping of a bilinear
hysteretic isolator is usually dominated by the hysteretic energy dissipation rather
than by the viscous damping ¢&,. Thus

& = &b +&n (2.11c)
where, from Equation (2.4),
& = CoTp /(AT M) (2.12)

and where ¢, is obtained by relating the maximum bilinear loop area to the loop
area of a velocity-damped linear isolator vibrating at the period Ty with the same
amplitude Xy, to give

&h = (2/m)Ap/(45p Xp) (2.13)

where Ay, = area of the hysteresis loop.

For non-linear isolators, it is convenient to have a quantitative definition of non-
lincarity. We have found it useful to define a non-linearity factor, NL, in terms of
IMigures 2.3(b) and 2.3(c), as the ratio of the maximum loop offset, from the secant
line joining the points (X, Si,) and (— Xy, —8y), to the maximum offset of the axis-
parallel rectangle through these points, i.e. P/ P,. Hence the non-linearity factor
increases from 0 (o 1 as the loop changes rom a zero-area shape to a rectangular
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shape. For a bilinear isolator this is equivalent to the ratio of the loop area Ay to
that of the rectangle. The non-linearity factor NL is thus given by

NL = Ap/(45yXp) = Qy/So — Xy/ Xb. (2.14)

From Equations (2.13) and (2.14) it is seen that the hysteretic damping factor &, is
proportional to the non-linearity factor NL for bilinear hysteretic loops. However,
re-entrant bilinear loops may have a much lower ratio of damping to non-linearity.

2.2.4 Calculation of seismic responses

When the isolator is linear and the base flexibility is sufficient for the first mode
to dominate the response, the maximum seismic responses of the system may
be approximated by design-earthquake spectral values, as given for example in
Figure 2.1, for the isolator period 7}, and damping &,. For the approximately rigid-
structure motions of the first isolated mode, the maximum displacement X, at any
level r in the structure is given by

X, = Sp(Ty, &b). (2.15a)
The maximum inertia load F,, on the rth mass m,, is given by
F =~ m, Sa(Ty, ). (2.15b)

The inertia forces are approximately in phase and may be summed to give the shear
at each level. In particular the base-level shear is given by

Sp &= M Sa(Ty, &b). (2.15¢)

When the isolator is bilinear, seismic responses may still be obtained from
design-earthquake spectral values, but the solutions are less exact than in the linear
case, as discussed in Chapter 4. Some of the results of this later chapter are antici-
pated here so that the seismic responses of a range of isolators can be compared in
Section 2.5. These results were obtained by calculating the responses of 81 different
isolator-structure systems and analysing the patterns which emerged. It was found
that the effective period Ty and effective damping &g of Equations (2.11) to (2.13)
may be used with earthquake spectra to obtain rough approximations for the seis-
mic responses of the first mode. The maximum base displacement X, and the
maximum base shear S, (neglecting velocity-damping forces) may be derived from
the isolator parameters and ‘bilinear’ spectral displacement Sp(7g, &) as follows:

Xy, ~ CpSp(Tg. Zp) (2.16a)
Sp & Oy + K2 (X — Xy). (2.16b)

Here Cg is a “correction” factor which was found empirically. For the El Centro
NS 1940 accelerogram, the correction factor Cy lies approximately in the range
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(0.85-1.15 for a wide range of the bilinear isolator parameters Ty, Tio and Qy/W.
This gives an idea of the uncertainties associated with this method. Note that
the method is also iterative, as Ty and &g are functions of Xy, and §p,. Practical
illustration of these concepts is given in Chapter 5 when discussing the design of
isolation systems.

2.2.5 Contributions of higher modes to the seismic responses of
isolated structures

The contributions of higher modes of vibration to the seismic responses of iso-
lated structures can be described briefly in general terms. These contributions are
cxamined systematically in Chapter 4.

A linear isolation system with a high degree of linear isolation and moderate
isolator damping (i.e. &, < 20%), or with high isolator damping which includes a
higher-mode attenuator as in Figure 2.2(c), gives small higher-mode acceleration
responses. Hence all the seismic responses of a structure with such linear isolation
are approximated reasonably well by first-mode responses and by a rigid-structure
model. Without higher-mode attenuation, high isolator damping may seriously dis-
tort mode shapes, and complicate their analysis, as described in Chapter 4. Also,
higher-mode responses may increase as the damping increases, because greater
base impedances caused by the base damping result in larger effective participa-
tion factors.

When a bilinear isolator has a high degree of non-linearity, there are usually
relatively large higher-mode acceleration responses. These usually give substantial
increases in the seismic inertia forces, compared with those produced by the first
mode. Shear forces at various levels of the structure are typically increased by
somewhat smaller amounts, the exception being near-base shears which remain
close to their mode-1 values because shears arising from higher isolated modes
have a near-zero value at the isolator level.

Increased floor-acceleration spectra may result from increased higher-mode ac-
celeration responses and may be of concern when the seismic loads on lightweight
substructures, or on the contents of the structure, are an important design consid-
cration.

The higher-mode acceleration responses are generally reduced by reducing the
non-linearity of the isolator, but other isolator parameters may modify the effects of
non-linearity. When the isolator is bilinear the degree of non-linearity can usually be
reduced by reducing the period ratio T/ Ty and the yield ratio O,/ W, since these
changes usually give a less rectangular loop. However, the non-linearity should
normally be left at the highest acceptable value, since the hysteretic damping of a
bilinear isolator is proportional to the degree of non-linearity, and the first-mode
response generally decreases as the damping increases.

For a given degree of non-linearity, the higher-mode acceleration responses can
generally be reduced by making the elustic period Ti,) considerably greater than the
first unisolated pertod 7 (U, Thig approach becomes more practical and effective
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for structures whose period Tj(U) is relatively low. The mechanisms underlying
these higher-mode effects are discussed more fully in Chapter 4.

2.3 NATURAL PERIODS AND MODE SHAPES OF LINEAR
STRUCTURES — UNISOLATED AND ISOLATED

2.3.1 Introduction

It has been stated above that most or all of the important seismic responses of a
structure with linear isolation, and many of the seismic responses with non-linear
isolation, can be approximated using a rigid-structure model. However, more de-
tailed information is often sought, such as the effects of higher modes of vibration
on floor spectra, especially for special-purpose structures for which seismic isola-
tion is often the most appropriate design approach. Such higher-mode effects are
conveniently studied by modelling the superstructure as a linear multi-mass system
mounted on the isolation system.

Linear models and linear analysis can be used for unisolated structures and
also when the structure is provided with linear isolation, except that high isolator
damping may complicate responses. Simplified system models may be adopted to
approximate the isolated natural periods and mode shapes when there is a high
degree of modal isolation, namely when the effective isolator flexibility is high in
comparison with the effective structural flexibility. This useful concept, the ‘degree
of isolation’, is defined and discussed in Chapter 4.

When a structure is provided with a bilinear isolator, it is found that the dis-
tribution of the maximum seismic responses of higher modes can be interpreted
conveniently in terms of the natural periods and mode shapes which prevail during
plastic motions of the isolator. This approach is effective for the usual case in
which the yield displacement is much less than the maximum displacement. These
mode shapes and periods are given by a linear isolator model which has an elas-
tic stiffness equal to the plastic stiffness Ky> of the bilinear isolator. These mode
shapes explain the distribution of maximum responses through the structure, but in
general the amplitudes of the responses will be different to those of a linear system
with base stiffness Ky;. The elastic-phase isolation factor / (Ky;) = T/ T1(U) and
the non-linearity factor NL are important parameters affecting the strengths of the
higher-mode responses.

2.3.2 Structural model and controlling equations

The earthquake-generated motions and loads throughout non-yielding structures
have been studied extensively (e.g. Newmark and Rosenblueth, 1971; Clough and
Penzien, 1975). The structures are usually approximated by linear models with a
moderate number N of point masses mi,, as illustrated in Figure 2.4(a) for a simple
one-dimensional model.
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Figure 2.4 (a) Linear shear structure with concentrated masses. The seismic displace-
ments of the ground and of the rth mass m, are u, and (1, +u,) respectively.
The relative displacement of the rth mass is u,. Here k(r, 5) and c(r, §) are,
respectively, the stiffness and the velocity-damping coefficient of the connec-
tion between masses r and s. (b) Uniform shear structure with total mass M
and overall unisolated shear stiffness K, such that the level mass m, = M /N
and the intermass shear stiffness k, = KN. If N tends to infinity, the overall
height [ = hy, the mass per unit height m = M /[ and the stiffness per unit
height k = K1

In general, each pair of masses m,, m, is interconnected by a component with
a stiffness k(r, 5) and a velocity damping coefficient c(r, s). In Figure 2.4(a), each
mass m, has a single horizontal degree of freedom, i, with respect to the supporting
ground, or u, + u, with respect to the pre-earthquake ground position, where the
horizontal displacement of the ground is u,.

At each point r, the mass exerts an inertia force —(ii, + iig)m,, while each
interconnection exerts an elastic force —(u, —u,)k(r, s) and a damping force —(u, —
itg)e(r, s). The N equations which give the balance of forces at each mass can be
expressed in matrix form

[Mlit + [Cla + [Klu = —[M]lii, (2.17)
where [M], [C] and [K] are the mass, damping and stiffness matrices, and where

the matrix elements ¢, and &, are simply related to the damping coefficients and
the stiffnesses, ¢(r, ) and k(r, ¥) respectively.
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Here [M], [C] and [K] are N x N matrices since the model has N degrees of
freedom, and u is an N-element displacement vector.

The model in Figure 2.4(a) and the force-balance Equation (2.17) can be ex-
tended readily to a three-dimensional model with 3N translational degrees of free-
dom (and 3N rotational degrees of freedom if the masses have significant angular
momenta). However, Figure 2.4 and Equation (2.17) are sufficiently general for
most of the discussions in Chapters 2 and 4.

2.3.3 Natural periods and mode shapes

The seismic responses of the N-mass linear system, defined by Figure 2.4(a) and
Equation (2.17), can be obtained conveniently as the sum of the responses of N
independent modes of vibration. Each mode n has a fixed modal shape ¢, (provided
the damping matrix satisfies an orthogonality condition as discussed below), and a
fixed natural frequency @, and damping &,. These modal parameters depend on M,
C and K. Other features of modal responses follow from their frequency, damping,
shape and mass distribution, and the frequency characteristics of the earthquake
excitation.

Modal responses are developed here in outline, with attention drawn to features
which clarify the mechanisms involved. Important steps in the analysis parallel
those for a simpler single-mass structure.

The natural frequencies of the undamped modes are obtained by assuming that
there are free vibrations in which each mass moves sinusoidally with a frequency
. Let

u = ¢ sin(wt + 6) (2.18)

where the displaced shape ¢ varies with position in the structure and with w, but is
independent of 7. Substitute Equation (2.18) in Equation (2.17), with the damping
and ground acceleration terms removed

([K] — @*[M])¢ sin(wr + 6) = 0. (2.19)

Applying Cramer’s rule it may be shown that non-trivial solutions are given by the

roots of an Nth-order equation in @’

det([K] — ’[M]) = 0. (2.20)

For a general stable structure, Equation (2.20) is satisfied by N positive frequencies
wy, termed the undamped natural or modal frequencies of the structure. The N
natural frequencies are usually separate, although repeated natural frequencies can
occur. The shape ¢, of mode n is now found by substituting @, in Equation (2.19)
to give N linear homogeneous equations

(IK] ~ @ [M]¢, = 0. (2.21)
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Since the scale factor of each mode shape ¢, is arbitrary it is here assumed, unless
otherwise stated, that the top displacement of each mode is unity: ¢y, = 1. A
mode-shape matrix may then be defined as

[®]l=[d1,....Pu...-, | (2.22)

Al each natural frequency w,, the undamped structure can exhibit free vibrations
with a normal mode shape ¢, which is classical; that is, all masses move in phase
(or antiphase where ¢,, is negative),

2.3.4 Example — modal periods and shapes

Natural periods and mode shapes for unisolated and well isolated structures may
be illustrated using a continuous uniform shear structure, hereafter referred to
as the standard structure. If a frame building has equal-mass rigid floors, and
il the columns at each level are inextensible and have the same shear stiffness, the
building can be approximated as a uniform shear structure. This may be modelled
as shown in Figure 2.4(b) with m, = M/N and k(r,r — 1) = KN forr = 1
10 N, and with all other stiffnesses removed. The model is given linear isolation
by letting k(1, 0) = K, where K}, is typically considerably less than the overall
shear stiffness K. It is given base velocity damping by letting ¢(1, 0) = C},. The
structural model is made continuous by letting N — oo.

From the partial differential form of Equations (2.17) which arises in the limit
of N — oo, or otherwise, it may be shown that the mode shapes ¢, have a sinu-
soidal profile, and that the modal frequencies w, are proportional to the number of
(uarter-wavelengths in the modal profile. Unisolated modes have (2n — 1) quarter-
wavelengths and isolated modes have just over (2n — 2) quarter-wavelengths, as
shown in Figure 2.5. If the stiffnesses K and K, are chosen to give first uniso-
lated and isolated periods of 0.6 s and 2.0 s respectively, the periods of other
modes follow from the number of quarter-wavelengths as shown in Figure 2.5.
Moreover, there are 0.6/2.1 quarter-wavelengths in isolated mode 1, so that the
first-mode shape value ¢y, at the base of the structure, above the isolator, is given
by ¢ = c0s(0.29 x 90°%) = 0.90, as shown. Higher isolated modes rapidly con-
verge towards (2n — 2) quarter-wavelengths with increasing n, and corresponding
periods oceur,

Modal acceleration profiles have the same shapes as the corresponding displace-
ment profiles but are of opposite sign, and hence, for a uniform mass distribution,
the modal force profiles also have the same shapes as the displacement profiles.
The shear at a given level may be obtained by summing the forces above that
level, so it is evident from Figure 2.5 that the shear profiles for the higher modes
(n > 1) of the isolated structures have small near-nodal values at the base level,
because of the cancelling effects of the positive and negative half-cycles of the
profile.

The unisolated and isolated natural periods and modal profiles of Figure 2.5
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Figure 2.5 Variation, with height A,, of ¢,,, which is the approximate shape of the nth
mode at the rth level of the continuous uniform shear structure obtained by
letting N tend to infinity in the structural model of Figure 2.4(b) shown for
values of T)(U) = 0.6 s and T, = 2.0 s. The modal shapes and periods are
shown when the structure is unisolated (U) and isolated (I). Note that the
responses interleave, with periods 7,,(I) and T, (U) alternating between 2.09,
0.6, 0.29, 0.2, 0.15 and 0.12 s respectively

may be expressed as follows

T,(U)=0.6/(2n — 1) (s) (2.23a)
(D= 2.1; T, ~0.6/(2n —2), forn>1 (s) (2.23b)
$ra(U) = sin[(2n — 1)(/2)(h; [ hy)] (2.23¢)
(D) = cos[(0.3(1 — A,/ hy)(/2))] (2.23d)
¢rn() = cos[(2n — 2)( /2)(h./ hy)]. (2.23¢)

For structures which are non-shear and non-uniform, and have inter-mass stiff-
nesses in addition to k(r, » — 1), period ratios are less simple but retain the general
features given by Figure 2.5. For a well isolated structure, the first-mode period
is controlled by the isolator stiffness. All other isolated and unisolated periods are
controlled by the structure and are interleaved in the order given by Figure 2.5.
The isolated mode-1 profile is still approximately rectangular. Higher-mode pro-
files are no longer sinusoidal but have the same sequences of nodes and antinodes.
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Moreover, the shear profiles of higher isolated modes still have small near-nodal
values at the isolator level. g

For all well isolated structures, the damping of mode 1 is controlled by the isola-
tor damping. The damping of all higher modes is controlled by structural damping,
provided the velocity damping of the isolator is not much greater than that of the
structure. It is commonly assumed that the structural damping is approximately
cqual for all significant modes.

2.3.5 Natural periods and mode shapes with bilinear isolation

When a structure is provided with a bilinear isolator there are two sets of nat-
ural periods and two corresponding sets of mode shapes; one set is given by a
system model which includes a linear isolator which has the elastic stiffness Ky
of Figure 2.3, while the other set is given when the linear isolator has the plastic
stiffness Kpy.

The yield level of a bilinear isolator is normally chosen to ensure that the
maximum seismic displacement response, for a design-level excitation, is much
larger than the isolator yield displacement. With such isolators the distribution of
the maximum seismic motions and loads, and the floor spectra, can be expressed
¢ffectively in terms of the set of modes for which the shapes, and the higher-mode
periods, are those of the normal modes which arise when the structure has a linear
isolator of stiffness Ky;. An approximate effective period for mode 1 is derived from
{he secant stiffness Kp at maximum displacement, as given by Equation (2.11a)
and illustrated in Figure 2.3(b). The relevance of the normal modes arising with a
stiffness Ky is to be expected, since maximum or near-maximum seismic responses
should normally occur when the isolator is moving in its plastic phase, with an
incremental stiffness Ky». The relevance of this set of modes is discussed in the
systematic studies in Chapter 4.

2.4 MODAL AND TOTAL SEISMIC RESPONSES
2.4.1 Seismic responses important for seismic design

‘This section considers the seismic response quantities which are commonly im-
portant for the design of non-isolated or isolated structures. Important seismic
responses normally include structural loads and deformations and may include ap-
pendage loads and deformations. Appendage responses indicate the level of seismic
attack on lightweight substructures, and on plant and facilities within the structures.
For an isolator, seismic displacement is likely to be the most important and limiting
design Factor.

The contributions of structural modes and response spectra to the important
seismic responses are indicated on the left of Figure 2.6. The earthquake accel-
erations give acceleration response spectra which combine with structural modes
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to give mass accelerations and hence structural seismic forces. Similarly floor- (or
structural-mass-) acceleration response spectra give the appendage seismic forces.

2.4.2 Modal seismic responses

The modal seismic responses of linear multi-mass structures can be expressed in
a simple form when the shapes of all pairs of modes are orthogonal with respect
to the stiffness, mass and damping matrices. It may be shown that undamped
free-vibration mode shapes are orthogonal with respect to the mass and stiffness
matrices. Moreover structural damping can usually be represented well by a matrix

Controlling_factors Seismic_responses

Structurol modes

—— Maoss accelerations
—=Structural forces

== Shears
D Moments

i| Deformations
Floor spectra

Appendoge
accelerations —=Appendage
forces
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deformations

Eorthquoke spectro

SIMAB NS HS S0 Spsty
;S ;S VA

Earthguoke § [
ciﬁ

Figure 2.6 Schematic representation of the responses which dominate seismic design.
The floor spectra have the same role in the response of the appendage as the
carthquake spectra have in the response of the structure
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which gives classical in-phase mode shapes. Such a damping matrix does not couple
or change the shape of the undamped modes. Particular exceptions to orthogonal
damping may arise with highly damped isolators or with damped appendages, as
discussed in Chapter 4.

The orthogonality of the mode shapes, with respect to the mass and stiffness
matrices, may be obtained from Equation (2.21) by noting that the mass and stiff-
ness matrices are unaltered by transposition: the mass matrix because it is diagonal,
and the stiffness matrix because it is symmetric.

If Equation (2.21), for mode 7, is pre-multiplied by ¢, and again the transpose
of Equation (2.21), for mode m, is post-multiplied by ¢,, this gives

w2 ¢n Mlg, = ¢, (K1, (2.24a)
2P MI"$, = pn[KI" . (2.24b)

Since [M]T = [M] and [K]T = [K], subtraction of Equation (2.24b) from Equa-

lion (2.24a) gives, for the usual case when w?, # 2, the orthogonality condition:
oL [M]p, = 0, when n # m (2.25a)
Similarly
o' [Klg, =0, when n # m. (2.25b)

For the special case where two or more modes share the same frequency wp,
the mode shapes for modes m and n with the common frequency can be chosen
such that Equations (2.25a) and (2.25b) hold.

It is found that the responses of damped linear structures can also be described
in terms of the same classical (in-phase) normal modes if the damping coefficients
are also constrained by a similar orthogonality condition. That is, provided

¢n[Clp, =0, when n  m. (2.25¢)

It can be shown that Equations (2.25) imply that the inertia forces, the spring
forces and the damping forces of any mode (n) do no work on the motions of any
other mode (m).

The displacements u(t) of Equation (2.17) may be expressed as the sum of
factored mode shapes:

u(t) = B) puka(0) (2.26)

Substituting from Equation (2.26) into Equation (2.17), then pre-multiplying
cach term by ¢! and eliminating all terms given as zero by Equations (2.25) pro-
duces
¢, IM]1

o K],
T oNMIp,

b, Ml

i DrIClpy
" g M,

£ 4 = (2.27a)
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When compared with Equation (2.5), Equation (2.27a) is seen to describe a
single-degree-of-freedom damped oscillator with damping factor &, and frequency
w, given by

_ $1[Clon
2,0 = ———HM] b (2.27b)
13
»  ¢,[K], (2.270)

“n = $TMI$,

Here Equations (2.27) are the N -degree-of-freedom counterparts of Equations (2.2),
(2.4) and (2.5).

Since u = £ u, it follows from Equation (2.26) that the displacement at level
r of the nth mode is given by

Un = Pra- (2.28)
Substituting from Equation (2.28) into Equation (2.27) gives:
liy + 28, @nlityn + Opttyy = —Tyyliy (2.29)
where 5
[M]1
| b U e (2.30a)
rn ¢f‘ﬂ' ¢;}*[M]¢n
Hence, since [M] is a diagonal matrix,
EN me’¢m
Do = — 2 (2.30b)
Eitlm"¢ﬁi
= Grnln. (2.30c)

The factor I',, may be called a participation factor since it is the degree to which
point r of mode 7 is coupled to the ground accelerations. Equation (2.30c) defines
a mode weight factor I',. Tt is here convenient to define ¢y, | as unity. For simple
tower-like structures, when ¢y, = (—1)"~! then I', is positive.

When Equations (2.5) and (2.7) are compared with Equation (2.29) and (2.30c)
it is seen that

X = ¢rn r‘ﬂ SD(TH: é-n) (2.31a)
Xrn = ¢pal's SV(Tm &n) (231b)
Xrn == ¢ml—‘nSA(T:-is Cu) (231(:)

where the peak values X,,, X,, and X,, are defined as t,,max Urnmax, and (it -+
[niig)max respectively. Note that these maximum seismic responses do not occur
simultancously, so, for instance the maximum acceleration X is NOT the derivative
of the maximum velocity X,
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The maximum seismic displacements of mode n are given by Equation (2.31a).
The maximum seismic forces F,, follow directly from Equation (2.31c). Moreover,
since all the mass accelerations for these classical normal modes are in phase, and
therefore reach maximum values simultaneously, maximum shear forces S, and
overturning moments OM, , at level r, may be obtained by successive summation
of maximum forces. This gives

Frp = m, Xrn (2.32a)
N
Srn — Z Fin (2.32h)
N
OM,, = Y [(hi — hi-1)Sin] 2.320)
i=r+l

where /1, = height to mass m,.

2.4.3 Structural responses from modal responses

Usually the maximum structural responses cannot be obtained from the maximum
responses of a set of modes by direct addition, since modal maxima occur at
different times. The response levels of a mode, when plotted against time, vary
in a somewhat noise-like way and the probable maximum combined response of
several modes may usually be approximated by the square root of the sum of
squares (SRSS) method (Wilson er al, 1981). For example, the probable force at
level r, may be expressed as:

Fr = J(ZF7) (2.33)

where the mode 7 ranges over the significant modes.

However, if near-maximum responses of two or more modes are correlated
in time by close modal periods (often arising with torsional unbalance or with
near-resonant appendages), or by very short periods or very long periods, then
the complete quadratic combination (CQC) method may need to be used. Strongly
non-linear isolators may well provide a further mechanism which correlates modal
responses, so that the SRSS combination is not accurate.

2.4.4 Example — seismic displacements and forces

Important features of Equations (2.30), (2.31) and (2.32) can be illustrated for the
unisolated and the linearly isolated continuous uniform shear structure, but with
more accurate profiles for higher isolated modes as given in Chapter 4. Top-mass
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participation factors for successive modes are

Can(U) = 1.27,0.42,0.25, ...,4/[x(2n — 1)]
Taa(D) 2 1.0,0.045,0.011, ..., 2/[(2n — 2)/0.3]?

where T,(U)/ T, = 0.3.

Higher isolated modes are seen to have much lower participation factors than
corresponding unisolated modes.

The above mode-participation factors, together with the periods from Equa-
tion (2.23) and the spectra of Figure 2.1(b) and (c), can now be used to find
important seismic motions and loads for modes 1 and 2 from Equations (2.31)
and (2.32). For simplicity, a low damping factor of 5% is assumed for all modes.
With practical isolated structures a higher damping would normally be provided
for mode 1.

Since modal displacements may be represented by top displacements, consider
Xnn = UnnSp(T5. 5):

Xn1(U) = 0.085; X n2(U) = 0.0037 (m)
Xni(D) = 0.18; X y2(I) = 0.0009 (m).

Notice that displacements are completely dominated by mode 1 for both uniso-
lated and isolated structures. Moreover, for any well isolated structure, the base
displacement is almost as large as the top displacement

Xy =~ Xyni(D).

Since modal loads may be represented by the force per unit height at the top of
the structure Fl,, consider Fy,/p = UnuSa(Ty. 5), where p = M/ hy

Fyi(U)/p = 9.31; Fn2(U)/p = 3.60 (ms™2)
Fyi(D)/p ~ 1.80; Fna(D)/p = 0.37 (ms™2).

Note that the force for isolated mode 1 is relatively small because it has a low
response spectrum factor, while the forces for higher isolated modes are relatively
small because they have small participation factors.

2.4.5 Seismic responses with bilinear isolators

When the isolator is bilinear, there are a number of possible ways of defining the
modes, as is discussed in Section 4.3.4. For any of the definitions we consider, the
total response of a linear structure with bilinear isolation can be expressed exactly
as the sum of the modal responses, as for a linear system. However, the modal
equations of motion will be coupled, unlike those for classically damped linear
systems,

2.4 MODAL AND TOTAL SEISMIC RESPONSES 39

Several of the possible definitions of the mode shapes with bilinear isolation are
useful for interpreting the response or estimating the maximum response quantities.

In Section 2.2.3, we discussed the responses of a first mode defined by a rigid
structure mounted on an ‘equivalent’ linear isolator with ‘effective stiffness’ Kp,
‘effective period’ Ty and ‘effective damping’ . This model gives good approxi-
mations to the displacements and base shear of a structure on a bilinear isolator.

A useful set of modes for systems with bilinear isolation are those obtained by
using the post-yield stiffness of the isolator. Then the higher-mode periods and
all mode shapes are given by Equations (2.20) and (2.21) for a linear system with
K\ = Ky,. Hence, as with moderately damped linear isolators, the bilinear modes
are classical and normal. These modes are relevant for the maximum responses
because they relate to the post-yield phase, when the maximum displacements and
shears occur.

When the bilinear isolator has a high degree of non-linearity, the seismic re-
sponses of higher modes are often much greater than the responses which occur with
the above ‘equivalent’ linear modes. Bilinearity usually gives greater higher-mode
accelerations and loads, and particularly it usually gives greater values for floor-
acceleration spectra over the period range covered by significant higher modes.-
The reasons for the larger seismic responses of the higher modes are discussed in
Chapter 4 and are summarised briefly here.

With bilinear isolation, the input of seismic energy and the energy level of the
overall system are given roughly by a rigid-structure model with a linear isolator
of effective period T and effective damping factor £&g. When the structure is
sufficiently flexible to give a substantial contrast between the mode-1 shapes for
the first and second isolator stiffnesses, then there is usually significant energy
in the higher modes, where relatively small fractions of the structural energy can
result in relatively high modal accelerations and forces.

In terms of the modes for the plastic-phase stiffness Ky, each isolator transition
through the elastic phase redistributes the energy between the modes. This should
result in a net transfer of energy from the large-energy mode 1 to the small-energy
higher modes. The effects of the relatively large seismic responses of higher modes,
with many bilinear isolators, are seen in the case studies below and in the more
systematic studies of Chapter 4. The excitation mechanism for higher modes is also
described more fully there.

The mode shapes corresponding to the post-yield stiffness Ky, are usually very
similar in shape to the free-free mode shapes, obtained when the isolator stiffness
is zero. It is sometimes more convenient to interpret the responses in terms of the
free-free modes rather than those based on Ky, because of the symmetry of the
[ree-free modes and because there is no need to calculate new mode shapes for
different values of K. Decomposition of the response in terms of the free-free
mode shapes also has the useful properties that the base shear is contributed entirely
by the first mode, and that the first-mode displacements are uniform within the
structure. Also, the base shear scaled by appropriate participation factors provides
the driving forces for the higher modes,
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The seismic responses of isolated structures can be decomposed into the contri-
butions from suitably defined modes by a mode-sweeping technique described in
Chapter 4. Either the modes based on base stiffness Ky, or the free-free modes can
be used with this technique. The free-free mode shapes have been used to obtain
the results given in Section 2.5.

2.5 COMPARISONS OF SEISMIC RESPONSES OF LINEAR
AND BILINEAR ISOLATION SYSTEMS

2.5.1 Comparative study of seven cases

This section demonstrates many of the key features of seismic isolation, through
seven examples which show the seismic responses of structures and appendages
for various ranges of isolation system parameter values and structural flexibility.
The examples are summarised in Table 2.1 in terms of the physical parameters of
the systems, the maximum overall and modal response quantities, and the values
of the non-linearity factor and elastic-phase isolation factor which are important
parameters governing the isolated response.

Figure 2.7 shows the maximum values of the displacements, accelerations and
shears and the 2% damped top-floor spectra calculated for an unisolated structure
and six isolated structures in response to the El Centro 1940 NS ground acceleration.
The solid lines represent maximum total responses, with the maximum values
obtained from response history analysis. The dashed lines, and chain-dashed lines
where given, represent respectively the maximum first- and second-mode responses
at the various levels. In some cases the first-mode responses dominate to the extent
that dashed and solid lines coincide (e.g. parts of the floor spectra, particularly
at longer periods). In other cases, the difference between the solid and dashed
lines indicates the higher-mode contribution to the response. The modal responses
were obtained from the overall response histories at all masses in the structures
by sweeping with the free-free mode shapes, as discussed in Section 4.3.4, except
for the unisolated structure, where the modal responses are in terms of the true
unisolated modes.

The “unisolated’ structure (case (i)) is a uniform linear chain system, with four
equal masses and four springs of equal stiffness, the lowest being anchored ’lo l.ll1e
ground. It has a first-mode undamped natural period of 0.5 s, and 5% damping in
all its modes. Most of the ‘isolated’ cases represent systems obtained simply by
adding below this structure an isolation system modelled as a base mass, a linear or
bilinear-hysteretic base spring and a linear viscous base damper. However, two of
the ‘isolated’ cases involve stiffer structures, with unisolated periods of 0.25 s, in
order 1o show the effects of high elastic-phase isolation factors. In all the isolated
cases, the added base mass is of the same value as the other masses, comprising
0.2 of the total isolated mass,

The viscous damping of the isolated structures is 5% of critical for all the
free-free modes, with the non-linear isolation systems having linear viscous base
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dampings gy which are 5% of critical in the post-yield phases, as well as hysteretic
damping. The table shows values of &, for the linear isolators, and values of Zb,
¢vi and &y for the bilinear isolators, where &, = &, T / Tya.

The cases were chosen to represent a wide variety of isolation systems, with
various degrees of non-linearity and pre- and post-yield isolation ratios. In calcu-
lating the isolation factors, / = T;,/T;(U) and I (Ky,) = Th1/ T1(U), the unisolated
period T;(U) corresponds to that of the structure when the isolator is rigid, while
the isolator periods Ty, and Ty, are calculated for the five masses from the structure
and the isolator with all their interconnecting springs treated as rigid, mounted on
the isolator spring.

Cases (ii) and (jii) represent medium-period structures with a high degree of
linear isolation (73(U) = 0.5, T, = 2.0 s, I = 4), and with low &y = 5%) and
high (&, = 20%) values for the viscous damping of the isolator, respectively.

Case (iv) is a bilinear hysteretic system with similar characteristics to that of the
William Clayton Building (Section 6.2.4), which was the first building isolated on
lead-rubber bearings. The parameter values are typical for structures with this type
of isolation system. The unisolated period of the structure is 0.25 s (the William
Clayton Building has a nominal unisolated period of 0.3 s), with a pre-yield iso-
lator period Ty; of 0.8 s and a post-yield isolator period Ty, = 2.0 s. The yield
force ratio Q,/W is 0.05, less than the William Clayton Building’s value of 0.07.
However, the latter value was chosen to give a near-optimal base shear response
(see Section 4.3.2) in 1.5 El Centro, so scaling down the yield-force/weight ratio
by approximately 2/3 is appropriate for a system with El Centro as the design
motion. The post-yield isolator period is equal to the isolator period of the linear
systems of cases (ii) and (iii). The equivalent viscous damping from the combined
hysteretic and viscous base damping at the amplitude of its maximum response o
El Centro is 24% (Table 2.1), comparable with the viscous damping of 20% for
the linear system (iii).

Case (v) represents bilinear systems with elastic- and yielding-phase isolation
factors towards the low ends of their practical ranges. The unisolated period is 0.5 s,
with the isolator periods T;,; = 0.3 s and Ty; = 1.5 s, giving isolation factors of
0.6 and 3 in the two phases. The yield force ratio Qy/W is 0.05, as for all the
non-linear cases. This system has a moderate non-linearity factor which is virtually
identical to that of case (iv) (0.33 compared with 0.32), but considerably reduced
isolation factors, most importantly in the elastic phase where it is 0.6. The low
elastic-phase isolation gives response characteristics similar to those for a system
with an isolator which is rigid before it yields.

In case (vi), the post-yield period of the isolator has been doubled from that of
case (v), to Tz = 3.0 s, but the other parameter values are the same. This change
produces a considerably higher non-linearity factor of 0.60, but still a low elastic-
phase isolation factor of only 0.6. The response characteristics are similar to those
for what is sometimes referred 1o as a ‘resilient-friction base isolator’ (Fan and
Ahmadi, 1990, 1992: Mostaghel and Khodaverdian, 1987).

The final example, case (vii), is a strongly non-linear system, with a non-linearity
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Figure 2.7 Responses to the El Centro NS 1940 accelerogram of a uniform shear struc-
ture when unisolated (case i), when linearly isolated (cases ii and iii) and
when bilinearly isolated (cases iv to vii). The information in this figure com-
plements that in Table 2.1. The floor spectra are for the low-damping case
of 2%. The solid lines are the total response, while dashed and chain-dashed
lines are the seismic responses of modes 1 and 2 respectively. Note the

factor of 0.71, but unlike case (vi) it has high isolation factors in both phases of the
response. The force-displacement characteristics of the isolator are almost elasto-
plastic, with a post-yield period of 6.0 s. The unisolated period of the structure
(Ty(U) = 0.25 s) and the yield-force ratio (Q, /W = 0.05) are identical to case (iv),
and the pre-yield isolator period (1, = 0.8 s) and hence the elastic-phase isolation
factor arc very similar to those in case (iv). This represents a system with high
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five-fold differences in scale of the unisolated and isolated cases. The scale
changes are along the abscissae for X, X/g and S/ W, and along the ordinate
for the floor spectra. Note also that the shear-force/displacement hysteresis
loops have been drawn for cyclic displacements of 0.4X), in order to show
the various stiffnesses clearly

hysteretic damping, high isolation in both phases of the response, and a maximum
base shear closely controlled by the isolator yield force because of the nearly
perfectly plastic characteristic in the yielding phase.

The response characteristics of this wide range of examples are illustrated in
Figure 2.7, and demonstrate many ol the key features of the response character-
istics of base-isolated structures. Comparisons can be made between features of
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Table 2.1 Responses to the El Centro NS 1940 accelerogram of an unisolated uniform shear structure, and of six isolated structures

UNISOLATED ISOLATED
Linear Bilinear
Low High  High elastic Low elastic Low elastic High elastic
dampling dampling and high and low  and high  and very
plastic plastic plastic  high plastic
Units flexibility  flexibility flexibility  flexibility
Case — (i) (i) (iii) (iv) v) (vi) (vii)
Svstem parameters
Unisolated mode-1 period, T,(U) 5 0.5 0.5 0.5 0.25 0.5 0.5 0.25
Isolator periods, Ty Toi. Toz S 2.0 2.0 0.8, 2.0 03,15 0.3, 3.0 0.9, 6.0
Structural dampings, £,(U), (D % 5 5 5 5 5 5 5
Isolator velocity damping &y, &o1. &bz %o 5 20 420 4,1, 5 3,05, 8 2,08, 5
Isolator yield/weight, O,/ W % 5 5 5 5
Maximum responses
Base shear/mass, Sp/M ms? 8.18 1.78 1.36 1.08 1.38 0.79 0.627
Base displacement, X, m (X4 =0.07) 0.180 0.124 0.058 0.050 0.067 0.127
Top acceleration, X ms™? 124 1.914 1.603 1.33 3.346 3.405 1.278
Mode 1. top acceleration Xs ms™? 10.8 1.785 1.358 1.082 1.377 0.793 0.627
Mode 2. top acceleration Xs3 ms? 428 0.308 0.658 0.919 2.11 2.01 0.793
Top-floor resonant appendage accn:
at (yielding-phase) period, FAs (7},2) ms™? 82.3 15.3 5.90 33 4 2 _
at (yielding-phase) period, FA5 (73,2) ms™? 23.3 3.60 4.32 9.2 18 23 8

Meode-1 response from finear
spectra

Effective periods T, Tg

Effective damping. &: &g = & + &
Spectral acceleration S (7. &p)
Spectral displacement Sp(Tg, &g)

Correction factor, Cr = Xy/Sp(Ts, &s)

Non-linearity factor NL
Elastic-phase isolation factor:
[(Ksy) = To /T (U)

2.0

3
1.75
0.177

2.0
20

1.33

0.120

1.45
4.0+20
1.34
0.064
091

32

32

1.20
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0.061
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33

0.6
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the responses of unisolated and isolated structures, and between those of various
isolated structures. Systematic variations in response quantities can be seen as the
equivalent viscous damping, the non-linearity factor and the elastic-phase isolation
factor are varied.

The first point to note in Figure 2.7 is that the response scales for the unisolated
structure of case (i), as emphasised by heavy axis lines, are five times larger than
those for all the isolated cases shown in the other parts of the figure. The next
general comment is that the force-displacement hysteresis loops have been drawn
for cyclic displacements of +0.4X,. This has been done in order to show the
relative slopes.

Direct comparisons of various response quantities can be made for the unisolated
structure and the four cases (ii), (iii), (v) and (vi) involving the same structure on
various isolation systems. Cases (iv) and (vii) involve shorter-period structures on
the isolators, so direct comparisons of these with case (i) are not appropriate. The
base shears of the isolated systems with the 0.5 s structure are reduced by factors
of 4.6 (for the lightly damped linear isolator of case (ii)) to over 10 (for case (vi)
with high hysteretic damping). Base displacements, which contribute most of the
total displacement at the top of the isolated structures, range from 0.7 to 2.5 times
the top displacement of the unisolated structure. Inter-storey deformations in the
isolated structures are much reduced from those in the unisolated structures, since
they are proportional to the shears. Since large deformations are responsible for
some types of damage, the reduction in structural deformation is a beneficial con-
sequence of isolation. First-mode contributions to the top-mass accelerations in the
isolated structures are reduced by factors of about 6-14 compared with the values
in the unisolated structure. The linear isolation systems show marked reductions
in the higher-frequency responses as well. but the second-mode responses for the
systems with the greatest non-linearities are only slightly reduced from those in
the unisolated structure. These effects are most evident in the top-floor response
spectra.

Figure 2.7 shows several important characteristics of the response of isolated
structures in general. In isolated systems, increased damping reduces the first-
mode responses, but generally increases the ratio of higher-mode to first-mode
responses, particularly where the damping results from non-linearity. The elastic-
phase isolation factor / (Ky,) has a marked effect on higher-mode responses, which
increase strongly as [ (Ky) reduces from about 1.0 towards zero. The reason for the
strong influence of I (Ky,) on higher-mode responses is discussed in Section 4.3.4.
The effects of these parameters are demonstrated by considering each of the isolated
cases in turn.

The lightly damped linear isolation system of case (ii) reduces the base shear by
a factor of 4.6 from the unisolated value, but requires an isolator displacement of
180 mm. The response is concentrated almost entirely in the first mode, as shown by
the comparison of the first-mode, total acceleration and shear distributions, and by
the top-floor spectra, The differences between the first-mode and total distributions
arise largely from the difference between the free-free first-mode shape which
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was used in the sweeping procedure and the actual first-mode shape with base
stiffness K. The maximum second-mode acceleration calculated by sweeping with
the second free-free mode shape is only about 1/6 that found by sweeping with the
first free-free mode shape.

By increasing the base viscous damping from &, = 5% to 20% of critical, as in
case (iii), the maximum base displacement is reduced from 180 mm to 124 mm,
with a smaller percentage reduction in the base shear. The mode-2 acceleration
more than doubles, showing the effects of increased base impedance from the
increased base damping and modal coupling from the non-classical nature of the
true damped modes. The first-mode response still dominates, however. The floor-
response spectra reflect the reduction in first-mode response, but show increases in
the second- and third-mode responses compared with case (ii).

Case (iv) has an effective base damping similar to case (iii), but with the main
contribution coming from hysteretic damping. All first-mode response quantities
and those dominated by the first-mode contribution, including the base shear and
the base displacement, are reduced from the values for the linear isolation systems.
The non-linearity of this system is only moderate (0.32), and there is a high elastic-
phase isolation factor of 3.2, but the second-mode response is much more evident
than for the linear isolation systems, particularly in the floor-response spectrum.

Case (v) has the same degree of non-linearity as the previous case, but a much
reduced elastic-phase isolation factor of 0.6. The low elastic-phase isolation factor
has produced a much increased second-mode acceleration response, which is 50%
greater than the first-mode response on the top floor. The distribution of maximum
accelerations is much different from the uniform distribution obtained for a structure
with a large linear isolation factor. The accelerations are much increased from
the first-mode values near the top and near the base, while the shear distribution
shows a marked bulge away from the triangular first-mode distribution at mid-
height. Strong high-frequency components are evident in the top-floor acceleration
response spectrum, with prominent peaks corresponding to the second and third
post-yield isolated periods.

Case (vi) is an exaggerated version of case (v). The post-yield isolator period
has been increased to 3.0 s, giving a high non-linearity factor as well as a low
clastic-phase isolation factor, both conditions contributing to strong higher-mode
response. The nearly plastic behaviour of the isolator in its yielding phase produces
i more than 40% reduction in the base shear from case (V), at the expense of a
3% increase in the base displacement. The maximum second-mode acceleration
response at the top floor is 2.5 times the first-mode response, being the highest
value of this ratio for any of the seven cases. The acceleration at the peak of the
lop-floor response spectrum at the second-mode post-yield period has the greatest
value of any of the isolated cases, almost identical to the second-mode value in the
unisolated structure, which, however, occurs at a shorter period.

Case (vii) demonstrates that high elastic-phase isolation can much reduce the
relative contribution of the higher modes for highly non-linear systems. The non-
linearity factor of 0.71 is the highest of any of the cases, but the second-mode
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response is less than 40% that of cases (v) and (vi), which have poor elastic-phase
isolation. The high non-linearity has reduced the base shear to 70% of that of
case (iv). The mode-2 acceleration response has been reduced by 13% from that
of case (iv), but its ratio with respect to mode 1 has increased from 0.85 to 1.25.

Maximum base shears and displacements of isolated structures are dominated
by first-mode responses. Maximum first-mode responses of bilinear hysteretic iso-
lation systems can in turm be approximated by the maximum responses of equiv-
alent linear systems, as discussed earlier in this chapter and in Section 4.3.3. The
final section of Table 2.1 demonstrates the degree of validity of the equivalent
linearisation approach. It gives effective dampings and periods calculated for the
equivalent linearisation of the bilinear isolators, using Equation (2.11b) for Ty and
Equations (2.11c) to (2.13) for Zg. The response spectrum accelerations and dis-
placements for these values of period and damping are listed. The spectral values
for the base displacements give reasonable approximations to the actual values,
with correction factors Cg of approximately unity, except for case (vii), the case
with the nearly plastic post-yield stiffness, for which the correction factor is 1.6.
However, the spectral accelerations S, (7g. £g) provide much poorer estimates of
either the first-mode or overall base-mass acceleration X,. Much improved esti-
mates of the base shear S;, can be obtained from KX\, which has a smaller relative
error than the estimate of Xy, from Sp(7g, £g). This is the procedure we recommend
when using the equivalent linearisation approach (Section 2.2, Section 4.3.3 and
Section 5.1).

2.6 GUIDE TO ASSIST THE SELECTION OF ISOLATION
SYSTEMS

The examples summarised in Figure 2.7 and Table 2.1 show the effects of vari-
ous ranges of isolation system parameters. In particular, the effects of varying the
base damping, the non-linearity factor and elastic-phase isolation factor have been
demonstrated. Table 2.2 generalises the results found for these examples, and for
other cases studied in Chapter 4, and presents them in a more qualitative way, pro-
viding guidance to the sets of parameter values appropriate for particular purposes
and giving examples of practical isolation systems which can provide the desired
parameter values.

In Table 2.2, we consider classes of systems, rather than examples with specific
parameter values. The examples (i) to (vii) considered in Figure 2.7 and Table 2.1
fit into the corresponding categories in Table 2.2. However, the qualitative descrip-
tions of the nature of various response quantities show minor deviations from those
which would be obtained solely by consideration of these examples. Use has been
made of results of other cases considered in Chapter 4 or reported in the literature
in order to generalise the results from the specific ones given above.

Thus. class (vi) has been extended to include rectangular hysteresis loops (Ky, =
00, Ky = 0), while the example of case (vi) has ‘high’® and ‘low™ values of
these stiffnesses respectively. The response characteristics of simple sliding-friction
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systems included by this generalisation are similar to those of the example of
case (vi). The ways in which the various cases of Table 2.1 have been generalised
to the classes of Table 2.2 are discussed below.

Class (i) represents unisolated linear structures with periods up to about 1 s and
damping up to about 10%. This class is provided only for purposes of comparison.
Most short- to moderate-period unisolated structures will be designed to respond
non-linearly, so their acceleration- and force-related responses may be considerably
less than those of the linear elastic cases considered here. Isolation still provides
benefits in that non-linear response in such unisolated structures requires ductile be-
haviour of the structural members, with the considerable energy dissipation within
the structure itself often associated with significant damage.

Class (ii) represents lightly damped, linear isolation systems, with the isolator
damping less than 10%. Only systems providing a high degree of isolation are
considered, with an isolation factor T;,/T)(U) of at least 2 and a period T; of
at least 1.5 s for El Centro-type earthquakes. The response of such systems is
almost purely in the first mode, with very little higher-frequency response, so they
virtually eliminate high-frequency attack on contents of the structure. This type
ol isolation can be readily obtained with laminated-rubber bearings. with the low
isolator damping provided by the inherent damping of the rubber. Higher-damping
rubbers may be necessary to achieve the 10% damping end of the range without
the provision of additional damping devices. The higher-damping rubbers may not
hehave as linear isolators since they are often amplitude-dependent and history-
(ependent. Various mechanical spring systems with viscous dampers fall into this
calegory.

Class (iii) corresponds to linear isolation with heavier viscous damping, ranging
between about 10% and 25% of critical. Increased damping reduces the isolator dis-
placement and base shear, but generally at the expense of increased high-frequency
response. The high-frequency response results from increased isolator impedance
al higher frequencies. These systems still provide a high degree of protection for
subsystems and contents vulnerable to motions of a few Hz or greater, but with
reduced isolator displacements compared with more lightly damped systems.

We consider class (iv), bilinear hysteretic systems with good elastic-phase iso-
lation (Ty; /T1(U) > 2) and moderate non-linearity (corresponding to equivalent
viscous base damping of 20-30% of critical), as a reference class. For many appli-
cations, this represents a reasonable design compromise to achieve low base shears
und low isolator displacements together with low to moderate floor-response spec-
(ri, This type of isolation can often be provided by lead-rubber bearings.

Class (v) represents bilinear isolators with poor elastic-phase isolation
(14 /Ti(U) < 1) and relatively short post-yield periods (~ 1.5 s). The relatively
high stiffnesses of these isolation systems produce very low isolator displacements,
but strong high-frequency motions and stronger base shears than the reference
bilinear-hysteretic isolator class.

Class (vi) is similar in many respects to class (v), but with a long post-yield
period (T, >~ 3 s), which gives nearly elasto-plastic characteristics and thus high
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Table 2.2 Guide to the behaviour of isolation systems, showing seven classes correspond-
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ing broadly to the cases in Figure 2.7
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Table 2.2 (continued)
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hysteretic damping and a high non-linearity factor. Rigid-plastic systems, such as
given by simple sliding friction without any resilience, are extreme examples of
this class. Low base shears can be achieved because of the low post-yield stiffness
and high hysteretic damping, but at the expense of strong high-frequency response.
Even this advantage is lost with high yield levels. This class of bilinear isolator is
not appropriate when protection of subsystems or contents vulnerable to attack at
frequencies less than 1 Hz is important, but some systems in this class can provide
low base shears and moderate isolation-level displacements very cheaply. Displace-
ments can become very large in greater than anticipated earthquake ground motions.

Class (vi) consists of non-linear hysteretic isolation systems with a high degree
of elastic-phase isolation (T /T1(U) > 3) and a long post-yield period (Ty2 >~
3 ), producing high hysteretic damping. The low post-yield stiffness means that the
base shear is largely controlled by the yield force, is insensitive to the strength of the
carthquake, and can be very low. The high degree of elastic-phase isolation largely
overcomes the problem of strong high-frequency response usually associated with
high non-linearity factors. Systems of this type are particularly useful for obtaining
low base shears in very strong earthquakes when provision can be made for large
isolator displacements. One application of this class of system was the long flexible
pile system used in the Wellington Central Police Station (Section 6.2.6), with the
elasto-plastic hysteretic damping characteristics provided by lead-extrusion energy
dissipators mounted on resilient supports.

As indicated by the preceding descriptions of the isolator systems and the dis-
cussion of the response characteristics of the various examples in the last section,
the selection of isolation systems involves ‘trade-offs’ between a number of factors.
Decreased base shears can often be achieved at the cost of increased base displace-
ments and/or stronger high-frequency accelerations. High-frequency accelerations
affect the distribution of forces in the structure and produce stronger floor-response
spectra. If strong high-frequency responses are unimportant, acceptable base shears
and displacements may be achieved by relatively crude but cheap isolation systems,
such as those involving simple sliding. In some cases, limitations on acceptable
base displacements and shears and the range of available or economically ac-
ceptable isolation systems may mean that strong high-frequency accelerations are
unavoidable, but these may be acceptable in some applications. Some systems may
be required to provide control over base shears in ground motions more severe than
those expected, requiring nearly elasto-plastic isolator characteristics and provision
for large base displacements.

The selection of appropriate isolation systems for a particular application de-
pends on which response quantities are most critical to the design. These usually
can be specified in terms of one or more of the following factors:

(i) base shear
(i)  base displacement
(i) high-frequency (e, greater than about 2 Hz) floor-response spectral acceler-
ations
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(iv) control of base shears or displacements in greater than design-level earth-
quake ground motions d

(v) cost.

Isolation systems are easily subdivided on the basis of those for which high-
frequency (> 2 Hz) responses can be ignored and those where they make signifi-
cant contributions to the acceleration distributions and floor spectra. Floor spectral
accelerations are important when the protection of low-strength high-frequency
subsystems or contents is an important design criterion. In well isolated linear
systems, high-frequency components, which correspond to higher-mode contribu-
tions, can generally be ignored although they become more significant as the base
damping increases (Figure 2.7, cases (ii) and (iii)). In non-linear systems, there will
generally be moderate to strong high-frequency components when there is a low
clastic-phase isolation factor of less than about 1.5. This generally eliminates sys-
tems with rigid-sliding type characteristics when strong high-frequency response
is to be avoided. For a given elastic-phase isolation factor, high-frequency effects
generally increase with the non-linearity factor (see Figure 4.12). These consider-
ations suggest that the selection of isolation systems for the protection of high-
frequency subsystems is limited to linear systems, or non-linear systems with high
clastic-phase isolation factors and moderate non-linearity factors (i.e. correspond-
ing to cases (ii), (iii) or (iv) in Figure 2.7). Some systems with high non-linearity
factors but also with high elastic-phase isolation factors may also produce an ac-
ceptably low high-frequency response. For example, case (vii) in Figure 2.7 with a
high non-linearity factor has a similar top-floor response spectrum to case (iv) for
which the non-linearity factor is moderate, and has a spectrum not much stronger
than that of the linearly isolated case (iii) which has high viscous damping. The
linear systems usually give better performance strictly in terms of high-frequency
[loor-response spectral accelerations, but the introduction of non-linearity can re-
duce the base shear and isolator displacement, which may give a better overall
performance when the structure, subsystems and contents are considered together.

For situations where a need for small floor-response spectral accelerations is
not a major design criterion, the range of acceptable non-linear isolation systems
is likely to be much greater. The main performance criteria are then usually re-
lated to base shear and base displacement. Both these quantities depend primarily
on the first-mode response. Except for nearly elasto-plastic systems, the base shear
decreases as Qy/ W increases from zero, passes through a minimum value at an op-
timal yield force, and then increases as Q,/ W continues to increase (Figure 4.5(d)).
Thus the base shear of most linear isolation systems can be reduced by selecting a
non-linear isolation system with Ty, = T, of the linear system and an appropriate
yield force ratio and elastic-phase period. For a given yield force, the base shear
penerally decreases as Ty, increases (Figure 4.5(d)), i.e. the system becomes more
clasto-plastic in character. This is illustrated by the examples in Figure 2.7. This is
penerally at the expense of greater base displacement, as for case (vii), or strong
high-frequency response when the elastic-phase isolation is poor, as in case (vi).
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When base shear and base displacements are the controlling design criteria, sys-
tems with rigid-plastic type characteristics, such as simple pure friction systems,
which are not appropriate when the protection of high-frequency subsystems or
contents is a concern, may give cheap, effective solutions provided the coefficient
of friction remains less than the maximum acceptable base shear. However, some
centring force is usually a desirable isolator characteristic. For pmle.ctio'n against
greater than design-level excitations, systems with a nearly plastic yielding-phase
characteristic have the advantage that the base shear is only weakly dependent on
the strength of excitation, but the disadvantage that their isolator displac.emems
may become excessive. A system similar to our reference case characterised by
moderate non-linearity and good elastic-phase isolation is often a good design com-
promise when minimisation of high-frequency floor-response spectral accelerations
is not an overriding design criterion.

3 Isolator Devices and S ystems

3.1 ISOLATOR COMPONENTS AND ISOLATOR
PARAMETERS

3.1.1 Introduction

The successful seismic isolation of a particular structure is strongly dependent on
the appropriate choice of the isolator devices, or system, used to provide adequate
horizontal flexibility with at least minimal centring forces and appropriate damping.
It is also necessary to provide an adequate seismic gap which can accommodate all
intended isolator displacements. It may be necessary to provide buffers to limit the
isolator displacements during extreme earthquakes, although an incorrectly selected
buffer may negate important advantages of seismic isolation.

The primary function of an isolation system is to support a structure while pro-
viding a high degree of horizontal flexibility. This gives the overall structure a long
cffective period and hence low maxima for its earthquake-generated accelerations
and inertia forces, in general accordance with Figure 2.1(b). However, with low
damping, maximum isolator displacements Xy may reach 500 mm or more during
severe earthquakes, as shown by Figure 2.1(c). High isolator damping usually re-
duces these displacements to between 100 and 150 mm. High damping may also
reduce the costs of isolation since the displacements must be accommodated by
the isolator components and the seismic gap, and also by flexible connections for
external services such as water, sewage, gas and electricity. Another benefit of high
isolator damping is a further substantial reduction in structural inertia forces. Also,
in crowded areas there is the possibility of structures colliding with each other.

Since the expected life of an isolated structure will typically range from 30 to 80
or more years, the isolation system should remain operational for such lifetimes,
and its maintenance problems should preferably be no greater than those of the
associated structure. This will usually call for relatively simple, well designed
and thoroughly tested isolator devices. The primary force-limiting function of an
isolator may be called on for only one, or a few, brief periods of operation during
the life of the structure: for example, one 15-s episode in 50 years. However, at
these times the isolator must operate successfully despite all environmental hazards,
including those tending to corrode metal surfaces, cause deterioration of elastomers,
or change the physical properties of component materials. In addition to the very
infrequent seismic loads, isolators will often be subject to smaller but relatively
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frequent wind loads which they must resist without serious deterioration. Diurnal
temperature changes will result in displacements which need to be accommodated
by the isolation system without the build-up of excessive forces. Finally, since
isolator devices which satisfy the above criteria will usually be intended to reduce
the overall structural cost, the components must be sufficiently simple to allow
supply and installation at moderate cost.

3.1.2 Combination of isolator components to form different isolation
systems

The design and performance of various isolator components is described in this
chapter. Emphasis is placed on components which were developed in our labora-
tory, namely steel dampers, lead-extrusion dampers and the lead-rubber bearing.
The elastomeric bearing is also described since its properties underlie those of
the lead-rubber bearing isolation system. Some description is also given of other
isolator components.

The discussion and results presented in Chapters 1 and 2, particularly in
Figure 2.7, Tables 2.1 and 2.2 and the associated text, form a context in which to
analyse the properties of real isolator components and real isolation systems. The
isolation systems considered provide horizontal flexibility and damping and support
the weight of the isolated structure. In the simplest case a linear isolation system is
produced by using components with linear flexibility and linear damping. In other
cases the isolation system may be non-linear. A special case of non-linearity, the
bilinear system, occurs when the shear-force/displacement loop is a parallelogram,
as shown in Figure 2.3 and discussed in the associated text. Different seismic
responses result from linear, bilinear and other non-linear isolation systems.

In the simplest case, a system which has both a linear flexibility component
and a linear damping component can be modelled in terms of the differential
equation (2.1), i.e.

mii + ci + ku = —mii,

where the flexibility is the inverse of the stiffness constant “k” and the velocity
damping is described by a constant ‘c’. Figure 2.2 and the associated text define this
kind of system and show the elliptical velocity-damped shear-force/displacement
hysteresis loop which results.

However, the components may not be linear. The most common source of non-
linearity in a component is amplitude dependence. For example, in the typical
bilinear isolation system the stiffness is amplitude dependent, changing from Ky,
to Ky at the yield displacement. The damping in this case is also non-linear because
the hysteretic contribution to the damping, which usually dominates, depends on the
area of the hysteresis loop and therefore also depends on the maximum amplitude
Xy-

Table 3.1 analyses the flexibility and damping of some common isolator compo-
nents, examining cach to see i i s linear or non-linear, The analysis is somewhal
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idealised and oversimplified, since material properties can vary. Also, it is worth-
while checking to see if a particular system is rate- or history-dependent. For
example, types of high-damping rubber depend both on the amplitude and on the
number of cycles which the sample has undergone.

Table 3.1 Flexibility and damping of common isolator components

Property Linear Non-linear
Restoring Force o Laminated-rubber bearing e High-damping rubber
(providing spring ® Flexible piles or columns bearing
constant and flexibility) e Springs e Lead-rubber bearing
e Rollers between curved e Buffers
surfaces (gravity) e Stepping (gravity)
Damping o Laminated-rubber bearing e High-damping rubber
e Viscous damper bearing

e Lead-rubber bearing

e Lead-extrusion damper
o Steel dampers

e Friction (e.g. PTFE)

As seen in Table 3.1, the laminated-rubber (elastomeric) bearing is the only
single-unit isolation system, among those considered, which has both linear restor-
ing force and linear damping. In the commercially used form, this comprises layers
of rubber vulcanised to steel plates. Considerable experience exists for the design
and use of the elastomeric bearing, since its initial major application was to accom-
m(‘)date thermal expansion in bridges and it was only later adopted as a solution to
seismic isolation problems. However, for seismic isolation, this system has the dis-
advantage that the maximum achievable damping is very low, approximately 5% of
critical. Attempts to overcome this disadvantage by increasing the inherent damp-
ing of the rubber have not yet produced an ideal system with linear stiffness and
linear dampirg.

Flexible piles or columns provide a simple, effective linear restoring force but
dampers need to be added to control the displacements during earthquakes and on
other occasions. If the dampers are linear, e.g. viscous dampers, then a linear system
results. Viscous dampers are excellent candidates for linear dampers, but may be
difficult to obtain at the required size, may be strongly temperature-dependent
and may require maintenance, given that the required lifetime may be 30 to 80
YCAUrs.,

Springs with the required stiffness are likely to be difficult to produce, but do
provide a linear restoring force. The German GERB system (Hiiffmann, 1985)
achieves this and is mainly intended for industrial plant such as large silos. Rollers
or spheres between curved (parabolic) surfaces can provide linear restoring forces.
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Since they have ‘line’ or ‘point’ contact it is difficult to provide for high loads.
Again, damping will usually need to be added in practice and linear damping will
produce a linear system.

Gravity in the form of a ‘stepping’ behaviour (see, for example the Rangitikei
viaduct, Chapter 6) can provide an excellent non-linear restoring force. Such sys-
tems need additional damping for effective isolation. The resultant isolation systems
are non-linear.

High-capacity hysteretic dampers may be based on the plastic deformation of
solids, usually lead or steel. The damper must ensure adequate plastic deformation
of the metal when actuated by large earthquakes. It must be detailed to avoid
excessive strain concentrations; for example these may cause premature fatigue
failure of a steel damper at a weld. Excessive plastic cycling of steel dampers,
for example by wind gusts, must be avoided since this gives progressive fatigue
deterioration.

Steel damping devices, often in the form of bending beams of various cross-
sections, have a high initial stiffness and are effective dampers but care must
be taken in their manufacture to ensure a satisfactory lifetime. They are strongly
amplitude-dependent. When combined with components to provide flexibility, they
can result in bilinear or non-linear isolation systems. Elasto-plastic steel dampers
have been used in New Zealand and other countries, including Italy, where they
have been used for the seismic isolation of many bridges (see Chapter 6).

The lead-extrusion damper behaves as a plastic device operating at a constant
force with very little rate or amplitude dependence at earthquake frequencies. It
creeps at low loads (see Figure 3.10), enabling thermal expansion to be accommo-
dated. When combined with a linear component for flexible support, e.g. flexible
piles, then a bilinear system can result, such as that used in the Wellington Central
Police Station (see Chapter 6).

The lead-rubber bearing, which comprises an elastomeric bearing with a central
lead plug, gives structural support, horizontal flexibility, damping and a centring
force in a single easily installed unit. It has high initial stiffness, followed by a lower
stiffness after yielding of the lead, and is for many situations the most appropriate
isolation system. The hysteretic damping of this device is via the plastic deformation
of the lead. The device is non-linear but can be well described as bilinear, i.e. it
has a parallellogram-shaped hysteresis loop as shown in Figure 2.3 and discussed
in the associated text,

Friction devices behave in a similar way to the extrusion damper; they are simple
but may require maintenance. Changes may occur in the friction coefficient due to
aging, environmental attack, temperature variation or wear during use. A further
problem is that of ‘stick-slip’, where after a long time under a vertical load the
device requires a very large force to initiate slipping. A dramatic example of a
system isolated by this means is the Buddha at Kamakura: a stainless steel plate
was welded 1o the base of the statue and it was rested on a polished granite base
without anchoring. ’
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3.2 PLASTICITY OF METALS

The damping devices which have been found to be most economic and suitable for
use in isolators are usually those which rely on the plastic deformation of metals.
To understand the behaviour of these devices and to gain some knowledge of their
limitations it is necessary to examine the mechanisms enabling plastic deformation
to occur.

Figure 3.1(a) shows the stress-strain curve for a metal in simple tension. Initially
the stress o is proportional to the strain €, and the constant of proportionality is
the Young's modulus E. This elastic region of the stress-strain curve is reproduced
on loading and unloading and has the equation of state

o= Ee (3.1a)

so that the slope of the (o—€) graph is E.
The corresponding relationship between shear stress T and engineering strain y
(where y is twice the tensor strain) is given by

t=Gy (3.1b)

where G=shear modulus.

If the strain is continually increased, it reaches a value (the yield point B in
Figure 3.1(a)) at which the material yields plastically. The yield point is of partic-
ular importance in the design of isolator components. It has the coordinates (&, oy),
(¥y. Ty) and (X, Q) on the stress-strain, shear-stress-strain and force-displacement
curves respectively.

Further increase in the stress results in a ‘plastic-region’ curve which is nearly
horizontal, in the case of lead, or which rises moderately in the case of mild steel. If
the stress is reduced to zero from a very large value of strain, then the curve follows
the line CD in Figure 3.1(a). On unloading, the metal no longer returns to its initial
state but has a ‘set’, i.e. an added plastic deformation. The unloading curve has the
same gradient as that in the elastic region, namely the Young’s modulus or shear
modulus (Van Vlack, 1985).

It should be noted that the area ABCE in Figure 3.1(a) represents input work
while the area DCE represents elastic energy stored in the metal at point C and re-
leased on unloading to point D. The difference area ABCD represents the hysteretic
cnergy absorbed in the metal. In the case of lead, the absorbed energy is rapidly
converted into heat, while in the case of mild steel it is dominantly converted to
heat, but a small fraction is absorbed during the changes of state associated with
work hardening and fatigue.

Since metal-hysteresis dampers involve cyclic plastic deformation of the metal
components, it is appropriate to consider the stress-strain relationship for a metal
cycled plastically in various strain ranges, as shown in Figure 3.1(b) for a metal
with the features typical of mild steel. Included in Figure 3.1(b) is the initial
stress-strain curve of Figure 3.1(a). Notice the increasing stress levels with in-
creasing strain range, and the lower yield levels during plastic cycling. With lead,
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Figure 3.1 (a) Stress-strain curves [or a typical metal which changes from elastic to

plastic behaviour at the yield point (13), (b) Stress-strain curves for a typical
mild steel under eychic loading
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the hysteretic loops are almost elastic-plastic, i.e. an elastic portion is followed by
yield at a constant stress (zero slope in the plastic region). Typical operating strains
are much greater than the yield strain, the loop tops are almost level, and the loop
height is not significantly influenced by strain range.

To understand the behaviour of a metal as it is plastically deformed, it is nec-
essary to look at it on an atomic scale. Before the 1930s, the plastic deformation
of a metal was not understood, and theoretical calculations predicted yield stresses
and strains very different from those observed in practice. It was calculated that
a perfect crystal, with its atoms in well defined positions, should have a shearing
yield stress 7, of the order of 10'° Pa, and should break in a brittle fashion, like
a piece of chalk, at a shear strain y, of the order of 0.1. In practice, metal single
crystals start to yield at a stress of 10° to 107 Pa (a strain of 107 to 107%) and
continue to yield plastically up to strains of 0.01 to 0.1 or more. The weakness of
real metal crystals could in part be aftributed to minute cracks within the crystal,
but the model failed in that it did not indicate how the crystal could be deformed
plastically (van Vlack, 1985; Read, 1953; Cottrell, 1961). The dislocation model
was then devised and overcame these difficulties. Since its inception the dislocation
model has been extremely successful in explaining the strength, deformability and
related properties of metal single crystals and polycrystals,

The plastic deformation in a crystalline solid occurs by planes of atoms sliding
over one another like cards in a pack. In a dislocation-free solid it would be
necessary for this slip to occur uniformly in one movement, with all the bonds
between atoms on one slip plane stretching equally, and finally breaking at the
same instant, where the bond density is of the order of 10'® bonds cm~2. In most
crystals, however, this slip, or deformation, is not uniform over the whole slip
plane but is concentrated at dislocations. Figure 3.2(a)-is a schematic drawing of
the simplest of many types of dislocation, namely an edge dislocation with the solid

Iigure 3.2 Atomic arrangements corresponding to (a) an edge dislocation, (b) a screw
dislocation. Here & is the Burgers vector, a measure of the local distortion,
and AD s the dislocation line
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spheres representing atoms. The edge dislocation itself is along the line AD and
it is in the region of this line that most of the crystal distortion occurs. Under the
application of the shear stress this dislocation line will move across the slip plane
ADCB, allowing the crystal to deform plastically. The bonds which must be broken
as the dislocation moves have a concentration of 10® cm™', and are concentrated
at the dislocation core, thus enabling the dislocation to move under a relatively
low shear stress. As the dislocation moves from the left-hand edge of the crystal
(Figure 3.2(a)) it leaves a step in the crystal surface, which is finally transmitted
to the right-hand side. Figure 3.2(b) shows the other major type of dislocation,
namely a simple screw dislocation, which may also transmit plastic deformation
by moving across the crystal. '

The dislocations in crystals may be observed using electron microscopy, while
the ends of dislocations are readily seen with the optical microscope after the
surface of the crystal has been suitably etched. Typical dislocation densities are
10* dislocations cm ™2 in a deformed metal and about 10° dislocations cm™ in an
annealed metal, namely one which has been heated and cooled slowly to produce
softening. Dislocations are held immobile at points where a number of them meet,
and also at points where impurity atoms are clustered.

The three main regions of a typical stress-strain curve are interpreted on the
dislocation model as follows:

(1) Initial elastic behaviour is due to the motion of atoms in their respective
potential wells; existing dislocations are able to bend a little, causing mi-
croplasticity.

(2) A sharp reduction in gradient at the yield stress is due to the movement of
dislocations.

(3) An extended plastic region, whose gradient is the plastic modulus or strain-
hardening coefficient, occurs when further dislocations are being generated
and proceed to move. As they tangle with one another, and interact with
impurity atoms, they cause work hardening.

It is also possible to model a polycrystalline metal as a set of interconnected do-
mains, each with (different) hysteretic features of the type conferred by dislocations,
which give the general stress-strain features displayed by the hysteresis loops of
Figure 3.1(b).

Since dislocations are not in thermal equilibrium in a metal, but are a result
of the metal’s history, there is no equation of state which can be used to predict
accurately the stress-strain behaviour of the metal. However, the behaviour of a
metal may be approximately predicted in particular situations, if the history and
deformation are reasonably well characterised.

3.3 STEEL HYSTERETIC DAMPERS 63

3.3 STEEL HYSTERETIC DAMPERS

3.3.1 Introduction

General

By the late 1960s a number of damping mechanisms and devices were being used
to increase the seismic resistance of a range of structures. At that time the logical
approach to developing high-capacity dampers for structures was to utilise the
plastic deformation of steel beams. During that decade the plastic deformation of
steel structural beams had been increasingly used to provide damping and flexibility
for aseismic steel beam-and-column (frame) buildings. The cyclic ductile capacity
of structural members was limited by material properties, local buckling and the
effects of welding (Popov, 1966).

Early steel-beam dampers developed in the Engineering Seismology Section of
the Physics and Engineering Laboratory, DSIR, were given a much greater fatigue
resistance than typical steel structural members by adopting suitable steels and
beam shapes, and attachments with welds remote from regions of plastic defor-
mation. Descriptions of the principal steel-beam dampers developed are given by
Kelly et al. (1972); Skinner et al. (1974 and 1975): Tyler and Skinner (1977); Tyler
(1978); Cousins er al. (1991). The principal developers of thé three main classes of
steel-beam dampers which emerged from the Physics and Engineering Laboratory
programme which started in 1968 were Kelly: twisting-beam 3ampers (Type E);
Tyler: tapered-beam dampers (Type T); and Skinner and Heine: uniform-moment
dampers (Type U).

The earliest bridge structure provided with seismic isolation in New Zealand
was a bridge at Motu, rebuilt in 1973 (McKay er al. 1990). The superstructure
was provided with seismic isolation to protect the existing slab-wall reinforced
concrete piers, which had only moderate strength to resist seismic forces. Isolator
flexibility was provided by sliding bearings. Hysteretic damping was provided by
plastic deformations near the bases of vertical cantilevers, in the form of structural-
type steel columns. Seismic isolation systems using steel-beam dampers developed
at the Physics and Engineering Laboratory, in New Zealand structures, are outlined
or listed in Chapter 6.

An early New Zealand application of steel-beam dampers was in the stepping
seismic isolation system for the tall piers of the South Rangitikei Viaduct. The
seismic responses of the proposed stepping bridge, with the inclusion of hysteretic
dampers, were studied by Beck and Skinner (1972, 1974). Steel twisting-beam
dampers were selected for the isolation system and prototypes were developed.
Construction of the bridge commenced in 1974 and it was opened in 1981 (Cor-
mack, 1988).

Structures with steel tapered-slab dampers in their isolation systems included a
stepping chimney in Christchurch (Sharpe and Skinner, 1983) and Union House in
Auckland, isolated by mounting on flexible piles. (Boardman et al. 1983), while
conically tapered steel dampers were used in the isolation systems for the Capacitor




WWW.BEHSAZPOLRAZAN.COM

o4 ISOLATOR DEVICES AND SYSTEMS

Banks at Haywards (Chapter 6). Uniform-moment steel dampers were used in the
superstructure isolation system for the Cromwell Bridge (Park and Blakeley, 1979).

Steel-beam dampers have also been adopted and developed, and used to provide
hysteretic damping for seismic isolation in other countries, as outlined in Chapter 6.
In Italy they have been used extensively in seismic isolation systems for bridge
superstructures. In Japan steel dampers have been used in the seismic isolation
systems of a range of structures.

Features of steel hysteretic dampers

Steel was initially chosen as the damper material since it is commonly used in
structures and should therefore pose no very unusual design, construction or main-
tenance problems, apart from possible fatigue failure at welds and stress concentra-
tions. Moreover, it was hoped that the development of these dampers would throw
additional light on the performance of steel in ductile aseismic structures,

The performance of steel-beam hysteretic dampers during earthquakes is closely
related to the performance of high-ductility steel-frame structures. However, the
dampers are designed to have a much higher fatigue resistance and to operate at
higher levels of plastic strain. This is achieved by using high-ductility mild steels,
by using damper forms with nominally equal strain ranges over each plastic-beam
cross-section, by using plastic beams of compact section (usually rectangular or cir-
cular), and by detailing the connections between the plastic beams and the loading
members so as to limit stress concentrations, particularly at welds.

In this section, the results of many years of experience with different shapes
and designs of steel damper are summarised in terms of a ‘scaling’ procedure,
which generalises many different findings and also makes it possible to arrive at
initial parameters for the design of steel-beam dampers with the desired properties.
However, it must be noted that the following discussion is based on a large number
of tests on many models and a few full-scale dampers, using in the main one
kind of steel (BS4360/43A) after stress relieving. Other steels and heat treatments
are expected to give similar, but not necessarily identical, results, particularly for
the life of the damper. The procedures suggested here, particularly for *scaling’,
are approximations which are included in order to enable a designer, to obtain
starting parameters for a given design. In practice, the full-scale device should be
tested.

For a given strain range, the load-displacement loop changes only moderately
with repeated cycling, with a moderate reduction in damping capacity, until the
yielding beams are near the end of their low-cycle fatigue life. The damper loop
parameters and their fatigue life can be estimated adequately, on the basis of cyclic
tests on damper prototypes or on small-scale models.

Since steel-beam dampers have a strictly limited low-cycle fatigue life, con-
trolled by fatigue-life curves of the type shown in Figure 3.6, it is necessary to
design the dampers so as to limit the cyclic strain ranges during earthquakes, and
to ensure that there exists a capacity to resist several design-level earthquakes as
well as at least one extreme-level earthquake. For a typical well designed isolator
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and for El Centro-type earthquakes, this might call for a nominal maximum strain
range of +3% during design earthquakes and +5% during extreme earthquakes.
Again, to avoid premature failure the isolator installation should ensure that wind
loads do not impose more than a few tens of cycles of plastic deformation on
damper beams during the design life of the isolated structure. The fatigue life of
well designed steel-beam dampers is discussed further in Section 3.3.5.

3.3.2 Types of steel damper

While steel beams may be subject to shape instability during cyclic deformations
into the plastic range, each of the damper geomeltries described below is stable for
a very wide range of member proportions.

The three types of steel hysteretic damper to be discussed are shown in
Figure 3.3:

(i) A ‘uniform’-moment bending-beam damper with transverse loading arms,
sloped at an angle as shown in Figure 3.3(a) (Type-U damper).

(ii) A tapered-cantilever bending-beam damper (Type-T damper). The apex of
the tapered slab is at the loading level, while the apex of the tapered cone is
substantially above the loading level. The circular-section cantilevered beam
in Figure 3.3(b) may be loaded in any direction perpendicular to the beam
axis. Figure 3.3(c) shows the load-displacement curves for this cantilever
damper, as used in retrofitting the capacitor banks at Haywards Power Station
with seismic isolation (see Chapter 6).

(iii) A torsional-beam damper with transverse loading arms (Type-E damper).
Figure 3.3(d) shows the Type-E damper used in the South Rangitikei Viaduct
(see Chapter 6).

Note, as shown in Figures 3.3(a) and 3.3(d), that the welds are placed at low-
stress regions of the damper. The cross-section of the beam may be circular, square
or rectangular, denoted by the subscripts ‘c’, ‘s” or ‘r’ respectively. Thus the
beams shown in Figures 3(a), 3(b) and 3(d) are of Types U, T. and E, respec-
tively.

Dampers with improved features for particular applications may be based on
combinations of the three basic types. A considerable range of further types of
steel-beam damper has been described in the literature. For example, two com-
pact dampers have been introduced in Japan, One uses a short hollow steel can-
lilever instead of the solid steel core of the Type-T damper. This bell damper
is compact and has good force-displacement features (Kobori et al.. 1988). A
sccond steel-beam damper has a set of beams in the form of vertical axis he-
lices which provide for large yielding displacements in any horizontal direction. It
has little height and can therefore be installed between horizontal surfaces with a
small vertical clearance (Takayama ef al. 1988). In Italy, sets of conical Type-T
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(a) Full-scale steel “Type-U’ bending-beam damper prototype (100 kN,
450 mm). Shaft diameter 100 mm. Note position of welds in low-
stress region, (b) Steel cantilever “Type-T* damper (10 kN, 4200 mm), as
retrofitted in order o ixolate the capacitor banks at Haywards Power Station
(see Chapter 6). Shaft dismeter S0 mm. (From Cousins ef al. 1991.)
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(c) Load-displacement loops for steel cantilever damper shown in
Figure 3.3(b). (d) Steel torsional-beam *Type-E’ damper with transverse
loading arms (450 kN, =50 mm), as used in South Rangitikei Viaduct with
stepping piers (see Chapter 6). Rectangular section 200 mm x 60 mm.
Note position of welds in low-stress region

67
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dampers have been mounted on the same base to provide large-force moderate-
height steel dampers, as shown in Figures 6.31 and 6.32 (Parducci and Medeot,
1987).

3.3.3 Approximate force-displacement loops for steel-beam dampers

Stress-strain loops and force-displacement scaling factors

The family of force-displacement loops for a bending-beam or twisting-beam
damper can be scaled on the basis of a simple model, to give a set of stress-strain
curves. Approximate force-displacement loops for a wide range of steel-beam
dampers can then be obtained from the scaled stress-strain curves.

Figure 3.4 shows scaled stress-strain loops for a Type-T, steel-beam damper
made of hot-rolled steel complying with BS4360/43A. Table 3.2 shows the force-
and displacement-scaling factors, f and / respectively, for seven types of damper.
The scaling factors f and [ of Table 3.2 and Figure 3.4 are based on a greatly
simplified but effective model of the yielding beam. The extreme-fibre strains €
(or y) are based on the shape which the beam would assume if it remained fully
elastic. The nominal stresses ¢ or T are related to the force-scaling factor f on
the assumption that they remain constant over a beam section (as they would
for a rigid-plastic beam material.) The circumflex (") is introduced to emphasise
the nominal nature of the stresses and moduli derived using the uniform-stress
assumption.

It can be shown that premultiplication of the scaling factor f by about 0.6
will correct to some extent for the approximation’s non-validity. However, if
such refinement is required, it is preferable to scale using the method of ‘Er-
rors in approximate damper loops’ and “Damper loops derived from models of
similar proportions’ below. The force F and displacement X can then be ob-
tained

X =~le (orly) (3.2a)
F~ f6(1+aX?, (or fi(1+aX?) (3.2b)

where €, & are given by Figure 3.4, y, T are given approximately by Figure 3.4,
by letting € = y and T ~ 6/2, and where a is a small correction factor for
large-displacement shape changes.
For dampers of Types U, T and E respectively, values of the correction factor
a are:
ay ~ —1/@8R?; ar=~2/(L+ R ap=1/QR% (3.2¢)

where R and L are defined in Table 3.2.

Figure 3.3(c) is an example showing the effect of a positive a value on the loop
shapes of Figure 3.1(b). The positive ay and @y values of Equation (3.2¢) cause an
increase in the slope of the force-displacement loop for large yield displacements
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Figure 3.4 Scaled stress-strain loops for Type-T, steel-beam damper, made of hot-
rolled mild steel complying with BS4360/43A. This diagram can be used
to generate approximate force-displacement loops using the scale factors for
the seven types of steel-beam damper given in Table 3.1

of 'I“ypc—'l' and Type-E dampers, in accordance with Equation (3.2b). Similarly, the
negative ay value causes a reduction in the loop slope for large yield displacements
of Type-U dampers.

I'he stress-strain loops of Figure 3.4 were derived from force-displacement
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loops for a Type-T, damper, using Equations (3.2) and f(T,) and [(T;) values
from Table 3.2. The force-displacement loops in Figure 3.4 were not corrected for
beam-end effects, since these were considered typical for bending-beam dampers.
Hence damper designs based on Figure 3.4 and Table 3.2 already include typical
beam-end effects. The initial stiffness of the damper is somewhat uncertain, owing
to variations in end-effects and the stiffness of beam-loading arms.

When Equations (3.2) are used to generate stress-strain loops from the force-dis-
placement loops of a T, damper, they eliminate the large-displacement increases
in nominal stresses, as is evident from a comparison of Figures 3.3(c) and 3.4
When dampers are then designed using Figure 3.4, Equations (3.2) reintroduce
appropriate large-displacement changes in force and stiffness.

By introducing the very rough approximation 6 =~ 27 and using € = y,
Figure 3.4 and Table 3.2 can be used to obtain a rough estimate of the force-
o displacement loops for Type-E (torsional) dampers. However, it would be more
accurate to generate a separate set of 7-y loops based on force-displacement loops
for a Type-E damper and Equations (3.2). A representative beam section should be
used, say a rectangle with B = 2¢, where B and ¢ are defined in Table 3.2. Alter-
natively, the method of ‘Damper loops derived from models of similar proportions’
below, should be used if more accuracy is required.

Displacement Factors
t
2LR
(L2 -R2) (d2+ ddg+ dg?)
(d + dn)?
(B2+ t) LR
(B+ 0.61)Bt

2LR
LZ-R?

2LR

283
3R
3R
7d?

o | Errors in approximate damper loops

4R
d2
6R
Bt?
4L

f
Bt?
(d + dgl®

24 (L + R)
t2(3B - t)

Force Factors

There are four main sources of error in the damper loops and parameters derived
by the method described above.

Scaling factors for steel-beam dampers

(1) Differences between the material properties of the hysteretic beam used to
generate the stress—strain loops of Figure 3.4 and the material properties of
the hysteretic beam in the prototype.

Table 3.2

(2) End-effects and non-beam deformations. End-effects usually reduce the initial

stiffness by about 50% and are particularly important for rectangular-beam
Type-E dampers. i

Type

(3) Alteration of loop loads, for a given displacement, by changes in the shape
of the damper under large deflections. Shape changes reduce Ky, for Type-
U dampers and increase Ky, for Type-T and Type-E dampers. First-order
corrections have been derived for the load changes due to damper shape

changes. These have been used to remove large-deflection effects from the
loops in Figure 3.4.

= d (R/IL) 3 R=L/3

Damper
¥ dy
+ B=2t

r
R
NOTES

(4)  Small changes in the damper loops caused by secondary forces. For example,
the Type-E damper is deformed by bending as well as by twisting forces.
These cffects have been small or moderate for all the damper proportions
tested,

The inelastic interaction of primary and secondary beam strains results in a
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gradual progressive cycle-by-cycle change in beam shape. The beam of a Type-
U damper deforms progressively away from a line through the loading pins. The
beams of a Type-E damper deform progressively towards the axis of the loading
pin. These effects were not serious in any of the dampers tested. The method given
below gives a more accurate procedure for generating force-displacement loops for
steel-beam dampers.

Damper loops derived from models of similar proportions
A scale-model method partially eliminates the four sources of error given above.
In this method, force-displacement loops are derived for an experimental model,
or damper of proportions similar but not identical to those of the prototype, and
made of the same material. The scaling is then done in terms of the force- and
displacement-scaling factors, f and [, given in Table 3.2.

If subscripts p and e are used for the ‘prototype’ and the ‘experimental model’
respectively, then, neglecting the correction factors involving a of Equation (3.2¢),

prFe = fp/fc (3.3a)
Xp/Xe :Ipffc. (3.3b}

For example, for a Type-U. damper, Table 3.2 gives
xpo’ Xe = (Lpdec)a{(LcRcdp)

Section 3.3.4 describes how the stiffness ratios and yield-point ratios can also be
obtained.

3.3.4 Bilinear approximation to force-displacement loops

Method of obtaining bilinear approximation

For design purposes, the curved force-displacement loops (such as shown, for
example in Figure 3.3(c)) are usually approximated by bilinear hysteresis loops
with an initial stiffness Ky, a yielded stiffness Ky; and a yield force Qy. The
method adopted here for selecting a bilinear approximation to a hysteresis loop is
shown in Figure 3.5. The curved loop A'B’ABA’ is symmetric about the centre O,
and the coordinates of the vertices A and A’ are the maximum displacements X,
and the maximum force +S;,. The initial stiffness Ky, is approximated by the slope
of the parallel lines AB, A’B’, where B and B’ are the loop intercepts on the X-axis.
The yield stiffness Ky is approximated by the slope of the parallel lines AC, A'C’,
where CC' is the line through O with slope Ky;. Xy and Qy, the coordinates of
point C, are the yield displacement and the yield force respectively for the bilinear
approximation to the curved hysteresis loop. The stress-strain loops of Figure 3.4
can also be approximated by bilinear loops with an initial modulus Ey (or Gy), a
yielded modulus £ (or ) and a yield stress dy (or T,).
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Figure 3.5 The method adopted for selecting a bilinear imati
approximat i
sis- 1hop 4 pproximation to a curved hys

The bilinear loop parameters change rapidly with the maximum strain amplitude
€m at low strains, but more slowly at larger strains. In practice, these parameter
c.hanges‘ do' not introduce large errors to seismic designs based on bilinear loops
:smce seismic responses are dominated by relatively large strains, with slowly vary-,
ing parameters. With fixed values of Ky;, Ky, and Oy, the bilinear loops nest on
a two-slope generating curve with a fixed starting point.

Bilinear damper parameters from the bilinear parameters of stress-strain loops
Bilinear approximations to the stress—strain loops of Figure 3.4 have been used to
genera.le the moduli and the yield stresses and strains listed in Table 3.3. These
n'fo‘nduh and stresses may be scaled by the factors f and I of Table 3.2 to give the
bilinear stiffness and yield parameters for particular dampers, as follows:

K ~ (f/DE, (3.42)
K2 = (f/DEz + aQy Xm(1 + €, /€m) (3.4b)
Qy = foy (3.4¢c)
where
X =ley

where €m |~. the maximum amplitude of cyclic strain and a. the large-defiection
correction factor, is defined in Equation (3.2). For a (torsional) Type-E damper.

".I].I £y and 6y of Table 3.3 and Equations (3.4) are replaced by G;. G, and %,
which are, very approximately, half as large. k
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Table 3.3 Approximated moduli, stresses and strains, up to a strain
amplitude €, of 7%

£ E, £, Gy &,

(%) (10* MPa) (10* MPa) (10* MPa) (%)
1 700 122 2.70 0.36
2 700 25.6 3.70 0.55
3 700 12.2 4.06 0.59
4 700 7.58 424 0.61
5 700 5.34 4.42 0.63
6 700 479 4.52 0.65
7 700 4,65 4,58 0.66

Stiffness and yield parameters from models of similar proportions
The modelling procedure described in ‘Damper loops derived from models of sim-
ilar proportions’, above, can be used to give the parameters of a proposed damper.
Again, subscripts p and e refer to the ‘prototype’ and ‘experimental’ dampers re-
spectively, and f and / values are obtained from Table 3.2.

If the correction factor involving a is neglected, then Equations (3.4) give

Ky1(p)/Kvi(e) = Kia(p)/ Knz(e) % (fple) /(felp) (3.52)

and

Qy(p)/ Oy(e) = fp/fe. (3.5b)

For the Type-U, damper, for example, Table 3.2 gives either stiffness ratio of the
form

Ky (p)/ Kypi(e) = (d;RzLe)/ (d:R;anP)

and

0,()/0y© ~ (43R.) / (k).

The above approach is equivalent to generating a loop or loops of the type shown in
Figure 3.4, based on an approximate model of a proposed damper, and then using
values from Tables 3.2 without end corrections or large-deflection corrections, to
find the parameters of the proposed damper.

3.3.5 Fatigue life of steel-beam dampers

While the load-deflection parameters of a steel-beam damper may be achieved
readily using the above design parameters, some sophistication is required in design
detailing and in manufacturing techniques which will assure a maximum in the
potential fatigue life, The potentinl fatigue life may be estimated from cyclic tests
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on simple specimens and from the nominal maximum cyclic strains as derived from
simple beam theory. '

The ‘life’, or number of cycles a steel hysteretic damper can be expected to
survive, is dependent upon the behaviour of the steel under cyclic loading as well as
on the design of the damper. The stresses which a material can survive under cyclic
loading are far less than for static loading. As the stress amplitude increases, the
number of cycles to failure reduces rapidly. These results are normally summarised
in ‘S-N’ curves, in which the cyclic stress amplitude is plotted against the number
of cycles to failure. For steel hysteretic dampers to operate, the stress level needs to
exceed the yield strength while remaining below the ultimate strength. Fortunately
for most seismic isolation solutions, it is the displacement amplitude, and thus
the strain, which is the controlling factor. Therefore, for the problem of seismic
isolation the important curve is the strain amplitude versus the number of cycles
to failure (Figure 3.6). Note the logarithmic scale on the abscissa.

By contrast, the lead devices do not fatigue readily at normal operating temper-
atures, because the melting point of lead is so low. During and after deformation,
the deformed lead undergoes the interrelated processes of recovery, recrystallisation
and grain growth. This behaviour is similar to that which occurs for steel above
about 400°C.

When assessing low-cycle fatigue capacity, the cyclic displacements of an earth-
quake may be characterised by various strain ranges, say 2 cycles at 5% strain,
6 cycles of +4% strain and 12 cycles at +3% strain, as is commonly done when as-
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Figure 3.6 Fatigue-life curve for a steel-beam damper. (The strain amplitude versus the

number of eycles to [ailure.) (Based on Tyler, 1978.)
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sessing the fatigue capacity of ductile reinforced-concrete structural members. The
total fatigue capacity of a well designed steel-beam damper, for any fixed strain
range, may be estimated from Figure 3.6. A rough approximation to the reduction
in fatigue resistance caused by given earthquake displacements may be obtained
as follows. When a strain range of +x% gives a damper fatigue life of n, cycles,
as indicated by Figure 3.6, assume that m cycles consume m/n, of the total fa-
tigue capacity of the damper. Hence the above earthquake displacement consumes
2/45+6/77+12/108 = 0.23 of the total damper fatigue capacity, and the damper
is estimated to just survive the cyclic deflections of four such earthquakes. As
suggested by this example, the fatigue capacity of damper-beam materials may be
compared effectively on the basis of the cyclic fatigue capacity of simple standard
specimens subject to a single nominal strain range, say +5%.

The beam and its end fixings must be detailed to avoid severe stress concentra-
tions at locations of high plastic strain. In particular, yielding-beam welds should
be confined to lower-strain locations. Again it is appropriate to adopt a damper
geometry which gives a decrease in the nominal plastic strain towards the ends
of the yielding beams. Large-deformation effects give this end-strain reduction for
Type-U dampers with prismic yielding beams. It also occurs for Type-T. dampers,
with circular cones loaded at the level given at the bottom of Table 3.2. For some
dampers, such as Type-T,, it is appropriate to use curved transitions between yigld-
ing and non-yielding parts of the beam.

Rises in the plastic-beam temperature, during design-earthquakes or extreme
earthquakes, should cause little change in the damper parameters or in the damper
fatigue resistance. The plastic-deformation damper beam should be of mild steel,
for example BS4360/43A. It may be an advantage to select for low levels of
those constituents known to reduce low-cycle fatigue. The damping beam material
should not be more than moderately cold-worked. The as-rolled condition is usu-
ally appropriate for damper beams. With higher cold-working during manufacture,
partial annealing is appropriate. Full annealing will considerably increase fatigue
life while reducing damping forces, which will then increase moderately during the
first several cycles of damper operation.

3.3.6 Summary of steel dampers

Steel-beam dampers are characterised by hysteretic force-displacement (stress-
strain) loops which can be analysed using a scaling method or approximated by
bilinear loops. The ‘life’ of steel dampers is limited by their fatigue characteristics
on cycling.

3.4 LEAD-EXTRUSION DAMPERS
3.4.1 General

Another type of damper utilising the hysteretic energy dissipation properties of
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metals is the Lead-Extrusion Damper. sometimes abbreviated to LED. which was
developed at PEL (DSIR) (the Physics and Engineering Laboratory of the NZ
Department of Scientific and Industrial Research). The cyclic extrusion damper was
invented in April 1971 by W H Robinson, immediately after he’d had a morning-
tea discussion with R I Skinner on the problems associated with the use of steel
in devices to absorb the energy of motion of a structure during an earthquake. The
process of extrusion consists of forcing or extruding a material through a hole or
orifice, thereby changing its shape (Figure 3.7). The process is an old one. Possibly
the first design of an extrusion press was that of Joseph Bramah who in 1797 was
granted a patent for a press ‘for making pipes of lead or other soft metals of all
dimensions and of any given length without joints’, (Pearson, 1944).

A lower bound for the extrusion pressure p may be derived from the yield stress
oy of the material under simple axial load, following Johnson and Mellor (1975).
Simple extrusion involves a reduction in the cross-sectional area of a solid prism
from A; to A; by plastic deformation, with an increase in length corresponding

Extrusion
orifice

Figure 3.7 A representation of the extrusion of a metal, showing the changes in mi-
crostructure. (From Robinson, 1976.)
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1o little volume change. The process may be idealised as the frictionless extrusion
ol an incompressible elastic-plastic solid which has a constant yield stress oy. The
minimum work W, required to change the section from A; to A, or the equal
minimum work to change the section from A; to A, arises when A; and A, have
the same shape and when the deformation involves plane strain. Such plane strain
occurs when sections that are plane prior to deformation remain plane throughout
the deformation process. The work W of plane-strain deformation can be derived
by considering a prism of section A, which is compressed between frictionless
parallel anvils to form a prism of section A;. The yield force increases with the
increasing sectional area to give the work W as

W = A LioyIn(A,/A2) (3.6a)

where L, is the length when the prism area is A;. Indeed, Equation (3.6a) can be
used as a basis for the experimental determination of the simple-strain yield stress
oy for lead, since a suitably lubricated lead cylinder, compressed between smooth
anvils, deforms in almost true plane strain.

The work required to cause the reverse change in area by simple frictionless
extrusion would be greater than W by an amount which depends on the departure
from plane-strain, which should not be great with a gradually tapered extrusion
orifice. For this almost plane-strain case, a result which appears to have been put
forward first by Siebel and Fangmeier (1931), the extrusion pressure p follows
simply from Equation (3.6a), giving

p = aoyInER (3.6b)

where the extrusion ratio ER = A /A; and « exceeds 1.0 by a small amount which
arises from the departure from plane-strain deformation.

A practical extrusion process will involve significant surface friction which will
give a further departure from plane-strain and hence an increase in @ beyond the
zero-friction value. A further increase in pressure occurs in reaction to the axial
component of the surface friction forces. If there are significant changes in oy
over sections of the extruded material, as may well arise when hysteretic heating
causes temperature differences, this may change the pattern of extrusion strains
substantially, a factor which may be significant with cyclic extrusion.

When a back-pressure and a re-expansion throat are included to return a lead plug
to its original sectional area Aj, as shown in the schematic sketch of an extrusion
damper in Figure 3.8, the theoretical frictionless pressure of Equation (3.6b) is
doubled. For a practical system with effective lubrication, the extrusion pressure,
as given by Equation (3.6b), should also be roughly doubled when the contraction
from area A 1o A; is followed by an expansion from area A, to A;. When the
throat profile is well designed, and the lead-surface lubrication is effective, the
pressure should be given approximately by

P oy In(A/A2) + po. (3.7a)
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(b)

Figure 3.8 (a) Longitudinal section of cyclic lead-extrusion damper: constricted-tube
type. (From Robinson, 1976.) (b) Longitudinal section of cyclic lead-
extrusion damper: bulged-shaft type

Another result of interest is the relation between extrusion pressure p and the
speed of extrusion v, or the strain rate (Pearson, 1944; Pugh, 1970). This is found
o be

p=av’ (3.7b)

where b = 0.12 for lead at 17°C, so that for an increase in extrusion speed by
a factor of 10, it is necessary to increase the extrusion pressure by 36%. More
complete discussions of the behaviour of metals during plastic deformation are
found in Nadai (1950), Mendelsson (1968) and Schey (1970).

Deformation of a polycrystalline metal results in elongation of the grains and a
liarge increase in the number of defects (such as dislocations and vacancies) in each
prain. After some time the metal may, if the temperature is high enough, return to
i state free from the effects of plastic strain by the three interrelated processes of
recovery, recrystallisation and grain growth (Wulff er al. 1956; Birchenall, 1959;
Jones ef al. 1969). During the process of recovery, the stored energy of the deformed
grains is reduced by the dislocations moving, to form lower energy configurations
such as subgrain boundaries, and by the annihilation of vacancies at internal and
external surfaces.

Reerystallisation occurs when small, new, undeformed grains nucleate among
the deformed grains and then grow at their expense. Further grain growth occurs
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as some of the new grains grow at the expense of others. The driving force for
recrystallisation is the stored energy of deformation of the extruded grains, while
the decrease in the surface energy of the many recrystallised grains causes grain
growth to occur, The temperature which is sufficient to cause 50% recrystallisation
during one hour is called the recrystallisation temperature (Wulff er al. 1956; Van
Viack, 1985). For lead this temperature is well below 20°C, while for aluminium,
copper and iron it is 150°C, 200°C and 450°C respectively. The rate at which
recrystallisation occurs is strongly dependent on temperature. For example, copper
which has been reduced in thickness by 71%, by cold rolling, has a recrystallisation
time of 12 min at 300°C, 104 d at 200°C and 290 yr at 100°C (Wulff er al.
1956). The rate at which recrystallisation occurs also increases with the amount of
deformation.

Since the recrystallisation temperature of lead is below room temperature, any
deformation of lead at or above room temperature is in fact ‘hot work’ in which
the processes of recovery, recrystallisation and grain growth occur simultaneously.
Working lead at room temperature is equivalent to working a piece of iron or steel
al a temperature of more than 400°C. Indeed, lead is the only common metal which
need not suffer progressive fatigue when cycled plastically at room temperature.

A device which acts as a hysteretic damper by utilising this property of lead
(Robinson and Greenbank, 1975, 1976; Robinson and Cousins, 1987, 1988) is
shown in Figure 3.8(a). It consists of a thick-walled tube co-axial with a shaft
which carries two pistons. There is constriction on the tube between the pistons,
and the space between the pistons is filled with lead. The lead is separated from the
tube by a thin layer of lubricant kept in place by hydraulic seals around the pistons.
The central shaft extends beyond one end of the tube. During operation, axial loads
are applied with one attachment point at the protruding end of the central shaft and
the other at the far end of the tube. The hysteretic damper is fixed between a point
on the structure and a point on the earth, which move relative to one another during
an earthquake. As the attachment points move to and fro, the pistons move along
the tube and the captive lead is forced to extrude back and forth through the orifice
formed by the constriction in the tube.

Since extrusion is a process of plastic deformation, work is done and very little
energy is stored elastically, as the lead is forced through the orifice during struc-
tural deformation. Thus during an earthquake such a device, by absorbing energy,
limits the build-up of destructive oscillations in a typical structure. The successful
operation of this hysteretic damper depends on the use of a material, in this case
lead, which recovers and recrystallises rapidly at the operating temperature, so that
the force required to extrude it is practically the same on each successive cycle. If
the extruded material had a recrystallisation temperature much above the operating
temperature, it would work-harden and be subject to low-cycle fatigue. Moreover,
such materials typically have much higher stresses, which would present very se-
vere problems for containment, piston sealing and lubrication in a cyclic extrusion
device.

A hysteretic damper which operiates on this same principle but has different
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construction details is shown in Figure 3.8(b). Here the extrusion orifice is formed
by a bulge on the central shaft rather than by a constriction in the outer tube. The
central shaft is located by bearings which also serve to hold the lead in place.
As the shaft moves relative to the tube, the lead must extrude through the orifice
formed by the bulge and the tube.

3.4.2 Properties of the extrusion damper

One of the most important properties of a hysteretic damper is its
force-displacement loop. If the device acts as a “plastic solid’ or *Coulomb damper’
then over one cycle the force-displacement hysteresis loop will be rectangular
and the energy absorbed will be a maximum for the particular force and stroke.
Figure 3.9(a) shows hysteresis loops typical of constricted-tube and bulged-shaft
dampers. For both types, the force rises almost immediately on loading while there
is no detectable recoverable elasticity on unloading. Note the plastic force is the
force Qy for the extrusion damper. The performance factor, defined as the ratio of
the work absorbed by the damper to that contained by the rectangle circumscribing
the hysteresis loop, is 0.90-0.95. The force to operate one of the extrusion hysteretic
dampers has also been found to be almost independent of both the stroke and the
position from which displacement starts. The hysteresis loops in Figure 3.9(b),
which show the behaviour of the same damper at an interval of 10 years (1976
and 1986). confirm the stability of the extrusion dampers (Robinson and Cousins,
1987, 1988).

The extrusion force is rate-dependent, as can be understood on the dislocation
model by considering the speeds of dislocation motion and grain boundary sliding.
To examine the rate dependence of the extrusion force for the extrusion energy ab-
sorbers, a number of them were tested at speeds ranging from 3x10"%to 1 m s,

The experimental results for the rate dependence of the energy absorbers are
shown in Figure 3.10, in which the ordinate is the ‘load ratio’ relating the force
to that which will cause the damper to yield at a speed of | ms™'. The damper’s
performance has two different characteristics, with the change occurring at a speed
of 107" m s~'. Below this speed, the exponential equation (3.7b) is valid with
h = 0.14. Hence if the rate of cycling is increased by a factor of ten, the load
increases by 38%, or the rate must be increased 140 times for the load to be
doubled. Above a speed of 107 ms™!, b = 0.03. In this case a 7% increase
in load increases the rate by a factor of 10, while a 40% increase in the load
requires the rate to be increased 10° times. The value of 0.14 for b, for rates below
104 m s, agrees well with the figure of 0.13 obtained by Pearson (1944) for
lead at 17°C. Loads which cause creep may also be compared with the load at
an earthquake-like speed of 10~" m s™'. At a load ratio F/F(10~! ms~') = 0.2,
the creep rate becomes ~ 10 mm per yr. The results above 10~* m s~! indicate
that at these speeds the extrusion energy absorbers are nearly rate-independent; for
example, at a rate of ~ 10° m s~! the extrusion force is expected to be 1.15 times
that for an earthquake-like speed of 107! m s~'. Above a rate of 2 x 1072 m s,
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Figure 3.9
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Figure 3.9 (continued)

tests on large energy-absorbing devices become difficult because of the large power
required. For example, for a 200 kN hysteretic damper operating at 1 Hz with a
total stroke of 250 mm, a power of 100 kW must be supplied.

The effect of temperature on the extrusion energy absorber is complex, in that
an increase in temperature, due either to ambient changes or to the absorption of
energy during an earthquake, has a twofold effect:

e As the temperature increases the extrusion force decreases.

e The higher the temperature, the more rapidly the lead will undergo recovery,
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Rate dependence of lead-extrusion hysteretic damper. The force is com-

pared with that corresponding (o a speed of 1 m s -1, and this load ratio is
plotted as a function of speed

Figure 3.10



WWW.BEHSAZPOLRAZAN.COM

84 ISOLATOR DEVICES AND SYSTEMS

recrystallisation and grain growth, thereby eliminating work hardening and re-
gaining its plasticity.

These factors ensure that the extrusion damper is a stable device which cannot
destroy itself by building up excessive forces. A 15 kN constricted-tube extrusion
damper was operated continuously at 1 Hz for 1800 cycles and during this test the
temperature on the outside of the orifice reached an equilibrium value of 210°C.
The effect of lowering the temperature was checked by cooling an energy absorber
to —20°C but no noticeable change in extrusion force, compared with that at 25°C,
was observed.

The lifetime of an extrusion energy absorber has been tested by operating a
I5 kN constricted-tube device continuously at frequencies of 0.5, 1 and 2 Hz for a
total of 3400 cycles (Robinson and Greenbank, 1975, 1976). After this test, which
provided conditions far more severe than those to be expected in service (during an
earthquake the device would be expected to undergo ~ 10 cycles), the extrusion
energy absorber was found to operate as initially at 1.7 x 10~ m s™"'. This result is
not surprising since ‘hot-worked’ lead is forever recovering its original mechanical
properties. Therefore the extrusion damper should be able to cope with a very large
number of earthquakes.

The maximum energy an extrusion damper can absorb in a short time is limited
by the heat capacity of the lead and the surrounding steel. To increase the tem-
perature of lead from 20°C 1o its melting point of 327°C, but without melting it,
requires 3.8 x 10* J kg~' of lead. The surrounding steel raises the heat capacity
of the device by a factor of ~ 4 so that the total energy capacity of the extrusion
device is ~ 1.6 x 10° J kg™' (total weight).

An extrusion damper with a 30 mm outside diameter had an extrusion force

of ~ 15 kN while a device with a 150 mm outside diameter required a force of
~ 150 kN to operate it. The stroke of the extrusion energy absorber is not limited
in any way by the basic properties of the device. To date the largest extrusion
dampers made had a total stroke of 800 mm (£400 mm) and operated at a force
ol 250 kN. The total length of a device when at its maximum extension is three to
four times the length of its stroke.

3.4.3 Summary and discussion of lead-extrusion dampers

The lead-extrusion damper, in which mechanical energy is converted to heat by
the extrusion of lead within a tube, is a device that is suitable for absorbing the
energy of motion of a structure during an earthquake. The principle is simple but
the design is not necessarily so.

The lead-extrusion damper has the following properties.

(1) s almost a pure *Coulomb damper” in that its force-displacement hysteresis
loop is nearly rectangular and is practically rate-independent at earthquake-
like Trequencies,
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(2) Because the interrelated processes of recovery, recrystallisation and grain
growth occur during and after the extrusion of the lead, the energy absorber
is not affected by work hardening or fatigue, but instead the lead is forever
returning 1o its original undeformed state. The extrusion damper therefore has
a very long life and does not have to be replaced after an earthquake.

(3) The extrusion damper is stable in its operation and cannot destroy itself by
building up excessive forces. As the temperature rises during its operation,
then

e the extrusion force decreases and therefore the energy absorbed and heat
generated decrease, and

e the higher the temperature, the more rapidly the lead will recover and
recrystallise, thereby regaining its plasticity.

(4) The length of stroke of the extrusion energy absorber is limited only by the
problem of buckling of the shaft during compression. The dimensions of a
150 kN energy absorber with a stroke of +200 mm are:

Qutside diameter ~ 150 mm
Total length ~ 5
Total mass ~ 100 kg.

These dimensions ensure simple installation in many isolator applications. The
lead-extrusion damper has, to date, been used in New Zealand in three bridges
and to provide damping for one ten-storey building mounted on flexible piles (see
Chapter 6). It has also been installed in the walls to increase the damping of two
buildings in Japan. In addition to providing damping, the extrusion damper ‘locks’
the structure in place against wind loading in the case of buildings, and against the
braking of motor vehicles in the case of sloping bridges.

3.5 LAMINATED-RUBBER BEARINGS FOR SEISMIC
ISOLATORS

3.5.1 Rubber bearings for bridges and isolators

Another method of seismically isolating structures is by mounting them on
laminated-rubber bearings (elastomeric bearings). These bearings are a fully
developed commercial product whose main application has been for bridge
superstructures, which often undergo substantial dimensional and shape changes
due to changes in temperature. More recently their use has been extended to the
seismic isolation of buildings and other structures (Chapter 6).

These bearings are designed to support large weights while providing only small
resistance to large horizontal displacements, and to moderate tilts, of the upper
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C
Figure 3.11 Sketch of laminated elastomeric bearing,
of area A and circumference C, in which
\\ rubber layers, of thickness ¢, are bonded
A to thin steel plates

surfaces of the bearings. A typical bridge bearing consists of a stack of horizon-
tal rubber layers vulcanised to interleaved steel plates, as shown schematically in
Figure 3.11 for a cylindrical bearing. For a given bearing area and rubber composi-
tion, the load capacity is increased by reducing the thickness of each rubber layer,
while the resistance to horizontal and tilting movements is reduced by increasing
the total height of the rubber.

Rubber bearings, of the types used for bridges, can be dimensioned to pro-
vide the support capacity and the horizontal flexibility required for seismic iso-
lation mounts. Of particular importance is the ratio of bearing weight capacity
to horizontal flexibility, which determines the maximum achievable value for the
rigid-structure period T. Of equal importance is the maximum acceptable hori-
zontal displacement Xy, which is set either by the allowable rubber strain or by
the allowable offset between the plan areas of the top and bottom of the bearing.
Rubber bearings also provide adequate isolator centring forces during large seismic
displacements.

Rubber bearings have a considerable range of applications in seismic isolators,
as described later in this chapter. In their basic form, rubber bearings may be used
to provide support, horizontal flexibility and centring forces. Isolator damping may
then be increased by separate components. Alternatively, lead plugs may be inserted
in rubber bearings to add high hysteretic damping to the features of the basic
bearings, as described in Section 3.6. Again, rubber bearings may be surmounted
by horizontal slides which provide increased horizontal flexibility and frictional
damping. Additional isolation roles for rubber bearings include tilting supports for
rocking structures and elastic components in displacement-limiting buffers.

The detailed design and the manufacture of rubber bearings call for technical so-
phistication. However, the approximate features of rubber bearings may be derived
using simple, well known approaches, as described below. An understanding of the
factors influencing the features of elastomeric bearings is useful when developing
isolation systems, and may assist during preliminary design studies.
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3.5.2 Rubber bearing, weight capacity Wy

The principal features of rubber bearings can be seen from the behaviour of a
thin rubber disc, with rigid plates bonded (vulcanised) to its plane surfaces, when
subjected to normal (axial) and to parallel (or shearing) loads. The relationship
between the load W and the maximum engineering shear strain y in the disc has
been derived by Gent and Lindley (1959) as outlined below in modified form.
(Following Borg (1962), ¥y = y:: = dw/dx + du/dz = 2n,. where n,. is the
tensor shear strain.)

When the rubber is assumed incompressible, a vertical compressive strain €;
causes the rubber to bulge by an amount proportional to its distance from the
centre of the disc. When the bulge profile at any radius r is approximated by a
parabola, constant rubber volume gives the maximum shear strain y,. as:

Ye: = 6S¢€; (3.8a)

where the vertical strain €. = Ar/t, the thickness of the rubber layers is denoted
by , and the shape factor S = (loaded area)/(force-free area). For example, for a
circular disc of unstrained diameter D and thickness 1, S = D/4:.

The rubber shear forces cause a pressure gradient within the disc which is propor-
tional to the distance from the centre. This gives a parabolic pressure distribution,
as shown in Figure 3.12. The maximum pressure p, is given by:

Po = 2GSys: (3.8b)

where G = shear modulus of rubber.
The corresponding load W may be obtained by summing the pressure over a
disc area A to give:

W = AGSy;.. (3.8¢)

Now consider a basic rubber bearing consisting of n equal rubber layers of any
compact shape. Also let the top of the bearing be displaced by X, to give an over-

Figure 3.12  Sketch of circular layer of rubber, diam-
eter D, thickness r, and of the parabolic
pressure distribution p
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Figure 3.13 Sketch of rubber cylinder of diameter
D, with a shear displacement X, and
A overlap A’

lap area A" between the top and bottom of the bearing, as shown in Figure 3.13.
Then experiment and analysis show that Equation (3.8¢) may be generalised ap-
proximately as follows:

Winax = A:GS}’W (3.8d)
where
Winax = allowable weight
yw = allowable shear strain due to weight
A" = overlap of bearing top and bottom.

The use of A" in Equation (3.8d) is a somewhat arbitrary simplification and is
probably conservative.

3.5.3 Rubber-bearing isolation: stiffness, period and damping

If an isolator consists of a set of equal rubber bearings, each supporting an equal
weight, then the isolator period can be calculated directly from the weight and
stiffness for a single bearing. In practice the average weight per bearing may be
reduced because the weight on some bearings has been reduced to offset vertical
seismic loads, or for structural or architectural convenience. However, such weight
reductions are neglected here and the isolator parameters are expressed in terms of
those for a single bearing.

Bearing horizontal stiffness K,

A rubber bearing may be approximated as a vertical shear beam, since the steel
laminations severely inhibit flexural deformations while providing no impediment
to shear deformations, The approximate horizontal stiffness K, is therefore given
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by

Kyn=GA/h 3.9)
where

A = rubber layer area

h = total rubber height.

There will be some reduction in bearing height with large displacements, partly
due to flexural beam action and partly due to increased compression of the reduced
overlap area A’. The resulting inverted pendulum action, under structural weight,
reduces the horizontal stiffness K and in extreme cases might cause serious re-
ductions in the centring forces. However, the inverted pendulum forces are reduced
by increasing the layer shape factor S, and these forces are unlikely to be serious
for § values in the range from 10 to 20, a range appropriate for isolator mounts.

Bearing period T),

The bearing weight capacity, Wy, from Equation (3.8d), and the horizontal stiff-
ness, Ky, from Equation (3.9), can be combined to give the bearing and isolator
period Ty, when the bearing is supporting its maximum weight, as

Ty = 2n(Shyy A'/Ag)'/? (3.10)

where yy, is the allowable shear strain due to the weight W.
For example let § = 16, h = 0.15 m, A’"/A = 0.6, and yy max = 0.2AL/L,
where the breaking tensile strain AL/L =5, (typically 4.5-7.0). Then T;, = 2.4 s.

Bearing damping &y,

Energy losses in the deforming rubber layers provide damping which is predom-
inantly velocity-dependent. Typical bridge bearings provide bearing and isolator
damping factors in the range from 5% to 10% of critical. However, acceptable
bearing rubbers have been manufactured which increase the bearing and isolator
damping to about 15%, and development aimed at higher damping values continues.

Bearing vertical stiffness K,

Some isolator applications of rubber bearings are influenced by their vertical stiff-
ness, and some by their related bending stiffness. The vertical deflection of a bear-
ing is the sum of the deflections due to rubber shear strain and to rubber volume
change, and these two respective stiffnesses are added in series. Thus the overall
vertical stiffness is

K. = K.(n)K.(V)/[K.(y) + K:(V)] (3.11a)

where K. (y), the vertical stiffness of the bearing without volume change, is given
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by Equations (3.8a) and (3.8¢) as
K.(y) =6GS*A/h (3.11b)

and where K.(V), the vertical stiffness due to volume change without shear strain,
is simply
K.(V)y=«xA/h (3.11c)

where ¥ = rubber compression modulus. Thus
- =6GS*Ax/(6GS* + k)h. (3.11d)

Equations (3.11) show that a small shape factor S gives a moderate vertical
stiffness which is controlled by shear strain, while a sufficiently large value of §
gives a very high vertical stiffness which is controlled by volume change. For a
typical bridge-bearing rubber, with G = 1 MPa and « = 2000 MPa, shear strain
and volume change make equal contributions to vertical stiffness when S ~ 18. The
above discussion neglects the usually small reduction in K.(y) which occurs, due
to a pressure redistribution in the layers, when rubber compressibility is introduced.
When the S value is high, rubber compressibility reduces considerably the bearing
vertical stiffness and the related bending stiffness. However, rubber compressibility
causes little change in the other bearing parameters described.

3.5.4 Allowable seismic displacement X,

Displacement limited by seismic shear strain yg

When the rubber shear strain y,,, due to the vertical load W, is below its maximum
allowable value there is a reserve shear strain capacity, say y, 10 accommodate a
horizontal displacement Xy, which is given by

Xo = hys (3.12)

where ys = allowable shear strain due to horizontal seismic displacement. If this
displacement is inadequate it may be increased by increasing the rubber height .
In addition, or alternatively, y; may be increased if the strain due to weight yy, is
reduced,

Displacement limited by overlap factor A’ /A

For an isolator bearing, a lower limit to the overlap factor A'/A is set by the
reducing weight capacity, Equation (3.8d), and sometimes by the increasing end
moments. Typical lower limits for the overlap factor may be 0.8 for a sustained
horizontal displacement and 0.6 for design-earthquake displacements. Where pos-
sible, such overlap limits should be based on laboratory tests and field experience.
The relationship between the overlap factor A’/ A, the bearing displacement X3, and
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the bearing dimensions depends somewhat on the shape of the horizontal section
of the bearing. : '
For a cylindrical bearing with rubber discs of area A and diameter D

A'JA=1—(2/7)(f + sinf cosh) (3.13a)
where siné = X/ D. Hence for moderate values of X,/D
Xy~ 0.8D(1 — A'/A). (3.13b)
Similarly, for a rectangular bearing
A'JA=~1—Xy(B)/B — Xu(C)/C (3.13¢)

where Xy(B) and X, (C) are the bearing displacements parallel to the sides of
lengths B and C respectively. Hence, for displacements parallel to side B,

Xuw(B) ~ B(1 — A’/ A). (3.13d)

When the displacement X, may be in any direction, a more appropriate dis-
placement limit is
Xp = 0.8B(1 — A'/A) (3.13e)

where B is the shorter side of the bearing. From equations (3.13b) and (3.13e) it
is seen that, for a seismic overlap factor A'/A = 0.6, the allowable values of Xy
are D/3 and B/3 respectively.

When the weight per bearing is low, the bearing diameter D or side B may be
too short to accommodate the required seismic displacenient X,. If the discrepancy
is not great it might be met by increasing the bearing area A and/or by reducing the
design-earthquake displacement X;. The bearing area may be increased, w‘ilhm'n
changing the bearing stiffness ratio K,/ W, if there is a compensating reduction in
the rubber shear modulus G and/or an increase in the rubber height /. as required
by Equation (3.9). Again, the bearing area may be increased if it is possible to
design the isolator with fewer bearings and hence with a greater weight W per
bearing. Alternatively, the design-earthquake displacement Xy, may be reduced by
increasing the effective isolator damping.

If the weight per bearing is so low that the allowable displacement falls well
short of the design-earthquake displacement, then the allowable displacement may
be increased as required, by segmenting the bearing and introducing stabilising
plates, as described below.

Segmented bearing for a low weight/displacement ratio W/Xy

When a rubber bearing supports a small weight W it has a small area_A, and hence
its displacement capacity, as given by Equation (3.13b) or (3.13e), is also small.
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Figure 3.14 Segmented bearing formed by rubber
segments placed at the comers of
common stabilising plates, illustrated by
six stabilising plates and 20 (multilayer)
segments
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Such a simple bearing may be replaced by an equivalent segmented bearing, as
shown in Figure 3.14, which increases the displacement capacity.
' Cpusidcr the replacement of a simple bearing by an equivalent segmented bear-
ing in which sets of four segments are located near the corners of rectangular
stabilisation platforms or plates, as shown in Figure 3.14. If all the linear dimen-
sions (including the thickness) of the segment rubber layers are half those of the
sirpple bearing layers, and if the number of layers is increased so that the rubber
height is unaltered, then both bearings have the same values for the rubber area A
and Ll'.ne rubber height /, and the same shape factor S, resulting in the same load
capacity and the same horizontal stiffness Ky. For a given rubber and operating
copduions, a shape factor which is suitable for a non-segmented bearing is also
suitable for the equivalent segmented bearing. Typically each of the cylindrical seg-
ments shown in Figure 3.14 will be multilayer, to give the small layer thickness
required without the use of more stabilising plates than are necessary to retain the
overlap factor required for overall bearing stability.

Wl?en. as here, the segments have half the horizontal dimensions of the corre-
sponding non-segmented bearing, and there are n segments in each vertical stack

‘(c.g. n =35 in Figure 3.14), then a required overlap factor is retained with an
increased allowable displacement given by

Xp(n) =nXyp(1)/2 (3.14)

where
Xy (1) = allowable displacement for the corresponding non-segmented bearing.
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3.5.5 Allowable maximum rubber strains

Allowable shear strains yy, and yg

The allowable rubber shear strains for various loads and displacements are im-
portant factors in the performance of rubber bearings, as discussed above. When
bearings are used as isolation mounts for compact structures, they must withstand
the combined rubber shear strains due to structural weight and seismic displace-
ments. When bearings isolate bridge superstructures, some provision must be made
for additional shear strains due to traffic loads and thermal displacements. In ad-
dition to their seismic design, rubber bearing mounts must be checked for their
capacity to withstand the more sustained non-seismic loads and displacements.

The damaging effect of a given rubber strain increases with its total duration
and with the number of times it is reduced or reversed. In particular, rubber strains
due to frequent and fluctuating traffic loads are found to be more severe than a
corresponding steady strain applied for the life of a bearing. On the other hand,
laboratory tests show that the cyclic strains due to seismic displacements are much
less severe than corresponding long-duration steady strains, evidently because they
involve so few cycles and have such a short duration.

The sustainable steady shear strain in a rubber bearing is sometimes given as
(Bridge Engineering Standards, 1976)

yw =02 ¢ (3.15)

where ¢, = short-duration failure strain in simple tension. Experiments suggest
that corresponding factors for shear strain during earthquakes are 0.4 or more for
design-earthquakes and say 0.7 for extreme earthquakes.

Allowable negative pressure

Under the combined action of uplift forces and end moments, the rubber within
isolator bearings may be subjected to large negative pressures. Consider a rubber
bearing subject to an uplift force of —W,,. From Equation (3.8) it is found that
this gives a small increase in bearing height of Ah = hyy /(6S), and a large
central negative pressure of p, = —2GSyy,. For a typical bridge bearing, with
G =1MPa, h =0.15m, S = 10, and —yy, = —1.0, it follows that Ah = 2.5 mm
and p, = —20 MPa. Negative pressures may also arise from bearing end moments,
which are generated by relative displacement and tilting of the ends of a bearing.
These end moments cause local increases and decreases of the pressure within the
bearing discs. A large negative pressure evidently causes a set of small cavities
within the bearing rubber, which grow progressively during sustained and cyclic
negative pressures. The cavities cause a large reduction in axial stiffness, which
may be regarded as resulting from a reduction in the effective shape factor S, but
there is little reduction in the horizontal shear stiffness.

Figures 3.15(a) and (b) show a vulcanised laminated-rubber bearing before and
during vertical loading, while Figure 3.15(c) is a stress-strain plot showing both
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Figure 3.15
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(a) Vuleanised laminated-rubber bearing before loading. (b) Vulcanised
laminated-rubber bearing under vertical tension. (c) Stress-strain curve
for the vulcanised laminated-rubber bearing under both compression and
tension. (From Tyler, 1991.)
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Figure 3.15 (continued)

compression and tension. This bearing failed in the rubber at a tensile strain of
350%, although small internal cracks were most probably formed before this strain
was reached.

It is normal practice to design bridge bearing installations so that negative pres-
sures do not occur in the rubber under the combined action of non-seismic loads
and motions. It is also appropriate to design isolated structures so that non-seismic
actions do not cause negative pressures. However, when seismic actions cause
negative pressures in isolator mounts, their duration and frequency are so low that
considerable negative pressures might be tolerated (Tyler, 1991). In general, an
isolator design should be adopted which avoids very high negative pressures dur-
ing seismic action. In the particular case of high uplift forces under the corner
columns of two-way frame structures, high negative pressures in corner rubber
bearings may be avoided by attaching the bearing tops to the bottom beams of the
frames designed to allow corner uplift as described, for example, by Huckelbridge
(1977).
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3.5.6 Other factors in rubber bearing design

In practice the application of Jaminated-rubber bearings to seismic isolation calls
for sophisticated design and specialised manufacturing technology. The rubber must
be formulated for long-term stability and resistance o environmental factors., par-
ticularly deterioration due to ozone and ultraviolet light. The bonds (vulcanising)
between the rubber and the interleaved metal plates must resist the large and vary-
ing operating stresses. Bearings must be provided with end and side rubbe.r cover
{0 inhibit corrosion of the metal plates and to remove rubber-surface deterioration
from regions of high operating strains. The rubber cover and additional surface
materials may be used to increase fire resistance. Interleaved steel plates ml‘.lSt have
adequate strength to resist rubber shear forces. However, some pl.ate b.endmg may
reduce the build-up of rubber tension when large displacements give high end mo-
ments. Bearing end-plates must provide for dowels or for other means of preventing
end slip under high shear forces. Such shear connections must operate despite end
moments, and in some cases when uplift occurs.

The effect of a fire on the performance of rubber elastomeric bearings and
lead-rubber bearings has been checked by Miyazaki (1991) in Japan, by hcating the
outside of bearings to greater than 800°C for more than 100 min while the .bearmgs
are under a vertical load. After this heating the rubber elastomeric bearings and
the lead-rubber bearings performed in a satisfactory way without any appreciable
change in their force-displacement loops or load bearing capacities.

3.5.7 Summary of laminated-rubber bearings

Laminated-rubber bearings are already in use in bridges, in order to accommodate
thermal expansion. Their modification for the seismic isola:io‘n of b.uildings fmf:l
bridges is a fairly simple engineering concept, but in practice it requires sophisti-
cated design and specialised manufacturing technology.

3.6 LEAD-RUBBER BEARINGS

3.6.1 Introduction

|_aminated-rubber bearings are able to supply the required displacements for seism%c
isolation. By combining these with a lead-plug insert which [?ro.vides. hysteretic
energy dissipation, the damping required for a successful seismic 150.1at1(?n system
can be incorporated in a single compact component. Thus one (.iewcc is able .to
support the structure vertically, to provide the horizontal ﬂexib‘illty together with
the restoring force, and to provide the required hysteretic damping.

The lead-rubber bearing was invented in April 1975 by W H Robin.snu, t‘hcn
working at PEL, DSIR, when he saw a rubber elastomeric bearing while trying,

————-
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with little success, to get a cylindrical lead shear damper to operate at large strains.
The steel plates in the elastomeric bearing were immediately seen to present a
solution to the problem of how to control the shape of the lead during large plastic
deformation. A glued elastomeric bearing was drilled out to take a lead plug, as
shown in Figure 3.16, and was tested immediately, and the results forwarded to
the New Zealand Ministry of Works and Development (MWD). In the next few
months, the MWD redesigned the isolators for the William Clayton Building (see
Chapter 6), replacing the planned design (elastomeric bearings plus steel dampers)
with lead-rubber bearings, which were substantially less costly to install, and they
provided a 650 mm diameter elastomeric bearing for testing with a range of lead
plugs. At the same time the Bridge Section of the MWD designed the Toe Toe
and Waiotukupuna bridges to take lead-rubber bearings. Thus, during a very short
and exciting time, lead-rubber bearings were invented, tested and used in practical
applications.

Before describing the lead-rubber bearing in detail, it is worthwhile considering
the reasons for choosing lead as the material for the insert in the isolators. The major
reason is that the lead yields in shear at the relatively low stress of ~ 10 MPa, and
behaves approximately as an elastic-plastic solid. Thus a reasonably sized insert of
~ 100 mm in diameter is required to produce the necessary plastic damping forces
of ~ 100 kN for a typical 2 MN rubber bearing. Lead is also chosen because,
as noted above for the lead-extrusion damper, it is ‘hot-worked’ when plastically
deformed at ambient temperature, and the mechanical properties of the lead are
being continuously restored by the simultaneous interrelated processes of recovery,
recrystallisation and grain growth (Wulff e al. 1956; Birchenall, 1959 and Van
Vlack, 1985). In fact, deforming lead plastically at 20°C is equivalent to deforming
iron or steel plastically at a temperature greater than 400°C. Therefore, lead has
good fatigue properties during cycling at plastic strains (Robinson and Greenbank,
1975, 1976). Another advantage of lead is that it is used in batteries, and so it is
readily available at the high purity of 99.9% required for its mechanical properties
to be predictable.

An elastomeric bearing, as described in Section 3.5, is readily converted into
a lead-rubber bearing by placing a lead plug down its centre, Figure 3.16. The
hole for the lead plug can be machined through the bearing after manufacture or,
if numbers permit, the hole can be made in the steel plates and rubber sheets
before they are joined together. The lead is then cast directly into the hole or
machined into a plug before being pressed into the hole. For both methods of
placing the lead, it is imperative that the lead plug is a tight fit in the hole and
that it locks with the steel plates and extrudes a little into the layers of rubber.
To ensure that this occurs, it is recommended that the lead plug volume be 1%
greater than the hole volume, enabling the lead plug to be firmly pressed into the
hole. Thus, when the elastomeric bearing is deformed horizontally, the lead insert
is forced by the interlocking steel plates to deform in shear throughout its whole
volume.
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Figure 3.16
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Steel lamination
(a)

(a) Lead-rubber bearing which consists of a lead plug inserted into a vul-
canised laminated-rubber bearing. The form shown here is suitable for ap-
plications where there is no applied tension. (b) Lead-rubber bearing for
William Clayton Building (see Chapter 6). Note the 300 mm rule placed on
the bearing. Load capacity 3 MN, stroke 100 mm. (c) Lead-rubber bear-
ing under static test. (d) Lead-rubber bearing for William Clayton Building
under dynamic test (1979). The motive force was supplied from the drive of
daconverted caterpillar tractor: vertical load up to 4 MN, frequency 0.9 Hz,
maximum power 100 kW, maximum shear force 400 kN, stroke £90 mm.
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Figure 3.16 (continued) (e) Lead-rubber bearing with top and bottom plates vulcanised to
the rubber, suitable for applications requiring applied vertical tension. (From Robinson,
1982.)

3.6.2 Properties of the lead-rubber bearing

‘Test procedures were designed to measure the load-deflection loops of lead-rubber
bearings during the horizontal displacements of design earthquakes and extreme
carthquakes, while an axial load representing structural weight was applied. These
tests were performed at seismic velocities to ensure that the lead strain rates and
lemperature rises represented those which would apply during the simulated earth-
quakes. Further load measurements were made at very low velocities to find the
reactions o structural dimension changes arising from daily temperature cycling,
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as well as the reactions to the even slower motions associated with the decay of
residual isolator displacements after an earthquake (Robinson and Tucker, 1977,
1981; Robinson, 1982).

The force-displacement hysteresis loop of an elastomeric bearing without a
lead plug is shown as the dotted curve in Figure 3.17. This loop, which is for
a bearing 650 mm in diameter, is mainly elastic with a rubber shear stiffness,
Ky(r) = 1.75 MN m ! and a small amount of hysteresis. Also in the figure is the
loop for the same bearing when it contains a lead insert with a diameter of 170 mm.
The dashed lines are at the slope of 1.75 MN m~' and are a good approximation
to the post-yield stiffness. In this case the lead is behaving as a plastic solid which
adds ~ 235 kN 1o the elastic force required to shear the bearing. Another factor of
interest is the initial elastic part of the force-displacement curve for small forces.

Thus a reasonable description of the hysteresis loop is a bilinear solid with an ™~

initial elastic stiffness of Kj; followed by a post yield stiffness of Ky; where

Kbl o~ IOKb(l') (3]63)
Ky = Ky(r) (3.16b)

where Ky (r) is given by Equation (3.9).
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Figure 3.17 Dynamic force-displacement hysteretic loop, for a 650 mm diameter bear-
ing, obtained using equipment shown in Figure 3.16(d), with vertical com-
pression force F(vert) = 3.15 MN, frequency 0.9 Hz, stroke &+ 90 mm.
The dashed curve is for the bearing without a lead plug. The solid line is
for a lead plug of 170 mm diameter. The slope of the dashed line is Ky (r).
(From Robinson, 1982,)
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Dependence on the diameter of the lead insert 400 ; —T —r—r—r—r
The horizontal force, F, required to cause the bearing to be horizontally sheared can | b
be considered as two forces acting in parallel, the first due to the rubber elasticity I
and the second due to the plasticity of the lead. The rubber elasticity results in a ZOUL ‘ 1
force which is proportional to the displacement while the plasticity requires a force = \ g |
which is independent of displacement. Thus to a very good approximation é
3 0 o
F = t(Pb)A(Pb) + Kp(X (3.17) SO .
200+ ]
where the shear stress at which the lead yields t(Pb) = 10.5 MPa, A(Pb) is the E =
cross-sectional area of the lead, Ky(r) is the stiffness of the rubber in a horizontal l_
plane. and X is the displacement of the top of the bearing with respect to its base. e R el
This fact is illustrated in Figure 3.18 where the maximum shearing force, minus 120 80 40 0 40 80 120
the force due to the elastic stiffness of the rubber, is plotted against the cross- (a) Displacement/(mm)

sectional area of the lead insert. The slope of this line is the yield stress of lead,
10.5 MPa (Robinson, 1982). Note Q, of a hysteretic damper is given approximately
by t(Pb)A(Pb).

Figure 3.19 contains the force-displacement hysteresis loops for two recent ex-
amples, namely the lead-rubber bearings for the seismic isolation of (a) the William

Clayton Building and (b) the Wellington Press Building. For both of these exam-
ples the initial stiffness Ky ~ 10Ky(r) while the post-yield stiffness is approxi-
mately Ky(r).
300 : — .
=7
L o 4 3
s 4 o
z / g
< 200F 7 . )
= o/
= -k /4 1
T
1 o
..L“‘I_:_). 100+ 21}20% 3 S =0.92 kN/mm
— .7 e ) ) ! " ’ . " .
F . - 3 2200 100 0 100 200
9’ 4 Displacement (mm)
2 A (b)

0 5 10 15 20 25 Figure 3.19  (a) Force-displacement hysteresis loops for a lead-rubber bearing used

A(Pb) /103 mm?2 in the William Clayton Building, at 45 and 110 mm strokes, with
a vertical force of 3.15MN at 09 Hz. (From Robinson, 1982.)
Figure 3.18 Force due 1o the lead, F by~ Fr), as a function of the cross-sectional arca (b) Force-displacement curves for the bearings used in the Wellington Press

of the lead insert, (From Robinson, 1982.) Building (see Chapter 6). (From Robinson and Cousins, 1987, 1988.)
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¥ = x/h(Pb)

Rate dependence

For a number of applications it is necessary to know the behaviour of the lead-rubber Lﬂr
bearing under creep conditions. For example, if a bridge deck is mounted on the |
bearings then, during the normal 24-hour cycle of temperature, the bearings will r
have to accommodate several displacements of ~ 3 mm without producing large 14
forces. In order to determine the effect of creep rates of ~ 1 mm h™', the second 30
lead-rubber bearing made, (that is, one with dimensions of 356 x 356 x 140 mm?
with a 100 mm lead plug) was mounted in the back-to-back reaction frame in the
Instron testing machine. The first result was obtained at 6 mm h~', with the force
due to the lead alone reaching a maximum after 2.5 h, before decreasing slowly.
After 6 h the displacement was held constant and the force due to the lead decreased
to one half in about 1 h, and continued to fall with time, giving a relaxation time of
1-2 h. Another creep test was carried out at | mmh~' for 6 h, when the direction
was reversed, giving the hysteresis shown in Figure 3.20. For completeness the
force F(r), due to the rubber, is included with its +20% error bar. The shear stress
in the lead plug reached a maximum of 3.2 MPa, which is ~ 30% of the stress Wi, i
ol 10.5 MPa for the dynamic tests. The force due to the rubber is great enough to ; :
drive the deformed lead, and the structure, back to its original position. 0 / 10 2 30
Because of the large errors caused by F(r), it was not possible to determine Stroke/mm
accurately the rate-dependence of the lead in the lead-rubber bearing. To overcome
this problem three lead hysteretic dampers, which had been developed earlier to Figure 3.20 Force due to lead during creep of 356 mm? bearing with 100 mm lead
operate in shear without a rubber bearing (Robinson, 1982), were tested at various plug, at vertical force of 400 kN. Open points are 6 mm h™", filled points
strain rates. These dampers consisted of lead cylinders whose diameters varied are 1 mm h~! and dashed line is F(r). (From Robinson, 1982.)
parabolically as shown in the insert to Figure 3.21, and whose ends were soldered
(o two brass plates. The parabolic variation was designed to minimise the effect of
bending stresses, which occur away from the neutral axis of the lead, during the
application of shearing displacements: in fact, the shear stress near the parabolic

F(Pb)/kN
o (Pb)/MPa

1 i I i ] 1
surface of the lead remained constant to a first approximation. The rate dependence — 20k l “20
of these dampers, with their shear stress normalised to that at y = 1 s™', is shown i | 1
in Figure 3.21, by the circled points. This figure also denotes, with the symbol (x), - 110 2
the values obtained for the second lead-rubber bearing made, at rates of y = 1073 b 1-05 S
and 3 x 107" s7!. These results have a rate dependence g 3 =
5 oS P %
ob o -

7(Pb) = ay (3.18) = l
where below y = 3 x 107* 57!, b = 0.15 and above, b = 0.035. For the lead 3 02r T
extrusion damper (Figure 3.10) it was found that, for the two regions, b = 0.14 L - . . 1
and 0.03. For slow creep other authors conclude that b = 0.13 (Birchenall 1959, 0-10.7 5% 105 1% 102 102 107 100 10
Pugh 1970). When the experimental errors are taken into account, all of these .
results are in reasonable agreement. ¥/sec™

These results indicate that the lead-rubber bearing has little rate-dependence at

strain rates of 3 x 1010 s ', which includes typical carthquake frequencies of Figure 3.21  Rate dependence of lead cylinders of parabolic section (See insert) in shear,
10°'-1 s, For this range of strain rates, an increase in rate by a factor of 10 a3 \ndicated: by the “T""?l p‘:‘:""" gcl?'“‘,“f'“gs "‘d}':“::? us r“:f):;‘;e"dcnce
causes an increase in foree of only K%, Below strain rates of 3 x 1074 57!, the Lot L e R y
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dependence of the shear stress on creep rate is greater, with a 40% change in force
for each decade change in rate. However, this means that at creep displacements of
~ | mm h™' for a typical bearing 100 mm high (that is, at y ~ 3 x 107% s '), the
shear stress has dropped to 35% of its value at typical earthquake rates, y ~ 1 s~'.

Fatigue and temperature

The lead-rubber bearing can be expected to survive a large number of earthquakes,
each with an energy input corresponding to 3-5 strokes of =100 mm. For example,
the results for a series of dynamic tests on the 650 mm diameter bearing with a
140 mm diameter lead plug are shown in Figure 3.22. The symbols F(a) and F(b)
correspond to points such as a and b on Figure 3.17. F(a) and F(b) decreased by
10 and 25% over the first five cycles but recovered some of this decrease in the
5 min breaks between tests. An interval of 12 d between the last two tests did not
give a greater recovery than that obtained in 5 min. The effect of the 24 cycles is
shown more clearly by Figure 3.23, where the outer hysteresis loop is the 1st, and
the inner loop is the 24th. The area of the 24th loop is 80% of the 1st, indicating that
the bearing has retained most of its damping capacity over these seven simulated
carthquakes.

As a further check on the fatigue performance, the 356 mm bearing was dy-
namically tested at a shear strain of 0.5 for a total of 215 cycles in a two-day
period. This bearing was also subject to 11 000 strokes at 3 mm (0.9 Hz), to
demonstrate that it could withstand the daily cycles of thermal expansion which
occur in a bridge deck over a period of 30 years. It performed satisfactorily.

3m I T ] I T T
—°°ooo!u° lo ' r F[b]w
z | 1 °°i°°=‘i°on|°°o %00,
= 200+ -
3
5 N U
o * s
§ 100+ ...‘-'-‘.’ ®ale ." .0 Qf(o}‘
| ; 12 days
~ 5minutes b

0 SRS 200 D
Cycles

Figure 3.22 Dynamic tests on lead-rubber bearing over seven simulated earthquakes,
(From Robinson, 1982)
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Figure 3.23 1st and 24th hysteresis loops for lead-rubber bearing shown in Figure 3.22.
The outer loop is the 1st and the inner loop is the 24th. (From Robinson,
1982.)

The 356 mm bearing was also studied with dynamic tests (¥ ~ 0.5, 0.9 Hz)
at temperatures of —35, —15 and +45°C, to ensure its performance in extreme
temperature environments. The ratio of the force F(b) to that at 18°C for the first
cycle was 1.4, 1.2 and 0.9 at —35, —15 and +45°C respectively, showing that the
lead-rubber bearing is not strongly temperature-dependent (Robinson, 1982).

Effect of vertical load on hysteresis

As can be seen from the results of Figure 3.20, it is possible to design lead-rubber
bearings which have little change in their hysteresis loops over a wide range of
vertical loads (Tyler and Robinson, 1984). On the basis of a simple model, the
nominal upper limit of hysteretic force, 7,(Pb)A(Pb), should be achieved if there
is no vertical slippage of the plug sides and no horizontal slippage of the plug
ends. Side slip can be made small by using a small spacing ¢ between the plates
and by ensuring a large confining pressure p,. Satisfactory results are achieved
with a spacing 7 less than d/10, and with a pressure p,, as given approximately
by equation (3.8b) when S is greater than 10. The effect of end slip can be made
small by using a lead plug with an adequate height-to-diameter ratio h/d, say not
less than 1.5, Complicating factors include the hysteretic forces due to the lead
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which is extruded small distances into the spaces between the plates, additional
forces which may increase overall hysteretic forces beyond their nominal upper
limit, Again the confining pressure is enhanced, beyond that given by the vertical
load, by iserting a lead plug whose volume exceeds that of the undeformed cavity
in the bearing.

Bilinear parameters for small earthquakes

When the isolator motions arise from small earthquakes, with displacement spectra
reduced by a factor of 2 or more, the bilinear loop parameters change in the same
general way as the bilinear loop parameters for an isolator consisting of laminated-
rubber bearings mounted beside steel-beam dampers, with the same beneficial re-
sults. Reduced displacements cause considerable reductions in Qy and considerable
increases in Kpy, as shown in Figure 3.24. As a net result, the effective (secant)
period, and sometimes the hysteretic damping, fall more slowly, with decreasing
earthquake severity, than they would with a fixed-parameter bilinear loop.

3.6.3 Summary of lead-rubber bearings

For strain rates of y ~ 1 s™', the lead-rubber hysteretic bearing can be treated as
a bilincar solid with an initial shear stiffness of ~ 10K(r) and a post-yield shear
stiffness of Ky(r). The yield force of the lead insert can be readily determined
from the yield stress of the lead in the bearing, i.e. 7,(Pb) ~ 10.5 MPa. Thus the
maximum shear force for a given displacement is the sum of the elastic force of the
clastomeric bearing and the plastic force required to deform the lead. The actual
post-yield stiffness is likely to vary by up to £40% from Ky(r) but will probably
be within £20% of this value. The initial elastic stiffness has only been estimated
from the experimental results and may in fact be in the range of 9Ky,(r) to 16 Ky(r).
The prediction for the maximum force, F(b), is more accurate and has instead an
uncertainty of £20% which is the same as expected for the uncertainty in the shear
stiffness of manufactured elastomeric bearings. The actual area of the hysteresis
loop formed by this bilinear model is approximately 20% greater than the area of
the measured hysteresis loop.

The lead-rubber hysteretic bearing provides an economic solution to the problem
of seismically isolating structures, in that the one unit incorporates the three func-
tions of vertical support and horizontal flexibility (via the rubber) and hysteretic
damping (by the plastic deformation of the lead). Further discussion on lead-rubber
bearings is contained in Robinson and Cousins (1987, 1988); Skinner et al. (1980);
Skinner er al. (1991) and Cousins et al. (1991).

3.7 FURTHER ISOLATOR COMPONENTS AND SYSTEMS

A wide range of further isolator components, to provide flexibility and/or damp-
ing, have been used or proposed, Some of these isolator components are based
on material properties, particulurly those which provide flexibility and hysteretic
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Figure 3.24 (a) Difference in bilinear loop parameters corresponding to small and
large displacements. (b) Load-displacement loops for various strokes of
lead-rubber bearing used in Press Hall, Petone (see Chapter 6). (From
Robinson and Cousins, 1987, 1988.)

damping forces, as in the cases described above. A second class of isolator com-
ponent depends on sliding supports and on frictional damping forces. A third class
depends on geometrical factors such as rocking with uplift, or rolling surfaces, or
pendulum action under gravity forces. Representative examples from each class of
isolator component are described briefly below.
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3.7.1 Isolator damping proportional to velocity

In Chapter 2 it was found that linear isolators, with damping forces proportional
to the velocity of isolator deformation, greatly attenuated the higher-mode seismic
responses and floor spectra of the isolated structures. In contrast, it was found that
high isolator damping which departs severely from linear velocity dependence,
gives smaller reductions in the seismic responses of higher modes. When small
higher-mode seismic responses, or low floor spectra, are a design requirement
then the benefits of high isolator damping can still be obtained by increasing the
velocity-dependent damping.

Bearings with high-loss rubber

Velocity-dependent damping may be obtained using high-loss elastomers, or pitch-
like substances, or hydraulic dampers with viscous liquids. The rubber bearings,
which may be required for horizontally flexible supports, may use specially formu-
lated and manufactured rubbers which give an effective isolator damping of about
I5% of critical. These high-damping rubbers are both very amplitude-dependent
and history-dependent. For example, at a strain amplitude of 50% in the rubber
during the first cycle of operation, the ‘unscragged’ state, the modulus is approx-
imately 1.5 times that for the third and subsequent cycles, when ‘scragged’. The
original unscragged properties return in periods of a few hours to a few days. The
reduction of modulus between the unscragged and scragged state decreases as the
strain amplitude increases. Future improvements in the energy absorption of rub-
bers are to be expected, but at present problems arise with creep under sustained
loads, with non-linearity and temperature dependence of the damping forces, and
with change of shape of the bearing at large displacements, giving rise to amplitude
dependent damping.

Hydraulic dampers

It should be possible to develop effective velocity dampers, of adequate linearity,
for a wide range of seismic isolator applications by utilising the properties of
existing high-viscosity silicone liquids. ’

In principle, the development of a velocity-dependent silicone fluid-based hy-
draulic damper is straightforward. A double-acting piston might be used to drive
the silicone fluid cyclically through a parallel set of tubular orifices, designed to
give high fluid shears and hence the required velocity-damping forces. By us-
ing a sufficient working volume of silicone fluid to limit the temperature rise to
40°C during a design-level earthquake, the corresponding reduction in damper
force is limited to about 25%. For comparison, the thermal capacity per unit vol-
ume for silicone fluid is comparable to that for lead, or about 40% of that for
iron.

The development ol practical linear hydraulic dampers is complicated by a
number of factors including the increase in silicone Auid volume with temperature,
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about 10% for a 100°C temperature rise, and also the tendency of the silicone
liquid to cavitate under negative pressure.

3.7.2 PTFE sliding bearings

Unlubricated PTFE bearings

The weight of a structure may be supported on horizontally moving bearings con-
sisting of blocks of PTFE (polytetrafluoroethylene) sliding on plane horizontal
stainless-steel plates. Starting about 1965, such bearings were used to provide
low-friction supports for parts of many bridge superstructures. The coefficient of
friction of a PTFE bridge bearing is typically of the order of 0.03, when operating
at the very low rates arising from temperature cycling of the bridge superstruc-
ture. However, it is found that the coefficient of friction is very much higher,
and is dependent on pressure and sliding velocity, when the operating velocity is
typical of that which occurs in an isolator during a design-level earthquake, and
when the operating pressure is typical of that adopted for PTFE bridge bearings
(Tyler, 1977). For operating conditions typical of seismic isolator actions during
design-level earthquakes, the frictional coefficients ranged from about 0.10 to 0.15
or more.

Consider a set of the above PTFE bearings used as a seismic isolator. The first
isolator period Ty, arises from foundation flexibility only, and is typically very
short. The second isolator period Ty, tends to infinity and therefore provides no
centring force to resist displacement drift. The yield ratio Q,/W is given by the
bearing coefficient of friction and is therefore rather large and variable. The approx-
imately rectangular force-displacement loop gives very high hysteretic damping.
However, absence of a centring force may result in large displacement drift if seis-
mic inertia forces are substantially greater than the bearing frictional forces. Also,
high initial stiffness leads energy into higher modes, providing strong floor spectra
of high frequencies.

An isolator with a wider range of applications is obtained if part of the weight
of the structure rests on PTFE bearings, while the remainder of the weight rests
on rubber bearings. The reduced sliding weight reduces the yield ratio Q,/W,
while the rubber bearings can be used to give an appropriate value for the centring
force, as indicated by the second isolator period Ty, which should usually be in
the range between 2.0-4.0 s. Problems arising from a very short first period Ty,
may be removed by mounting the PTFE bearings on rubber bearings, as described
below.

Lubricated PTFE bearings

Lubricated PTFE bearings have quite small coefficients of friction, usually less than
0.02 (Tyler, 1977), for the pressures and velocities which they would encounter as
seismic isolator mounts. When an isolator has low-friction load-support bearings,
then components which provide centring and damping forces need not support any
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weight. For example, approximately linear centring and damping forces could be
provided by blocks of high-loss elastomer, for which creep is not a problem without
sustained loads. If higher linear damping is required, hydraulic dampers could be
added. However, since almost every isolator application is tolerant of at least a
moderate degree of non-linearity, it should usually be possible to provide some
of the centring and damping forces by non-linear components, such as weight-
supporting lead-rubber bearings.

For high reliability, lubricated PTFE bearings should be serviced regularly. How-
ever, for high-technology applications, for example nuclear power plant isolation,
maintenance should not present a serious problem.

3.7.3 PTFE bearings mounted on rubber bearings

In Chapter 2 it was found that a bilinear isolator with a short first period Ty, results
in relatively large higher-mode seismic accelerations and floor spectra. In Chapter 4
il is shown that these higher-mode seismic responses may be substantially reduced
by increasing the first bilinear period Ty, to exceed the first period of the unisolated
structure Ty(U).

A compound isolator component developed in France (Plichon et al, 1980)
consisted of a sliding bearing mounted on top of a rubber bearing. Initially the
bearings were made of lead-bronze blocks sliding on stainless steel, while later
designs replaced the lead-bronze blocks by PTFE blocks. The flexibility of the
laminated-rubber components of the compound bearing can be chosen to give a
first bilinear period Tj, which exceeds T)(U), the first structural period. As in
the previous section, the second bilinear period Ti,; may be limited to a value
which prevents excessive displacement drift by supporting part of the structural
weight directly on rubber bearings. This also reduces the value of Q,/W for the
isolator.

3.7.4 Tall slender structures rocking with uplift

The seismic design loads and deformations of tall slender structures are normally
associated with high overturning moments at the base level. If the narrow base of
such a structure is allowed to rock with uplift, then the base moment is limited to
that required to produce uplift against the restraining forces due to gravity. This
hase moment limitation will usually reduce substantially the seismic loads and
deformations throughout the structure.

The feet of a stepping structure are supported by pads which allow some rotation
of the weight-supporting feet, while the overall structure rocks with uplift of other
feet. Laminated-rubber or lead slabs have been used to allow this rotation. These
feet pads also accommodate small irregularities and slope mismatches between the
feet and the supporting foundations, The stepping feet move in vertical guides
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which prevent ‘walking’, which would give horizontai or rotational displacements
of the base of the structure. ’

Rocking with stepping is particularly effective in reducing the seismic loads
and deformations of top-heavy slender structures such as tower-supporied water
tanks (where the tanks should be slender or contain baffles to prevent large long-
period sloshing forces during major earthquakes). Another top-heavy structure is
a bridge with tall slender piers. The piers may be permitted to rock in a direction
transverse to the axis of the superstructure, providing the superstructure can ac-
commodate the resulting deformations. The seismic responses of a slender rocking
structure are related in some ways to the responses of a structure with an ap-
proximately rigid-plastic, horizontally deforming isolator, but there are also major
differences.

For mode-1 seismic responses a rigid rocking structure may be assumed, with
forces and displacements expressed as horizontal actions at the height of the centre
of gravity. The cyclic force-displacement curve is then almost vertical for all forces
below the uplift force (which corresponds to O with bilinear hysteresis) and almost
horizontal for all displacements during uplift. The force-displacement curve is
essentially bilinear elastic. An effective period may be derived using the secant
stiffness for maximum seismic displacement. The effective damping will arise from
any energy losses during structural and foundation deformations together with the
contribution of any added dampers. The effective period and damping may then be
used to relate the maximum seismic displacement to the earthquake displacement
spectra, as in the case of any other non-linear isolator.

Since stepping isolation is a very non-linear constraint, and since the equivalent
first isolator period T, is substantially less than the first period of the unisolated
structure, the maximum seismic acceleration responses of the higher isolated modes
are expected to be relatively large. With stepping, the higher-mode periods and
shapes may be derived by assuming a zero base moment instead of the zero base
shear force assumed when the isolator acts horizontally.

With rocking isolation there is always a substantial centring force, which is given
by the uplift force. This centring force ensures that there is little drift displacement
to add to the spectral displacement. The substantial centring force and the high
first stiffness of the rocking isolator also ensure that there is very little residual
displacement after an earthquake, even when substantial hysteretic dampers have
been introduced.

An early application of rocking with uplift, to increase the seismic resistance of
a tall slender structure, is contained in a design study by Savage (1939). The 105 m
piers of the proposed Pit River road-rail bridge were designed with their bases free
to rock with uplift under severe along-stream seismic loads. A New Zealand railway
bridge at Mangaweka, over the Rangitikei River, with 69 m piers, was designed and
built with the pier feet free to uplift during severe along-stream seismic loads (see
Chapter 6). A tall rocking chimney structure, built at Christchurch, New Zealand,
is described by Sharpe and Skinner (1983).
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3.7.5 Further components for isolator flexibility

Tall columns and free piles

Horizontal flexibility can be provided by tall first-storey columns or by free-
standing piles. Such flexible columns must have adequate length to avoid Eu-
ler instability under combined gravity earthquake loads, while providing adequate
horizontal flexibility. With tall columns, the end moments may be severe despite
relatively low horizontal shears.

With deep free-standing piles it is usually convenient to provide dampers and
stops or buffers at the pile tops since it is usually practical to anchor them at
this level. This approach has been used in Union House, Auckland, which uses
steel cantilever dampers, and the Wellington Central Police Station, which uses
lead-extrusion dampers (see Chapter 6). If tall columns are used to isolate a tower
block it would be possible to anchor dampers to a surrounding high-stiffness, high-
strength mezzanine structure.

In both the above cases where isolation was provided by tall free-standing piles,
the tall piles were required to support the structure on a high-strength soil which
underlay a low-strength soil layer. The tall piles were made free-standing by sur-
rounding them with clearance tubes. Basement boxes, supported on shorter piles
and embedded in the surface layer, were used to provide anchors for the hysteretic
dampers and the buffers.

Hanging links and cables

It is possible to provide horizontal flexibility by supporting a structure with hanging
hinged links or with hanging flexible cables (Newmark and Rosenblueth, 1971).
Effective pendulum lengths of 1.0 and 2.25 m would give isolator periods of 2.0
and 3.0 s respectively. The necessary overlap of the supports and the structure can
certainly be provided but in most cases this would be somewhat inconvenient and
probably expensive, particularly for the longer links required for the longer isolator
periods. When isolation is required for a relatively small item within a structure it
would sometimes be appropriate to suspend it from anchors at a higher structural
level.

Rollers, balls and rockers

An object can be supported on rollers or balls, between hardened steel surfaces,
to provide a very low resistance to horizontal displacement. Again the object may
be supported on rockers with rolling contact on plane or curved upper and lower
surfaces, with the curvatures of the four contacting surfaces chosen to give a gravity
centring action.

While simple in principle, the use of hard rolling surfaces to provide horizontally
flexible isolator supports presents practical problems. These may include load shar-
ing between the rolling components and the low load capacity of rolling units, par-
ticularly when only parts of the contacting surfaces are worked during the intervals
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between substantial earthquakes. It is therefore likely that rolling supports will nor-
mally be restricted to the isolation of special components of low or moderate weight.

3.7.6 Buffers to reduce the maximum isolator displacement

Isolator maximum displacement

Isolators are normally designed to accommodate a travel greater than that which
would occur during design earthquakes. However, during extreme low-probability
earthquakes there is a possibility that the base of the structure will arrive at the
end of the isolator design displacement when the structure still has considerable
kinetic energy. If a stiff structure encounters a rigid base stop with considerable
kinetic energy the ductility demand on the structure may be high, and may even
substantially exceed the structure’s design deformation capacity. The use of a re-
silient or energy-absorbing buffer can considerably increase the acceptable base
impact velocity.

There are two components of shear strain when the base of a structure impacts
a stiff buffer. One is a transient shear pulse which travels up the structure, with
attenuation, and is reflected successively at the top and base. This transient shear
pulse can be attenuated substantially by having a buffer stiffness which is substan-
tially less than the inter-storey stiffness. The other component is an overall shear
deformation, which can be substantially reduced by having a buffer stiffness lower
than the overall structural stiffness. This is not practical in all cases.

During a low-probability extreme earthquake it is acceptable to permit much
greater damage than is accepted for design-level earthquakes. The principal re-
quirement is to prevent casualties and particularly to avoid the extreme hazard of
structural collapse. Typically a seismic gap and buffer system should be designed
to ensure that a structure does not collapse for a base displacement which would
be from 50% to 100% greater (in the absence of a buffer) than that provided to
accommodate design-level earthquakes.

Omnidirectional buffers using rubber in shear

Consider a structure mounted on laminated-rubber bearings which has a maximum
horizontal rubber shear strain of 100% under design earthquakes. Under earthquakes
of twice this severity the bearings would deform to a strain of approximately 200%,
and store four times the elastic energy. Suppose that the earthquake energy is not
reduced by the presence of buffers (in fact it is likely to be reduced by 20% or
30%). The energy to be stored or absorbed in the buffers is three times that stored
in the bearings on buffer impact. If stiff rubber shear buffers are used they will be
required to store almost three times the energy in the bearings. For a shear strain
of 3 in the rubber buffers the energy density is nine times that of the bearings and
hence the rubber volume required for the buffers is a third of that in the bearings.
The stiffness of the buffers may be based on the maximum base shear acceptable
for the structure under extreme earthquake conditions.
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Omnidirectional buffers using tapered steel beams

Steel-beam buffers can be made omnidirectional in the same way as can rubber
buffers. They may be designed to yield at a level which limits the base shear on
the structure to an acceptable level. They may be of lower cost but more costly
1o install than equivalent-capacity rubber buffers. Operationally they are superior
because of their yield-limited resistance force and because of the capacity to absorb
most of the energy put into them.

Buffer anchors

For many structures it will be difficult to provide buffer anchors of the desired
strength. If the buffer anchors deform in a controlled way with an appropriate
level of resistance, they may themselves function as buffers and greatly reduce the
demands on a buffer device or even remove the need for added buffers.

The basement box which provides stops for base displacement of the Wellington
Central Police Station has a level of soil and pile resistance which allows it to
provide considerable buffer action. Because the basement box is comparable in
mass lo a building storey, it is necessary to have a base-to-basement deformable
interaction which has lower stiffness than the inter-storey members, to atienuate
impact shear pulses. Such a deformable interaction is provided by lead collars
around the columns near their tops, which may impact basement stops during
extreme earthquakes.

3.7.7 Active and tuned-mass systems for vibration control

As mentioned in Chapter 1, this book deals primarily with passive systems of
seismic isolation, active isolation being a fascinating emerging field which has
potential on its own and in combination with passive systems. Like many of the
passive systems, active systems are useful for both aseismic applications and for
the reduction of wind-induced vibration in tall buildings.

Active control systems involve real-time sensing of the structural vibration, com-
puters to calculate the optimum vibration-suppression force, and forces to counter-
act the resulting motion. The active-mass damper uses the inertial force of added
masses as the reaction to the control force, while other systems utilise reaction
forces of the structural body of the building itself.

Tuned-mass damper systems involve the matching of frequencies between the
building and the tuned-mass damper so that out-of-phase vibration occurs.

There is a move to using hybrid active-passive systems for reducing the vibration
induced by wind and earthquake excitation on large bridge towers and high-rise
building structures.

A state-of-the-art review of active systems is given by Soong (1988) and other
recent references are to be found in the Proceedings of the various conferences
referred to in Chapter 1, such as the Yth and 10th World Conferences on Earthquake
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Engineering (1988 and 1992 respectively) and the 4th US National Conference on
Earthquake Engineering (1990). ;

A measure of the interest in ‘active control and tuned dampers” for the reduction
of vibration due to earthquakes and wind, is the fact that this topic was included in a
recent conference (SMiRT-11, 1991). As a special scientific event of this conference
an exhibition was organised, with presentations by 18 Japanese companies.

The material presented at this exhibition was presented as a special issue by the
organisers of the conference. A list at the end of this publication details buildings
using vibration-control devices in Japan. The first of these was completed in 1986
and comprises the 125-m tall Chiba Port Tower which uses a tuned-mass damper.
In 1987 the Yokohama Marine Tower was completed; this 30-floor observatory uses
tuned liquid dampers for vibration control. In 1988 the Sonic City office building
was completed, with friction dampers controlling the level of vibration. This has
31 floors above ground and four basement floors and an area of 107 000 m?.
Sixteen buildings using such systems were complete in 1991, with eight based on
tuned-mass dampers.
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4 Structures with Seismic
Isolation: Responses and
Response Mechanisms

4.1 INTRODUCTION

Major aseismic performance features of well isolated structures were introduced
and studied in Chapter 2. This chapter is a more systematic study of the seismic
responses of isolated structures as the parameters of the structure and the isolation
system are varied over wide ranges.

We begin by considering a uniform continuous linear vertical ‘shear-beam’ struc-
ture mounted on a linear isolator. In the case of a well isolated structure, we show
that its earthquake response can be approximated by a fundamental-mode response
in which the structure moves as a rigid body attached to the isolator, with the overall
flexibility of the system very close to the flexibility of the isolator. Higher modes of
the structure make only a minor contribution to the response, with the higher modes
of the isolated system approximated very closely by the corresponding modes of the
structure with free-free boundary conditions, as would be obtained with an isolator
of zero stiffness and damping. The period of the fundamental mode is controlled by
the ratio between the mass of the overall structure, plus the isolation system, and
the stiffness of the isolator, with the participation factor close to unity throughout
the structure. The higher-mode periods are close to those of the free-free structural
modes, lying between the fixed-base period for the corresponding mode and the
next lower mode. Modes higher than the first have near-zero participation factors.

Since the well isolated modal periods and shapes are approximated well by
the corresponding free-free periods and shapes, isolated modal features may be
expressed as simple perturbations of the features of free-free modes. Such expres-
sions give a simple picture of the modal features with linear isolation, and assist
in the initial design of the isolated structure.

Perturbation expressions are derived giving the correction to the free-free pe-
riods and participation factors resulting from a non-zero isolator stiffness. Exact
expressions are also given for the isolated periods in terms of the structural free-free
modal properties and the base stiffness, but these require the solution of transcen-
dental equations. However, the calculation of the isolator stiffness required to obtain
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i piven isolated fundamental-mode period greater than the period of the fixed-base
structure is explicit.

We next consider the introduction of viscous damping into the structure or iso-
lator, which in general leads to non-classical isolated modes. Usually the damping
in the unisolated structure is assumed to be classical, but when base damping
is introduced, often at most only one mode remains classical, in the sense that
the modal deformations are in phase throughout the structure, and the modes be-
come non-orthogonal leading to coupled modal responses. Many practical isolation
systems involve higher damping in the isolation system than that inherent in the
structure. For linear isolation systems with flexible bases and moderately high vis-
cous damping (i.e. around 15-20% of critical), the fundamental-mode damping is
mainly governed by the base damping. The base damping is generally relatively
less important for higher modes, and often the damping from the structure dom-
inates beyond the second mode even when the isolator damping makes a large
contribution to the first-mode damping. Damping in the isolator can considerably
increase the participation factors of the higher modes, although their participation
[actors usually remain much less than for the first mode. Increasing isolator damp-
ing generally decreases the displacement response of the overall system, which
is mainly governed by the first-mode response, but increases the importance of
the higher-frequency acceleration components. The earthquake attack on contents
of the structure may increase significantly with increasing isolator damping be-
cause of the enhanced high-frequency response, although remaining less than in an
unisolated structure.

The general effects of isolation on structures which are non-uniform in eleva-
tion are similar to those on uniform structures. Some specific mass and stiffness
distributions with smooth variations can be handled analytically for continuous
models, (e.g. Su et al. 1989) but discrete mass and stiffness models are usually
more convenient for treating non-uniform structures. As with the uniform contin-
uous model, we develop expressions for the mode shapes and periods of isolated
structures modelled as discrete masses and springs in terms of perturbations about
free-free modes. Again, a technique is given for explicit calculation of the base
damping and stiffness required to obtain a desired fundamental-mode frequency
and damping.

Seismic isolation systems can greatly reduce the acceleration response of a build-
ing, but some systems are capable of giving even greater reductions in the forces
which act on contents of the structure, and on secondary vibratory systems such as
plant and equipment attached to it. The response of a linear structure well isolated
on a linear isolation system is dominated by low-frequency motion at the iso-
lated fundamental-mode frequency, with only minor high-frequency components.
Equipment often has high natural frequencies, so its excitation is much reduced
in a well isolated structure, while even for equipment tuned to the isolated struc-
ture's fundamental frequency, ils excitation may remain modest compared with the
carthquake ground motion. For subsystems with multiple attachment points, such
as services in buildings or piping systems in industrial structures, the near rigid-
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body response of the isolated supporting structure eliminates problems caused by
differential movements of the support locations.

Perturbation techniques similar to those for the isolated structure are used in our
analysis to determine the important dynamic properties of secondary structures in
an isolated structure. Response spectrum techniques accounting for the interaction
between the primary and secondary structure are used to estimate the earthquake
response of the secondary structure.

Many practical isolation systems involve isolators with non-linear stress-strain
characteristics. Non-linear isolators provide hysteretic energy dissipation, either
through sliding friction systems or through the plastic deformation of metals such
as steel or lead in mechanical energy dissipators. It is usually possible to achieve
greater and more reliable energy dissipation with non-linear hysteretic isolators than
with linear isolators and viscous damping. The non-linearity also allows the struc-
ture to be stiff in small-amplitude motions so that displacements under moderate
winds and traffic vibrations and the like are minor, while in larger-amplitude mo-
tions, such as those resulting from strong earthquake ground motions, the isolator
softens to give the large base flexibility required for effective isolation.

For non-linear isolation systems in which the elastic (i.e. low-amplitude) stiffness
of the isolator is sufficiently less than that of the structure, the dynamic responses
are similar in character to those of a well isolated structure with linear isolation.
The energy dissipation is through hysteretic rather than viscous action, but the su-
perstructure responds essentially as a rigid body mounted on the isolator with little
high-frequency response from higher modes. As well as depending on the low-
and high-amplitude stiffnesses of the isolation system, the response is governed
by a parameter describing the yield level of the isolator. Usually there is an opti-
mal value of the yield strength which will minimise the base shear or acceleration
response for a given earthquake motion; this optimal strength increases with the
severity of the earthquake motion. One-degree-of-freedom response-history analy-
ses which treat the superstructure as a single lumped mass will be reliable if the
dynamic characteristics of the system change little with the effective stiffness of
the isolator at different amplitudes of motion, as will occur when the structure is
moderately well isolated even with the isolator acting in its elastic range. Alter-
natively, equivalent linearisation techniques can be used to obtain reliable results
with either single-mass or multi-mass models under the same conditions: that the
effective mode shapes are similar in character for all isolator displacements.

Unfortunately, the analysis and response mechanisms for many practical and
effective non-linear isolation systems are more complicated, in that the dynamic
characteristics alter considerably as the displacement of the isolator increases. At
small isolator displacements, the elastic isolator stiffness may be high, so that the
system is not behaving like a structure with effective linear isolation. The dis-
placements will vary significantly through the structure, with the superstructure no
longer having rigid-body characteristics. The non-uniform displacements within the
structure occur because of the non-rigid-body shape of the fundamental mode and
because higher modes will also participate strongly. As the isolator softens, the
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rigid-body fundamental-mode characteristics will appear. There will be little fur-
ther excitation of higher-frequency response until the response reverses direction,
but significant high-frequency motion excited in the initial high-stiffness phase of
the isolator response may persist. On the reversal of motion, the effective stiffness
ol the isolator will again be high. Further high-frequency motion may be excited
in this phase of the motion until the isolator softens in the reverse direction, both
through direct excitation from the ground motion and from non-linear energy trans-
fer mechanisms which occur on the reversal of motion when the effective mode
shapes change. High-energy dissipation through hysteretic action, which limits the
overall displacement response, requires a high degree of non-linearity (i.e. a large
difference between the low-amplitude and high-amplitude stiffnesses of the isolator
together with a significant displacement beyond yield). High non-linearity generally
lcads to strong excitation of high-frequency response, unless the high non-linearity
can be obtained while retaining a reasonable degree of isolation in even the elastic
response phase of the isolator. Hysteretic isolation systems may be able to achieve
u moderate degree of isolation even in the elastic response stage if the superstruc-
ture has a short natural period compared with the elastic period of the structure
and isolator, but sliding friction systems generally have poor isolation in their non-
sliding phases, allowing both direct excitation of high-frequency motion by the
ground accelerations and indirect excitation of high frequencies through non-linear
transfer mechanisms.

Our analysis of such systems is based on response-history analysis. However,
the results can be presented in terms of various important parameters, with the
curves for various response parameters changing smoothly enough with the system
parameters that the responses can be estimated for a much wider variety of combi-
nations of system parameters than those we calculated explicitly. Also, to illustrate
the underlying response mechanisms, we have developed a ‘modal sweeping’ (or
‘modal filtering”) technique, which presents the response histories of various sys-
tems with bilinear hysteretic isolation in terms of the modal responses of the elastic
phase and post-yield phase. In particular, this presentation shows the effect of the
non-linear energy transfer mechanisms which occur at yielding and at the reversal
of response motion.

The analysis and prediction of the response of secondary systems in structures
with non-linear isolation systems is more difficult than for systems with linear iso-
lation, because of the various mechanisms by which the support point motions may
obtain high-frequency components. The modal sweeping technique is used again to
illustrate the response mechanisms. Generally the responses of secondary systems
in structures with non-linear isolation will be less than in non-isolated structures,
but some isolation systems relying on frictional dissipation can produce increased
response. The secondary system responses may be less than in linearly isolated
structures il the hysteretic energy dissipation is sufficient to counteract the high-
frequency components induced by the non-linear action, but generally a high degree
of linear isolation i1s more eflective for reducing secondary system responses. As
with the calculation of struetural responses themselves, the response of secondary
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systems in structures with non-linear isolation is calculated by detailed response-
history analysis, but despite the complicated interacting response mechanisms at
play, the results can be crystallised into a few simple graphs in terms of pertinent
system parameters, again allowing generalisation to a much broader range of cases
than studied explicitly.

It has long been known that seismic isolation can be very effective in the reduc-
tion of torsional response in torsionally unbalanced buildings. Many aspects of the
torsional response mechanism are similar to those of secondary system response.
Similar analytical techniques have been used to demonstrate the advantages of
seismic isolation to overcome the problems of the earthquake response of highly
torsional structures (see Section 4.5).

4.2 LINEAR STRUCTURES WITH LINEAR ISOLATION
4.2.1 Introduction

As the starting point of our detailed analysis of the earthquake response of seis-
mically isolated structures, we begin by considering a structure modelled as a
continuous uniform linear ‘shear-beam’, mounted at base level on a linear shear
spring and viscous damper which represent the isolation system. We present the
equations of motion for the earthquake response of this model, and then derive
exact expressions for its mode shapes and modal periods. In general, with the pres-
ence of damping the isolated modes are non-classical, i.e. their phases depend on
their position in the structure.

For a well isolated structure, i.e. one in which the isolated first-mode period
is much more than the first-mode period of the unisolated structure, we present
perturbation expressions for the modal properties of the isolated structure. Our
results are for perturbations of the structure with free-free boundary conditions at
the base and top, corresponding to an isolator spring of zero stiffness.

A similar approach is followed for the modal properties of a non-uniform struc-
ture represented in terms of mass, stiffness and damping matrices. Perturbation
expressions are derived for a well isolated non-uniform structure in a manner anal-
ogous to that for the uniform continuous model, in terms of the free-free structure.
For this discrete element representation, we also refer to perturbation results de-
veloped by others (Tsai and Kelly, 1989) in terms of the modal properties of the
fixed-base structure. As the structural properties are often defined in terms of the
fixed-base structure, this perturbation allows a direct comparison of the modal
features of the isolated and unisolated structures.

As the damped isolated structures have non-classical modes, their earthquake
response cannot be found by the simple modal decomposition technique available
for classically damped systems. However, their earthquake responses can still be
found in terms of decoupled modal responses by using Foss’s method (Hurty and
Rubinstein, 1964; Tsai and Kelly, 1988). We derive the expression for the displace-
ment response of a non-classically damped mode in terms of a combination of the




WWW.BEHSAZPOLRAZAN.COM

124 STRUCTURES WITH SEISMIC ISOLATION

displacement and velocity responses of a single-degree-of-freedom oscillator with
the modal frequency and damping. The response expressions can be interpreted in
terms ol the displacement response of such an oscillator, multiplied by a complex
participation factor. Isolator damping increases the modulus of the higher-mode
participation factors, as well as introducing the phase shifts, throughout the natural
modes, that make them non-classical.

Unlike the exact expressions for the mode shapes and complex modal frequen-
cies which require solution of transendental equations, it is possible, for both the
continuous and discrete models, to develop direct expressions for the isolator spring
stiffness and damping which are required in order to achieve a desired ratio be-
tween the isolated first-mode frequency and the fixed-base frequency (as well as
a given first-mode damping). These direct expressions are of practical importance
for design. For the continuous case, the isolator stiffness and damping are given
by a pair of algebraic expressions, while in the discrete case they are given by
entering the iterative Holzer method (Clough and Penzien, 1975) for determining
mode shapes and periods with the desired (complex) frequency.

4.2.2 Modal properties of a uniform linear ‘shear-beam’ on a linear
isolator

General modal features

Consider a structure modelled as a continuous uniform linear vertical ‘shear-beam’
mounted on a linear isolation system consisting of a mass M), a linear spring of
stiffness Ky, and a linear viscous damper of damping coefficient Cy, as shown in
Figure 4.1. The shear-beam has a length L, uniform cross-sectional area A, uniform
density p, constant shear modulus G, and damping coefficients ¢, (proportional to
the mass distribution from beam elements to the ground) and ¢; (in parallel with
the shear modulus, and proportional to the stiffness distribution). The equation of
motion for the structure, when subjected to a ground acceleration iig, is

Py due 02 dw) D u\
;:AT +<,,,Aa‘ e (q.Aa:) 22 (GA Bz) =0 0<z<L.
(4.1)

Here u(z, t) is the displacement at position z in the structure in the horizontal x
direction with respect to the ground at time ¢, and u, is the ground displacement.
The equation of motion of the base mass is

L L
0
Mh(ﬁb = ﬂ';.’ =F f pA(H =k "g)d.l’ =} f {‘MAB—TdZ + Cbﬁb = Kbuh =0 (42)
0

0

where uy, is the base mass displacement with respect to the ground. The integral
expression is the base shear of the superstructure. A variation on this representation
ol the coupling forces between the isolation system and the superstructure has been
used by Su er al. (1989),
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Figure 4.1 (a) Model of a continuous uniform vertical ‘shear-beam’ structure of
height L, on a linear shear isolator whose mass, damping coefficient and
stiffness are M,, C, and Ky respectively. (b) System coordinates: u,(r)
is the ground displacement, and u(z, 1), up(r) and u;(r) are the structural
displacement, with respect to the ground, at level z, the base level and the
top level respectively

The boundary conditions for the ‘shear-beam’ are that it has the same displace-
ment as the base mass (the top of the isolator) at z = 0, and zero shear at the top
(z=L)
du(L.r)

! 43
5 0 4.3)

u(0, 1) = up(r)

For the continuous uniform shear structure, expressions are simplified by giving
its parameters as the overall values:

M = pAL, Cy=cmAL, Cx =cA/L, K =GA/L.

Consider the free vibration case where ii; = 0. There are then a pair of coupled
differential equations:

v 2
,0%u(z, 1) n KLIa u(z, t) 2 4.4)

Mii(z, 1) + Cyi(z, 1) — CxL"— 922

and
M f F
Myiin(t) + Cyitn(1) + Kpup(t) = — If ii(z, 1)dz
0

L
LGl B, 4.5)
L Jo

The method of separation of variables produces free-vibration solutions of the
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form

Uy(z,t) = (@, cos y,z + by sin y,z)e’" (4.6a)

Upy (1) = Uh,.,fl’g”r (46b)

The term y,z is written without brackets but is to be read as a single argument.
Al this stage py, ¥y, Gn, b, and Uy, may be complex-valued.

The complex frequency p, can be expressed in terms of its real and imaginary
parts:

Prn ==&y +i/(1—82) oy 4.7

where @, is the undamped natural frequency and &, is the fraction of critical viscous
damping. Relationships between a,, b, and the wave number y, are found from
considering the boundary conditions (4.3). From the no-shear condition at the top
(z=L):

—a, Yy sSiny,L + b,y,cos ¥, L = 0. (4.8a)

Again, the term y, L is written without brackets but is to be read as a single
argument. Letting z = L in (4.6a)

ay Cos }",;L = bu sin y:aL = ULn (48b)

where Uy, is defined by u, (L, t) = Up,eP’.
Provided y, is non-zero, that is, there is some structural deformation,

a, = Up,cosy,L, b, = U, siny,L. (4.9)
Hence
uy(z, t) = Up,(cos y, L cos y,z + sin y, L sin y,z)e"’
= Upn(cos [y L(1 — z/L)]) exp(put) (4.10)

Since up, (1) = UpyeP, letting z = 0 in (4.10) and applying the boundary
condition (0, 1) = uy(t) gives

Upy = Uppcosy, L. (4.11)

When cos y, L = 0, the base displacement is zero, and the structure is unisolated.

The relationship between the complex frequency p, and the (sometimes com-
plex) wave number y, is obtained by substituting (4.10) into (4.4); and requiring
a non-zero top displacement /.

Mp} [Cy + Ck 1.12] pr+ KL =0 (4.12)

Provided (), 5 0, u second relution between p, and y, is obtained by substi-
tuting the mode-shape expressions (4.10) and (4.11) into the base mass equation
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of motion (4.5)

tan y, L
Myp? + Copa + Ky = —(Mp? + CMp,i)y—Ln. 4.13)
n

If Uy, = 0, Equation (4.11) shows that cos y, L is zero for non-zero Uy,,.

We have assumed that the structure has mass-proportional damping (with the
ratio Cy /M) and stiffness-proportional damping (with the ratio Cg /K), and hence
the unisolated modes are classical. Classical modes have the same phase at all
positions, which occurs when the mode shape is real, requiring y, L to be real.

If the isolator mass M), and stiffness Ky, are provided with mass- and stiffness-
proportional damping coefficients in the same ratios as for the structure, then the
isolated structure has proportional damping, the isolated modes are classical and
¥n is again real. Hence isolated modes are classical if Cy, has the value:

C c
Ciass MbﬂM 1 Kb?". (4.14a)

When (4.14a) is substituted in (4.12) and (4.13) it gives Equation (4.14b) below:

K 11 My
tan y, L = TR vali, (4.14b)
This equation does not explicitly involve damping terms, gives real values for
vn» and defines the wave number for classical mode shapes. The modes are also
classical if the damping is zero: C, = Cy = Cg = 0. This also satisfies (4.14a)
and gives the same real values for y, L as (4.14b).

When the damping coefficients do not satisfy the constraint given by Equa-
tion (4.14a), then y, L is complex and the mode shapes are non-classical. In par-
ticular, it may be desirable to have a much larger C}, value than that which gives
classical modes in order to obtain high first-mode damping of the isolated system,
and hence reduced structural displacements. Also, an undamped structure supported
on a damped isolator gives non-classical modes. Such non-classical mode shapes
are generally less convenient to deal with analytically.

For mass-proportional damping (i.e., Cx = 0, Cy % 0), the fraction of critical
damping in isolated mode n is given by

T R e T (4.152)
Mw, W,

This gives high damping in the first mode with respect to the first-mode unisolated
(fixed-base) damping, Zrp,, with the damping decreasing in higher modes in inverse
ratio to their isolated frequencies, w,. Dampings for the higher modes are greater
than the damping for the fixed-base modes ol corresponding number, but approach
the unisolated values as the mode number increases.
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For stiffness-proportional damping (i.e., Cy =0, Cx # 0)

L=1/2 (%)w,,= L e (4.15b)

WEBy

For the first mode the damping is low with respect to the unisolated value, but
it grows for higher modes to approach the damping value for the corresponding
unisolated mode.

The actual damping mechanisms in structures are more complicated than the
types of viscous damping assumed above. Hysteretic mechanisms are likely to
be involved, either from friction between elements of a structure or because of
the nature of the material stress-strain characteristics. However, viscous damping
gives a mathematically convenient representation of the damping with acceptable
accuracy for amplitudes up to the onset of significant yielding in the structure,
which often corresponds approximately to the amplitudes at the onset of damaging
motions. Usually the distribution of the viscous damping through the structure is
assumed to be such that classical mode shapes are obtained, with no coupling
between the modes. In addition, the damping is often assumed to be either of the
Rayleigh type as assumed above (i.e., the damping distribution is proportional to
a linear combination of the mass and stiffness distributions), or such that equal
fractions of critical damping are obtained in all modes.

Classical normal modes or no damping

Without damping, Cy = Cgx = C, = 0, and also &, = 0. From (4.7), p? = —}.
Equations (4.12) and (4.13) become

wn =/ (K/M)y,L, (4.16)
ot

i L) 4.17

tan y, L K 7L M ¥ ( )

This equation is the same as (4.14b) since it also applies with classical damping.
The mode shape u,(z) and frequency @, for any degree of isolation, that is for any
values of the ratios Ky/K and M,/M, may be found by solving (4.17) for y, L
and substituting these y, L values in (4.10) and (4.16).

Before investigating the roots of (4.17) it is worth considering two reference
cases. The first is the fixed-base case, in the absence of the isolator. For a fixed-
base, 1,(0,¢) =0 and (4.11) gives for non-zero U,

cosy,L =0 (4.18a)

(il )y = (2n — n% (4.18b)
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and
Upgn(z, 1) = Up, sin y, L sin(y,z)e™
= (=1)""'U,, sin(y,z)e"". (4.19)

For the undamped case, (4.16) gives

K b/ 4
Y e 4.20
[ 5™ (2’1 1 ] ) ( a)

= (2n — Dwrp:- (4.20b)

The second reference case is the free-free case (i.e. K, = Cp, = M;, = 0), which
corresponds to perfect isolation. The boundary condition at the base of the structure
(z = 0) corresponds to no shear force, requiring
dupp,(0)
dz
This leads to the free-free mode shape

0. (4.21)

upga (2, 1) = Up, cos y, L(cos y,z)e™"

= (=1)"""Upn(cos yuz)eP" (4.22)
with
siny,L =0 (4.23a)
ie. =
(YaLl)ep = (n — ) = (2n — 2)5. (4.23b)

For the undamped case, (4.16) gives

K
WFFy = \/;(n — D (4.24a)

= (2n — 2)wrs:- (4.24b)

Note that the fixed-base and free-free frequencies interleave. It is also convenient
to introduce the frequency
wp = /(Ky/M) (4.25)

corresponding to a rigid structure of mass M on an isolator of stiffness Ky, and
the associated natural period Ty, = 27 /w,. Many of the modal expressions for the
isolated system are a function of the isolation ratio

I = wppi/wy = To/ Trpi- (4.26)

In places the notation w;(U) and 7j(U) is used for the undamped first-mode
frequency and period of the unisolated structure rather than wgy; and Tgg), Where
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the subscript ‘FB1" denotes ‘fixed-base first-mode’. The isolation ratio / varies
from O for an unisolated system (i.e., a rigid isolator with T}, = 0), to infinity for a
free-free system where Ky, and e, are zero. The unisolated first-mode undamped

frequency and period are
K r
w1 (U) = wpp1 =,/ e (4.27a)

Ti(U) = Te1 = 4/ %{ (4.27b)

In terms of the parameter [,

K. Ko/M 2 2 2
_bzi_=ﬂ_._,mb_zr_. (4.28)
K~ K/M 4o}y 412

Here it is seen that ‘I’ is a measure of the ratio of isolator flexibility to structural
flexibility. ‘/° and @}, are common parameters in isolated modal features, when
expressed as perturbations of free-free modal features.

Return now to a consideration of the roots of Equation (4.17) for the isolated
case with no damping, or with classical damping. It is informative to plot the two
sides of this equation as functions of y,L (Figure 4.2). For the case of My = 0
(the dashed curve), the higher roots y,L approach but lie above (n — 1), which
are the roots for the free—free case. The first root lies in the range 0 < y1 L < /2,
that is, between the free-free and fixed-base roots.

For a small value of K},/K, the first root y; L will lie near zero. For this case

tany L =~ y L (4.29a)

K
nlL =~ ,/?". (4.29b)
The natural frequency is given by

K Ky
=l i T s o 4.30
W) =/ M)’l \/ M (4.30)

Higher-order approximations are given by

[K I K
L~ [ — (| = __“) (4.31a)
K 6 K

| }T"
| — 4.3
2/ ( 24[: ) ( 1b)

so from Equation (4.17)

4.2 LINEAR STRUCTURES WITH LINEAR ISOLATION

am

L for the first three modes. The solutions are indicated

the points of intersection of tan (y

-dotted on the figure); the two components o

equation (4.17), giving the base-phase parameter y,

Graphical solution of

Figure 4.2
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1% 1 Ky
W) ~ 7 (1 6 K) (4.32a)
n.l
= (l - m) (4.32b)
wFBI n?

e e 2 U ;

7 ( 7 12) (4.32¢)

For a non-zero base mass M), all roots y, L are smaller than with zero base mass,
as can be seen in Figure 4.2. The roots for sufficiently high modes n approach but
exceed (n — 1) — (7/2), which is the fixed-base root for mode (n — 1). Again
assuming that y; L is small, the first root can be found approximately as

KM K MM, )

= Pes [t 4.33b
o=, —nlL= g o

As before, this is the frequency for a rigid structure of total mass M + M,
supported on the base spring Ky,

Similar forms of higher-accuracy approximation are available as for the zero
base mass case:

e S 'K“( % )2+ (4.33¢)
H KM+My,\ 6K \M+M, e

Ky 1 Ky M\’
~ ] = —— [ — —_— _
L VM+M1,( 6 K (M+M,,) &2 ) (1328

For the higher modes, as can be seen from Figure 4.2, for sufficiently small M,/ M

N\/KbI(M +My) |Kw M
Y‘L -~ _— =

wmLl =~ (n— D+ A,. (4.34)
Hence from Equation (4.17)

Ky,
' ﬂ‘i[(n— D + A,l.

tan Al sle—————— =
Kl(n — hr + A,] M

Expanding tan A, as a series, and retaining terms to A,

Ky My(n — D
4 —— .35:
Kin— L M (A:2p)

A" a
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i.e.
J’fz 1 Mb
=—— - —(n-1 4,
Ay AR ;= o (n )T (4.35b)

an—-1212 M

Wy = ‘H %}’NL (4.373}

| M,
Vol = (n — n [I s —] (4.36)

2
= —wrp1Yal (4.37b)
T
My, 1
=~ (2n — 2)wgg [l = ﬁ + m] s (4.37¢)
For My, =0
1
= (2n — 2 e 4.
w, = ( Jwrg) [l F n _2)112] (4.38a)
1
== —_— 4.

For increasing /, this converges very quickly to the free—free frequency wgp, for
higher modes, as shown in Figure 4.3(e) and discussed below.

The flexible base spring changes the natural frequencies from the fixed-base
values to values close to the free-free frequencies. It is the isolator stiffness, together
with the total mass of the structure and isolation system, which determines the
fundamental frequency. On the other hand, the low isolator stiffness causes the
higher-mode frequencies to be near the free-free frequencies of the structure, but
has little influence on the actual frequency values, which are determined primarily
by the stiffness of the structure and the total mass of the system, with the isolator
stiffness introducing a small perturbation.

For some of the low modes, the base mass may bring the isolated higher-
mode frequencies closer to the free-free frequencies than those obtained with zero
base mass. Note that large base masses cause greater changes in the higher-mode
frequencies than in the lower-mode frequencies. On the other hand, non-zero base
stiffness has its greatest effects on the frequencies of low modes.

Next consider the mode shapes and shear distributions. These are presented in
Figure 4.3, in which normalised profiles ¢,, as defined in Chapter 2, are given
instead of u,. The shears and moments are denoted S’ and M’ to indicate normal-
isation.

The mode shape at position z for mode »n is

Un(z) = Unp cos y, L (1 L ) . (4.39)

=]
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Figure 4.3 (continued)

Here Up, denotes the nth-mode displacement at the top of the structure. This
notation is anticipating the later treatment of discrete systems, where mass N is
the top mass of the structure. For the massless base case and small w, /wgg,, i.e.

large I:
T 72 z
11 (z) % Uyi CoS [5 (1 g 2412) (1 = E)] . (4.40)

Also, for higher modes n > 1:

1
u,(z) =~ UNH Ccos l:(Zrz -_ 2)% (I -+ m) (l = %)] - (441)

The well isolated higher modes have just over n — 1 half-wavelengths between
z =0 and z = L, with antinodes at the top and just above the base, and as / and
n increase, quickly converge to the free-free mode shapes

b4 z
UpEn(z) = Uy COS [(2n ~2)7 (1 i Z)] : (4.42)
Figure 4.3 Modal features of a continuous uniform ’shear-beam’ structure with various

degrees of linear isolation, given by / = T,/T,(U), so that [ = 0 gives
a fixed base (unisolated system) and / = oo gives a shear-free base (well
isolated system). It is seen that, for any degree of isolation greater than 2,
the modes have high-isolation modal features. (a) Model defining the pa-
rameters of the isolated structure, of height L, and mass m and stiffness &
per unit height. (b) Variation with height z of the normalised first, second
and third mode shapes ¢, ¢, and ¢; respectively, for various values of /.
(c) Variation with height z of normalised modal shear forces S| and S5, for
various values of 1. (d) Variation with height z of normalised modal over-
wrning moments M; and M, for various values of /. (e) Variation of modal
[requencies w, with degree of isolation /. () Variation of top participgtion
factor with 1
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As [ increases, particularly for larger n, the free-free modes have almost exactly
(n — 1) half-wavelengths, with antinodes at the top and base (Figure 4.3(b)).

The earthquake response of the shear beam can be written as the sum of the
modal contributions:

u(z,r) = Zu,,(z}!,—',,(:).

The equation of motion (4.1) then becomes

o0 = =) - 00 d2 ¥ y
MYt @E O+ Cu Y i@k — Y oDt )
n=| n=l n=I1
o0 2
~ )y ) Eq(r) = —Miiy(1). (4.43)

dz?

n=|

Al this stage, we are considering classically damped modes, so using the standard
modal decomposition approach (e.g. Clough and Penzien, 1975) and making use
of the orthogonality of the normal modes, the equation of motion for the nth mode
becomes

Un(2)Ex () + 280 0nttn(2)E (1) + W2 (2)Ea (1) = =T (2)iig (1) (4.44)

For an earthquake excitation with a relative displacement response spectrum
Splw, ¢), the maximum displacement of mode » at position z is given by

X (z) =Ty (Z)SD(wn- Zn). (4.45)
The frequencies w, have been derived earlier. The damping &, is given by

,ﬁ;L [C.w + Cx (v L)?| ul(2)dz

ZCuwn = {4-463)
f;;' Mu?(z)dz
Cy + CK(}’NL)I
=\ 4.4
g 20, (4.46b)
The participation factor I',,(z) is given by
L
Mu,(z)dz .
I‘,,(z) — I%f"#“n (z) (4.47)
Jo Mu(z)dz
Evaluation of the integrals produces
2siny, L
Fa(z) = SOVE cos[yaL(1 — 2/L)] (4.48a)

VLo ++ sin y, L cos y, L

Paw cos [y L1~ 2/1)]. (4.48b)
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For a massless base and large isolation factor /, the participation factors become

n? T 22 z
i)~ (1 3 ﬁ) cos [E (I e m) (1 5 1—)] (4.49a)

and forn > 1
" - 1212 201 — 1212

1 Z
X COos I:[H == 1}3‘1’ (l + m) (l = E)] 4 (4491))

The participation factors at the top of the shear-beam are shown for the first three
modes in Figure 4.3(f).
The maximum modal displacements at the top of the shear-beam are given by

=
Xy =~ (1 + ‘24?) Sp(wi.&1) (4.50a)

1 1
XNn o 2(!1 = 1)212 (1 = 2(?‘! = ”212) SD(wnt Cn) n>1 (450]3)

The fundamental mode dominates the displacement response because the first-
mode spectral displacement Sp(@, §;) is usually much larger than the higher-mode
spectral displacements Sp(w,, £,), and the first-mode participation factor is slightly
greater than unity, while the higher-mode participation factors are small.

For an earthquake acceleration response spectrum Sa(@j, £,), the maximum
seismic acceleration at position z in mode n is given by

X’"(Z) = rn(;)sh(wu- gﬂ)
= [wncos [y L(1 — z/L)] Sa(@n, &)- (4.51)

Note that X, denotes the maximum absolute acceleration, while X, and X, refer
to displacements and velocities relative to the ground. I'y, denotes the nth-mode
participation factor at the top of the structure, using a similar notation as introduced
earlier with Up,,.

The maximum seismic force per unit height, at level z of mode n, is obtained
by multiplying the corresponding acceleration by the mass per unit height M/L,
to give

Fy(z) = —(M /L), cos [yu L(l — 2/L)] Sa(@n, &) (4.52)

The corresponding maximum seismic shears and overturning moments at level z of
mode n are obtained by successive integration of the maximum seismic forces. This
may be done since the modes are classical and therefore all the forces throughout
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a given mode are in phase. The integrations give

L
Su(z) = f Fa(2)dz’

= [(M/yaL)ICp sin [y L(1 — 2/L)] Sa(@n, &) (4.53)

L
oM, = [ s,

= [ML/(yaLYITnn (1 — cos [yaL(1 — 2/L)]) Sa(@n, Z»). (4.54)

For a large isolation factor /, that is for small Ky/K, peak seismic accelerations,
forces, shears and overturning moments may be obtained by substituting Iy, and
yu L values (from (4.49), (4.33) and (4.36)) into (4.51) to (4.54).

Seismic shears are of particular interest because they are usually a good measure
of the seismic loads on a structure. For a massless base and large isolation factor /

sl 2\ I 72 z
Si(z) = M; (I - Fﬁ) sin [5 (l - W) (1 - }:):I Salwy, &)

~ M [(1 4 %) (1-2)- 5%12 (1- %)3] Sa@1.8).  (4.55)

Thus the first-mode shear distribution is approximately triangular, from zero at
the top to the maximum value Sy, at the base, as shown in Figure 4.3(c). The
first-mode base shear is given by:

4
So1=Siz=0)~ M (1 + o(%)) Sa(@1, &1)- 4.56)
The higher-mode shears are given by
| (-1)"'M : 1 £
Sp(z) % ———— 'ns Sn s Py T —
W ar—Tpr ksl [(" o (l T 1)212) (1 L)]
4.57)

This shear distribution has n zeroes, at the top and at spacings of approximately
L./(n — 1) down the structure. There is a zero just above the base (Figure 4.3(c)).
The base shear is

SA{wn: Cﬂ)- (458)

SI:JI

T 8- DA

I'he higher-mode base shears are generally much smaller than the first-mode base
shear, with their ratios given approximately by

| S,\ (e, tn )
Bln — 14 Spwy, &)

Hf\u f '\.hl ( 4. 59 ]
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For the first mode, the base shear is the maximum shear. However, for the higher
modes the maximum shear is much larger than the base shear

M
Sa,max R m&\(@m &n)

~ %(n — TIPS (4.60)

The ratio of S, ma to the first-mode base shear is an important parameter for
determining the overall shear distribution in the structure. As shown above, for
a well isolated uniform shear-beam structure the first-mode shear distribution is
approximately triangular:

S1(2) ~ Sy (1 > %) ; (4.61)

For the other modes, the distribution is approximately an integral number of half-
cycle sine waves, with a zero value near the base, with the maxima at various
positions up the structure. Obviously, if S, nax/Sp1 is not small, the sinusoidal
higher-mode shear distributions will modify the overall distribution considerably
from the triangular first-mode distribution. The ratio is

1 Salws, &n)

2a(n — 1312 Sa(@1, 1) 5

Si.max/Sp1 =

This ratio is generally small. Since Si(w,,&,) is usually not greater than
ISa(@y, &), for & = &,, and also since Sa(w,, &,) is usually not greater than
fzs'ﬁ(w]! Cl)! fDl‘ ;l >> Cn- ll‘erefore!

Spmax/Sor # 1/R2x(n — 1’1, for gy ~ 4,

Sumax/So1 # 1/2x(n = 1)), for &1 > L. (4.63)

Hence it is evident that, at most, only mode 2 can significantly increase the
seismic shears given by mode 1.

An overall picture given by Figure 4.3 is the extent to which the isolation factor
/ must be increased in order that the modal features approach their high-isolation
values. In Figures 4.3(e) and (f), which show the frequency ratios and top-level par-
ticipation factors, the high-isolation asymptotes are shown dotted. All the modal
features shown approach close to their high-isolation values, or expressions, by
the time the isolation factor is increased to 2.0. The greatest, but still moderate,
departure is for the mode-1 shape with corresponding departures for mode-1 ac-
celerations and forces, It is shown later that such trends also apply to a wide range
ol reasonably regular structures,
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Base damping Cy, but zero damping in the structure

We now consider the case where there is isolator damping, but no damping in the
superstructure i.e. Cy = Cx = 0, Cy # 0. From Equation (4.7), the frequency p,

is defined by
Pn = —Ean + i\,‘ 1 — &law,. (4.64)

For Cy and Cg = 0, the frequency equation (4.12) gives

K
—y2L? = —p? (4.652)

M
P"L — ‘H = "‘ I _;ﬂ +ig") Wy (4 65b
K y ’ }

Substituting in the frequency equation (4.13) and equating real and imaginary
parts leads, after some manipulation, to

vl—";;}wﬂx

sin

2M wrp1wy, WFB1
Ky = Myw? + — (4.66a)
T f1— 2 i 1= 2
& cos ———8— .. 7 + cosh L] T
WER1 WEB]
Zn .V 11— {3“’" . ECnwy
5 e — sin T T+ sin an
Cy = 2w, My, + ?wpm h : (4.66b)
cos Y——2a%n + cosh e
(WFB| WERB|

where, as given previously in Equation (4.27a)

7 [K

ﬂ’FBl=E M

Given a required damping &; and frequency @; and known unisolated first-mode
frequency @) . these lead to explicit expressions for the required base stiffness and
base damping for a given base mass. Assuming w;/wgg; is small, and expanding
to order {w|fw1:m)2:

M &
Ky = (M + Myp)e? |1+ ———— =L
BiFE:! ")w'[ T AR

+] + O((@ /wrg)?) (4.67a)

3 il
M ne o wy

Ch = (M + My)2&yay | 14 - b2 Lt
: j t'”‘[ M+ My 6 iy,

| O '] -+ ()(((U| !’ﬂjl"l“ ) l). (4.(‘]?")
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These expressions can be inverted to find @, and &, in terms of Ky and Cy:

. SURe T el __;Kb_—z—] (4.68a)
w,~M+Mb M+ My 12 (M + Mp)@gg,

] A . “_2___&__] (4.68b)
M+ My, 6 (M+ My)ogg,

(4.69a)

(4.69b)

This corresponds to a rigid structure on the base spring and damper. If M, =0,

higher-mode frequencies can be found by substituting:

V1=69 _ (0 1y + A (470)
JKIM
This leads to
K. 1= 2n(n — ”"] 4.71a)
N —— 1 4 cosh———
Ba Kz{u—t)ar[ JI=Ts

7

— — D= Wy ’
JEM -8 h L] (_) wy. (471b)
Bon =t S gy | VN T [ \ee

Als
" aln — D (4.72)

2
A~ — -p) tanh =-
Cp ﬂerBl \/1—':‘:_5

To compare damping in various modes, recall Cp = 24 1@, M when M, = 0.

Thus
2 Ly(n — m 4.73)
 — -py tanh ————— :
2o M HM&JHN o
i 20 =D L (4.74)
i wen
The right-hand side is small, s0 the leading term of the Taylor series can be used
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to expand the left-hand side which must also be small:

= ) 2 & 2";hwb
& =& P | v 25 o 4.75)
Thus the effectiveness of the base damping in introducing damping to the higher
modes is inversely proportional to the frequency of the higher mode. However, if
Cy introduces high first-mode damping (e.g. ~ 20%), the second- and third-mode
damping from the base damper may still be as high as the internal damping from
the structure for those modes. Moreover, as shown later, base damping may have
a significant effect on the participation factors of the higher isolated modes, even
when it makes only a minor contribution to the overall damping of these modes.
Also, the case where there is damping in the structure as well as the isolator, for
which the algebra becomes very lengthy for the continuous case, is considered in
the following section for discrete-mass structural models.
Now consider the nature of the non-classical mode shapes, which from Equation
(4.10) are given by

Un(z) = U COS (y,.L (x - %)) . (4.76)

This is the same form of expression as for the classical modes, but y, L is now
complex rather than real. Uy, is the nth-mode displacement at the top of the shear
beam.

In general, from Equation (4.12)

e

where p, is the complex modal frequency as defined in Equation (4.7).
Letting (Cy + Cx(wL)*)/M = 2% w,, the expression for y,L can be
rewritten as

_ Cwu + Ck(yaL)?

- m P 4.77)

T @, ;
}",.L - '2'—_\/1 i 241(‘;1 = ;{;) +i2,/1— ;;,2(‘:» - t_a:) (4—78)
WFB|
Note that y,L is real when &, = £,. The condition for this was derived earlier. We
are dealing here with the case where £, = 0, i.e. no damping in the structure, but

damping in the isolator. This simplifies the algebra slightly, but the nature of the
modes is similar to the general case. With this simplification

T,
Vu L= EY l’JI a 2‘:"2 =k i2é'u‘,a L= ‘:nz
L Em
St o xp| =tan~! 282" Eun
2wy 2 - 22
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e itan"—;"
Towm Y J1=-22
T W

=X ( fi nz+-,,), 4.79
20-’1'-‘31( Ltk D

¥aL is complex, with real and imaginary parts denoted by Re and Im:

uy(z) = Uny cOs [Rc(y,,L) (] - E,) +Im(yL) (] . %)}

= s [cosRc(y,.L) (1 - «E) coshIm(y,L) (1 - Z)

_isinRe(yL) ( 1= %) sinhIm(y, L) (l = %)] (4.80a)

- U;\;,,\/cm2 Re(y.L) (1 = }:) + sinh? Im(y, L) (1 = %)
x exp[—itan™" (tanRe(L) (1 - Z) tanh Im(y, L) (1 - %))] (4.80b)

This compares with the classically damped mode shape

T wy z
n(2) = Uy c05 3 —=2- (1*1‘)‘ (4.81)

When Im(y, L) is small, the non-classical mode has a similar variation of displace-
ment modulus along the beam to that of the classical mode, except that it increases
slightly from top to bottom. The most noticeable changes are near zeroes of the
classical mode shape, with the modulus of the non-classical modes having no ze-

z
roes because of the extra sinh? Im(y, L) (l = E) term. Also, the phase 6, of the
mode-n displacements varies down the shear beam, with

tan6, = tanRe(y, L) (1 . %) tanh Im(y, L) (1 - %) : (4.82)

For the classical system, 6, is independent of height z, corresponding to
Im(y, L) = 0.

To illustrate the nature of the non-classical modes, Figure 4.4(a) shows the
first three mode shapes for the structural and isolator parameters Trg; = 0.6 s,
1, =2.0s, & =03 and Cy = Cy = 0, Hence the isolator is highly damped and
the structure is undamped. The solid and dotted lines are the real and imaginary
curves respectively and the dashed lines are envelopes for the real and imaginary
components of the modal displacements. The envelopes may be defined by their
base intercepts, (14 A)) and S, respectively, where 20 = o, = T8, /0pp) &
0.28 and where 4A) = A = lL_‘\u"‘: = 0.04 for this case. Note that a, = Im(y, L).

n
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Figure 4.4 Complex mode shapes for the uniform ‘shear-beam’ structure with a highly-
damped linear isolator. (a) The real and imaginary curves, i.e. the solid and
dotted lines, are the front and side elevations respectively of the end point
of the mode displacement vector ¢, at the time when ¢, is real. A plan
view for the mode-2 vector is also shown, below the elevations for mode 2.
(b) The moduli of the normalised displacements and shears for mode 2, with

and without damping. The dotted lines are for £, = 0 and the solid lines are
for &, = 0.3

The moduli of normalised displacements and shears for mode 2 are shown in
Figure 4.4(b). The solid curves are for the damped isolator, £, = 0.3, and the dotted
curves are for an undamped isolator, &, = 0. It is seen that non-classical behaviour
has a significant effect on the higher-mode base shear.

The solution of the equations of motion for the forced response, in terms of
modal responses, is discussed in a later section. The solution technique shares
much in common with that for discrete systems with non-classical damping, so the
two solutions are presented together after consideration of the modal properties of
discrete models of isolated nonsunifonm structures,
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4.2.3 Non-uniform linear structure on a linear isolator

The results so far in this chapter have been for a structure modelled as a con-
tinuous uniform linear ‘shear-beam’ on a linear isolator. Many structures have
non-uniform distributions of mass and stiffness with height. Except for special
variations of mass and stiffness, it is generally not possible to obtain closed-form
analytical expressions for the mode shapes and frequencies of non-uniform contin-
uous structures. However, if the structures are modelled as systems with discrete
masses and springs, i.e. their mass and stiffness distributions are represented in
matrix form, it is possible to obtain approximate but accurate expressions for the
mode shapes and frequencies of well isolated non-uniform structures in terms of
their free-free mode shapes and frequencies. It is also possible to derive expres-
sions in terms of their fixed-base frequencies and mode shapes, for which we give
references later.

The equation of motion for a structure modelled as a discrete linear system
with viscous damping may be written in terms of the mass, damping and stiffness
matrices [M], [C] and [K] as

M}ii + [Cla + [K]u = —[M]Li, (4.83)

where u is the vector of displacements of the N masses with respect to the ground.
For a well isolated structure, consider a perturbation about the classically damped
free-free case. The damping and stiffness matrices may be expressed as:

[C] = [Col + [“ X J (4.843)
b

[K] = [Kq] + \.0 K J (4.84b)
b

where the subscript 0 refers to the free-free case and 0 is the (N — 1) x (N — 1)
matrix of zeroes. Ky, and Cy, are the spring stiffness and damping coefficient of the
isolator, respectively.

The eigenvalue problem for the free vibration response of the isolated structure,
where u = u,e”’, is

Psleuu + pulClu, + [Klu, = 0. (4.85)

Consider expansion of the complex frequencies and mode shapes of the damped
structure on the linear isolator with viscous damping, in terms of perturbations
of the free-free undamped cases. The perturbations will be in terms of a power
expansion of the parameter &, where & is the ratio of the frequency wp, of the
structure, taken as a rigid mass My supported on the isolator spring of stiffness
Ky, 1o the first-mode frequency epp; of the unisolated structure. In this expansion
scheme, the isolator spring stiffness Ky, and isolator damper coefficient Cy, are both
taken as order £, This implies that the fraction of critical damping &, of the rigid
structure on the isolator is of order &, since C, = 2&uw, My, where My is the
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total mass of the structure and isolator. Normally the fraction of critical damping
of the isolator is greater than that of the various modes of the superstructure, so
we assume that the modal dampings &, of the free-free structural modes are of
order &. The same orders for the base damping and damping in the structure were
assumed by Tsai and Kelly (1988). The damping matrix of the free-free system
and its perturbation will then both be of order £2, the same order as the isolator
spring stiffness. An alternative assumption, that the damping in the structure is of
lower order, so that £, are of order £, makes little difference to the final results,
generally bringing in terms involving the modal damping of the free—free structure
at half the (even) orders in which they appear in the expressions we derive below.
As will be seen, the damping in the structure is generally of little significance for
the isolated system. The particular orders for the damping assumed above lead to
simpler algebra in the derivation of the perturbation expressions than the alternative
assumption.

There are two technical matters in the perturbation which deserve mention.
The first is that the fundamental free-free mode has zero frequency, so the lowest
order of the perturbed first-mode frequency is &, rather than order zero as for the
other modal frequencies. The second technical point arises from the first. Since
the fundamental free-free mode is a rigid-body mode with no internal deformation
in the superstructure and it has zero frequency, the fraction of critical viscous
damping is a meaningless concept for this mode. In the modal equations of motion
it is multiplied by the zero modal frequency, so there is no loss of generality in
taking the modal damping itself as zero. In Tsai and Kelly’s work discussed later,
where the perturbations were taken about the fixed-base modes for which the first-
mode damping is defined, the first-mode damping of the structure has little effect on
the isolated properties, so the difficulties of defining the damping for the rigid-body
first-mode of the free—free system are of little consequence. The formal expansions
for the perturbed complex frequencies and mode-shapes can be written as

Pn = Pno+ Pn1 + P2+ Paz+ Pra+ ... (4.86a)
Uy =Up0+ ) Cmtimo+ D Bumlhmo + I Yammo + 3 Numbimo + - .. (4.86b)
m m m m

The perturbations are in terms at powers of &, where

& = wy/wFR]- (4.86¢)

The mode shapes u,( are those of the undamped free-free modes. Ky, Cy, and [C]
are order &2, The first subscript for the frequency and mode shapes indicates the
mode number, and the second the order of the expansion. Mode-1 is that with the
lowest frequency. Some of the orders of the perturbations turn out to be zero, for
example the expansions for the mode-shapes other than the first involve only the
even orders. The results are given below:

P = i@y — Sy, IC: (T : M‘[:ﬂg Z i}ﬂ;: + f)[.‘"‘} (4.87)

“ - j#1 Hi0@ig
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where o} = Kyp/Mr, 25pen, = Cp/Mr. upjo is the base displacement in the free-free
mode j, and pjo is the modal mass of the jth free-free mode defined as

1jo = ujo[Mlujo

Ky + inCo)itn;
R Y Wik 0(cY) (4.88)
%1 Hjo@ijo
2 iK 2
I W . Pl n#1 (4.88b)
2in0  2pn0@no
Iy jo

u, = tno + (Kp + 1 @40C)Upno Z ujp+ 0" n#1. (4.88¢c)

2
iz Ko@) — wjp)

Note that the damped nth-mode natural frequency of the free-free system,
J1 = £2wn0, expands 10 a0 — Y28 2@no - - - As Lao has been assumed to be O (&%),

the second term in this expansion does not appear in the above results, which neglect
terms of O(&?).
It is convenient for interpretation to express the complex frequency as

Pn = —&atwn + ]V b= {,Ewn (4.89a)

where £, is the fraction of critical viscous damping and @, the undamped nat-
ural frequency in isolated mode n. Inverting this expression gives the following
relationships for @, and £, in terms of the complex frequency p,:

Wy = Ipn | (4.89b)

Ry e el Re(Pa) (4.89¢)

[Pal

Applying these definitions to the expressions for the complex first-mode frequency
given above:

W) = wy [1 — VpMrwy Y (# = )] + 0(e% (4.90a)
J#1 4

& =1t [1 + 1pMro Z( 0 )] +0@). (4.90b)
i#1 Ij0o

The corrections to the rigid-structure approximations wy, and &, for the first-mode
natural frequency and damping are both order ¢, indicating the high accuracy of
the rigid-structure approximation. Note that damping in the structure does not enter
into even the correction term for the first isolated mode damping.
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Similarly, the higher-mode natural frequencies and dampings are:

Moyl 1
Wy = Wy |:l = ',fzM (—a};) ] + 0" n#1 (4.91a)
Hno Wyo
My} 2
fn = Gu0 + Gy (&) +0GE"Y  n#l (491b)
Hn0 Wyp

Again, the correction term to the free-free frequency is order £, and becomes
smaller for higher modes since it involves the ratio of @y to the modal frequency,
rather than the first-mode unisolated frequency.

With typical values of ¢ = wy/wrg1 < 1/3 and /@, < 1/(6(n — 1)) for
practical isolation systems, these expressions show that the approximations

W) X wy 51 =& (4.92a)
Wy = Wyo Ly = ‘:!IU n>1 (492b)

are in error by a few % at most. Thus, varying the isolator parameters has significant
effect on the frequency and damping for the first mode only. The isolation governs
the nature of the high modes, in that they are of the free-free type, but the actual
frequencies and dampings of the modes higher than the first are determined by the
properties of the structure rather than by those of the isolation system.

The nature of the isolated mode shapes is also worthy of investigation. The
first isolated mode is real below order £°, which is the lowest order at which
damping affects the mode shape, so remains essentially classical, with nearly the
same phase throughout the structure and isolation system. The higher-mode shapes
become complex and hence non-classical at the lowest perturbation to the free-free
mode shapes, which is of order £2.

This different character of the first mode and higher modes with non-classical
damping is apparent in the example given earlier for an isolated continuous uniform
shear-beam. Figure 4.4 showed that the imaginary component of the mode shape,
and the change in the real part of the mode shape from the undamped mode shape,
are insignificant for the first mode, and the general character of the first-mode shear
distribution is similar for the two cases. The imaginary part of the mode shapes
has a greater influence for the higher modes, most importantly in its effect on the
base shear.

4.2.4 Base stiffness and damping for required isolated period and
damping

A common design problem with base-isolated structures is how to determine the
base isolator stiffness and damping required to achieve a target fundamental period
and damping for the isolated structure. For a structure which can be modelled as
a discrete linear chain system, this problem can be solved exactly and directly by
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using the Holzer technique (Clough and Penzien, 1975), an iterative method for
determining natural frequencies and mode shapes.

We demonstrate the approach first for a system with classical damping. For
such a system, the eigenvalue problem is to find frequencies w; and mode-shapes
¢; which satisfy

(Kl = oM. (4.93)

[K] is the tridiagonal stiffness matrix and [M] the diagonal mass matrix for a linear
chain system. The Holzer method starts with an arbitrary mode shape value ¢y;
(often taken as 1) at mass number N at the top of the structure and an assumed
value a): ! for the first iteration for the ith-mode natural frequency. For our problem,
the frequency is the required first-mode frequency w;.

In the following, where we are dealing with the first mode, the subscript indi-
cating the mode number is dropped in the mode-shape values, with the remaining
mode-shape subscript denoting the position in the structure. M, denotes the nth
mass in the system, from n = | at the base to n = N at the top, and K, denotes
the stiffness of spring n numbered in the same way.

Consider the equation for the top mass

Kn(oy — dn-1) = o1 Mydy. (4.94)

The only unknown is ¢y_;, as ¢y has been assigned an arbitrary value (the eigen-
value problem is non-unique to the extent of a scaling factor in the mode shapes,
so one of the elements of each mode-shape vector can be taken as arbitrary and
the other elements defined in terms of it) and the required first-mode frequency is
known. The unknown mode-shape value is thus given as

Wt Mydn

Ky (4.95)

dn-1 = PN —

Stepping down the structure one mass at a time, we come to the equation for
general mass n. This can be written directly from the eigenvalue problem as

{Kn + Kn+l)¢n = Kn-l—i¢n+l 2= Kﬂ¢n—l — menQSw (496)

Alternatively, by summing the equations for masses n to the top mass N, the shear
at the level below mass 1 can be written in terms of the sum of the inertia forces
on the masses above it:

N
2
Ky by Py-1) = Zwi Mj¢j- (4.97)
J=n
At this stage, the mode shapes for levels 7 to N have been determined from the
equations for the higher masses, 5o ¢, 1 1s the only unknown, Solving the equation
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for mass n gives

Ky szn n
buot = b + E G — ) - T (498)
or, in the alternative formulation, the equivalent expression
R &
Gn1 = u — ra ;Mj¢’j- (4.99)

This process continues down to the base mass, » = 1, where we have the equation

(K1 + K2)¢1 — K29 — K1 = oI M4, (4.100)

or, in the alternative formulation,
N
Ki($ — o) = ) _ i M;;. (4.101)
=l

For the standard Holzer process for finding natural frequencies and mode shapes,
K, K3, My, ¢, and ¢, are known. ¢ must be zero from the boundary condition
at the base, but unless the process has converged will generally be non-zero, and
further iterations are required to find the natural frequency and mode shape.

For our case of finding the required base stiffness of the isolator, the equation for
the lowest mass is used in a different way. The stiffness K; = K}, is the unknown,
with ¢ set equal to zero, satisfying the boundary condition, and all other values are
known at this stage of the process. Rewriting the equations gives the alternative,
but equivalent, expressions for the base stiffness Kj:

m:ﬁm+&(%—0 (4.102)

or

1 N
m=a§ﬁm@ (4.103)
Je=1

The fundamental mode shape has been found in the course of the process. With the
base stiffness now known, the process can now be repeated in the usual iterative
manner (o find the frequencies and mode shapes of higher modes, if required.

For the damped case, with a required first-mode natural frequency w; and damp-
ing &, we start with

Pro= 8wy i\/] —ch:m. (4.104)
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and
pr =@} - ! — 2211 — 2ed. (4.105)

Stepping through the masses in similar fashion to before, we obtain the top mass
equation

(Kn + piCy) @y — dn—1) + piMydy =0 (4.106)

which gives the mode-shape value

PiMydy

. (4.107)
Ky + piCy

v =N +

In general, ¢y_; and other mode-shape values will be complex, unless we happen
to have a classically damped situation.
Arriving at the base mass we have the alternative forms of equation

PIMi¢y + (Kb + piCo)dr + (K2 + p1Ca)(dy — $2) =0 (4.108)
or

plz Z: M;¢; + p\Copy + Kppy = 0. (4.109)

=1

Consideration of real and imaginary parts of these equations will give the required
Ky, and Cyp. As before, the fundamental mode shape has been produced in the course
of the process. Again, higher-mode frequencies, dampings and mode shapes can be
found in an iterative fashion once the base stiffness and damping have been found,
although the process is complicated by the generally complex-valued non-classical
mode shapes.

4.2.5 Solution of equations of motion for forced response of isolated
structures with non-classical damped modes

Now that we have determined the modal frequencies and mode shapes of the
isolated system represented by either a continuous or discrete model, we move
on to presenting the solution of the forced vibration problem in terms of modal
responses.

For forced response, Foss’s method can be used to solve the equations of motion
for non-classically damped base-isolated structures in terms of modal responses for
both the continuous shear-beam model and the discrete model. We consider first
the discrete model, for which Foss's method has been presented for general non-
classically damped structures by Hurty and Rubinstein (1964), Igusa et al. (1984)
and Veletsos and Ventura (1986), and for base-isolated structures by Tsai and Kelly
(1988). We then extend the results to the continuous shear-beam, for which they
are analogous 1o the discrete case,
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The equation of motion for the discrete case is
[M]i + [Cla + [K]u = —[M]1ii, (4.110)

Here [M], [C] and [K] are N x N matrices, where the system has N masses. Define

i
"z(u)' (4.111)

Then the equation of motion may be written as
[((M] [C]]v + [[0] [K]] ¥ = —[M]Liiy. (4.112)

By complementing the equations of motion with an identity expression, we obtain

[0] [M]]. —[M] [0] 5 0 =t
[[M] [CJ]”[ (0] [K]]v__(IMJI)ug' @.113)
Define the 2N x 2N matrices [A] and [B]:
T ™M e [-IM] (0]
=i ey imi=[ 00 B o e

Then the free vibration case with solutions of the form v,e”‘ leads to the eigenvalue
problem

PalAlv, + [Bly, = 0. (4.115)

[A] and [B] are symmetric real matrices but are not positive definite, so the eigen-
values p, and eigenvector v, occur in complex conjugate pairs.

Also, the following orthogonality conditions apply, for p, # p, (Hurty and
Rubinstein, 1964; Tsai and Kelly, 1988)

v Aly, =0
v [Blv, = 0. (4.116)
For the forced vibration, express the solution as the sum of modal responses
N
vi= Y GtV (4.117)
m=1

Then, substituting in the equation of motion and premultiplying by v, and making
use of the orthogonality relation given above, the equations of motion can be
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reduced to 2N uncoupled modal equations:

—h D
; "\ ML) | @.118)
En(1) — pnbn(t) = W“g .
Now
= (Pﬂ”") (4.119)
uﬂ
so the above expands to:
& —ug[M]l p
En (f) = pngu (I) = QPn u;,r[M]u,, e u;}'[C]uﬂ 2
= —N,it, (4.120)

Assuming zero initial conditions, the general solution can be written in terms of
the Duhamel integral:

Eﬂ(r) = _an eP‘r(!_T)ug(T)dr (4.121)
0

Associated with mode n will be mode n*, for which u,-, p,- and &,.(t) are the
complex conjugates of u,, p, and &,(¢).
The solution vector u(t) is given as

2N
u(t) =y &()u,

n=1

N
= Z(gu ()uy + Ee (Dttye)

n=1

N
=2 " Re(f(Nu) (4.122)

n=1
where the summation is now over one ol each complex conjugate pair.

The Duhamel integral can be expanded by writing the complex frequency in
ferms ol its real and imaginary parts:

P = =Gun + 1y 1 = £y (4.123)



WWW.BEHSAZPOLRAZAN.COM

184 STRUCTURES WITH SEISMIC ISOLATION
Then

! !

[c'””” Yty (r)dz :/e_‘?"‘”"(’_” Iicos‘fl —&2wn(t — )
0 0
+isin,/1 — fwn(t — r)] itg(t)dt (4.124)

Here the term /1 — &2w, (t — 1) is to be read as a single argument. This gives:

Re[&, (f)u,] = —Re

!
T
: u, [MI1 ) fe_;,,ah,(;—n
2paut [Mlu, + H,T[C.Iun

1]

X I:cole — 82w, (t — ) +isin /1 — 2w, (t — r}] ﬁg(t)dr)

T [
T Re ( un {le u fc'_‘tnmn(f—f}
2p,uMlu, + ul[Clu, "
0

X I:cos,zl — Llw, (t — r)] lig(t)dr

«T[M]1 :
52| n =Lney (1—T)
= (2pnu:f[M]u,, +uT[Clu, “") f &
0

X |:sin1;‘ 1 —&2w,(t — r)] iig(T)dr. (4.125)

To interpret this expression, consider the relative displacement response Z,(t) of a
single-degree-of-freedom oscillator of undamped natural frequency w, and damping
¢n to a ground acceleration iiy (1), governed by the equation

Zn + 2;.‘:(-0:1 Zw: + wi Zn = ‘ﬁg(!). (4 126)
The solution of this equation for zero initial conditions is

!

Ly Ly =T l * .
Zp(t) = —[e Loy (1t )\/I__—_mmn |:,,f1 —&lw, (t — r)] ig(r)dr. (4.127)

0

4.2 LINEAR STRUCTURES WITH LINEAR [SOLATION 155

Also, its relative velocity response Z,(t) is given by

£ ( = = “gn .
Zn(t) =— f g Gnenlt=T) |:—— sin /1 — Z2w,(t — 7)
v1=6;

0
+cos /1 — 2w, (t — r)] lig(T)dt (4.128)
and
!
Zn(t) + Enwn Za(t) = — f e 5nn(=7) o [,!1 — 2w, (1 — r)] iig(r)dr. (4.129)
0
Thus

N
u(t) = Z 2 Re(“;:ﬂ (f).u")

n=1
X u [M]1 .
=y n Z (1
= 2 (2 Re (anu;r[ ]u” T HI[C]HH un) (ZH (I) = Cﬂwn {F))

u!'[M]1 ; )
" i A i 4.130
e (2Pn ul[Mlu, + u![Clu, “") v SawnZy (1) ( )

Alternatively, from Equation (4.125) the modal response for the jth component
can be written as

ulM]1 ”
2Pnﬂ;,r[M]un 2= UE[C]H,, 5

ZRe(E:!(I)Hjn) = _|12 Lo Cr?wﬂl }

!

1 ) 2
o fc—q,,m,. rr—ﬂm sin ( £ 2w, (t — 1) — %,,) iig(r)dr | (4.131a)

0

where

Re [ ol uj ]
i 9 T Tr in
W, = tan e LRl (M, + u, [Clu, ; (4.131b)

u;f‘l Ml ]
n = Ujy
2pau My, + ) [Cla,

Although as written, the phase angle W, appears in the convolution integral, it
is the phase angle of Ny, where g, is the jth component ol the vector .

The term 2\/I r‘;,j'm,, Noytd e which equals 2 I p )| Nyt l, can be interpreted as
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giving the modulus of the jth component of the nth participation factor vector
[I"js| with an associated phase W,

Tjn = i2y/1 — £20, Nyt
= |Tjnle™m (4.132)

where W;, is as above.

For a classically damped system, this simplifies to the standard expression. For
classical damping, u, is real, and

zpﬂu:[M]uu + uJ[C]u,, == 2(_§nwn + i‘f’ 1 — ;,?‘fﬂn )H." + 2%’,;(0_;“!1.”

= i2,/1 — L2w, 1t (4.133)

tn = [M]u,,. (4.134)

where

For the classically damped case, the jth component of the nth participation factor
vector, I';,, is real-valued, given by

M
T, =i2,/1 —C,?wn‘—ﬁi—u;—n
2,/1 - ;,;anﬂ'n
T
{Mll
4.1
u] u M, s

For the general case, the vector of the moduli of the components of the nth-mode
participation factor are

ul[M]1
u n
2p,ufMlu, + uT[Clu, ’

|an| = ZIm(pn) (4136)

\
For well isolated structures, this expression can be evaluated from the frequen-
cies and mode shapes derived from the perturbation analysis. For the first-mode,

ul M1 = u]o[MI1 + O(s%) (4.137)

since for u G[M]l =0 for j # 1 the free—free case. The normalisation used in the
penurbanon analysis gives

u| [Mlu; = ul o[MJu, o
=0
= Myuj, 4. (4.138)
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Also

ul[Clu; = ul[Colu; + u/[O¢, Ju;

=0+ Coug, o+ O(c*). (4.139)
This leads to =
Im=1- Y =20, 1 0. (4.140)
e
For the higher modes, n # 1,
u) [M]1 = (Ky + lwnocb)ﬂbnou MTubl o+ O(e?)
1,000 n{]
2
= ( i ) + 1225 ) Mo + OGEY). (4.141)
Wy @Wno
Again from the mode shape normalisation,
u,,T[M]Hn = [no- (4.142)
Also
u, ([Col + [Oc, Dy = u, ([Coluty + Coity,
= n028n00n0 + 256wsMrud,g + O (%)
= _2“'.*:0 RB(P::) (4143)
2puu, MJu, + u, [Cluty = 2800 Im(py). (4.144)
Thus:

|2, |

2
28w, \ My
]rul':‘((_wb) + i gb b) 1“hn0
Wno Wno) Mn0

My, @y (U)h
Hn @no Wy

2
) + 482 U0l + O(e?). (4.145)

The ratio of moduli of the participation factor components, with and without damp-
ing, are

2
i |r.u (:h)| sy Ch (w”()) . (4 ]46)
| .'r(z:h - “)I Uy

This gives a ratio of 2&,(w,o/ay) for high modes,
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Damping has no effect on the participation factor of the first mode for orders
less than £°, in agreement with our earlier interpretation that this mode is essen-
tially real. For the higher modes, the isolator damping enters into the leading term
for the participation factor, which is of order £2. As the nth free-free frequency
may be considerably greater than the isolator frequency, the participation factors
of the higher modes with isolator damping can be considerably greater than their
participation factors in the absence of isolator damping. However, even with iso-
lator damping, the participation factor is of the order £2, so is small in absolute
terms, much smaller than the isolated fundamental-mode participation factor or the
unisolated nth-mode participation factor.

When very small floor spectra are important for design, the small higher-mode
participation factors may be further reduced by using an attenuation spring, stiffness
K., in series with the isolator damper, as shown in Figure 2.2(c). This spring will
also cause some reduction in the isolator damping, but this reduction can be kept
small, while achieving effective higher-mode attenuation, by using an appropriate
value for K..

The consequences of adding the stiffness K. in series with the isolator damper
of coefficient Cy, can be obtained by considering the mechanical impedance of the
isolator components. Since the participation factor ratio of (4.146) is the modulus of

the ratio of the isolator impedances with and without damping, it may be expressed
as follows:

Fun(Ky, Cy) ‘14_.2{ W,
———i. == 1 o)
Tan(Ky) b = (4.147a)
= |1 + i, Eﬁ 4.14
= oa (4.147b)
since
2%y = o Cy/ K.

When K. is connected in series with Cy, their impedances can be used to express
the result as a complex damping coefficient:

Cb chiﬂ-’n
Co + K. /iwn

Ly wpCy =
b( +1wb X. ) - (4.148)

Cb{Kc) i

Substituting Cp,(K,) in (4.147b), and again noting that 2&, = w,Cy,/ Ky,
—1
Liinn2a (1 +iﬂ“’*’c") .
wy, oy, K

Compz.:ring‘_: (4.149) with (4.147a) shows that the last factor in (4.149) gives the
reduction in the higher-mode participation factor due to the attenuating spring K.

ITNn(Ky, Cp, Ko)|
[T na (Kp)|

(4.149)
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The reduction in the mode-1 damping due to K. is found by noting that the
damping of mode 1 is given by half the imaginary part of the impedance ratio,
with @, = wy. Applied to (4.149) this gives:

=1
&(Ko) =& Re (1 +i“’;f")

C

= emitb (4.150)

oGy
1
(%)
The reduction in the mode-1 damping can be limited to 20% by choosing a mini-
mum K, given by K. = 2w,C,, which gives §,(K.) = 0.8%, from (4.150).
Since mode 2 has the largest higher-mode participation factor, and since K.
is least effective for reducing the participation factor for mode 2, the reduction in

participation factor is checked for mode 2. The reduction is increased for increasing
wy Jay,. Taking @, /wy, = 6.0, this gives:

[T'nu (Kb, Cp)l

=|1+41l2 4.151
TR ) @l

and
[T nn(Kp, Cp, Ko)l

ern(Kb)l

For &, = 0.2 or 0.3 this gives a reduction of about 33% or 50% respectively, due
o K..

= |1 + 3.6 +i1.28|. (4.152)

4.2.6 Studies using perturbations about fixed-base modes

Tsai and Kelly (1989) analysed the response of a structure on a linear isolation
system, modelled as a base mass and linear base spring and damper, in terms
of perturbations about the frequencies and mode-shapes of the fixed-base system.
They assumed that the isolated system had classical damping, which in general is
not the case even when the superstructure has classical damping. Tsai and Kelly
give closed-form expressions for the first-mode isolated periods and mode-shapes.
Their general expression for the higher-mode frequencies is iterative, although
a closed-form approximation is given for the case where the fixed-base modes
are well separated in frequency. Their perturbation approach starts with the mode
shapes and frequencies of the N-mass system. A base mass, spring and damper are
introduced, giving N 4 1 modes in all. The unperturbed shape of the extra mode is
that of a rigid-body superstructure on the base spring, essentially the same as the
first-mode approximation used in our analysis for the undamped case.

Tsai and Kelly (1988) account for the generally non-classical nature of the iso-
lated modes. However, to simplify the perturbation expressions and their derivation,
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they consider only the first superstructure mode, giving two modes for the uniso-
lated system. They again represent the structural response in terms of its fixed-base
mode-shape. This paper goes on to compare the response of a five-mass isolated
structure with the El Centro and Parkfield accelerograms as calculated using the
complex non-classical mode approach, and the classical mode approximation. For
practical purposes, there is negligible difference in the results of the exact com-
plex mode response and the classical mode approximation. However. they illustrate
that the classical mode approximation is not always appropriate by considering the
response of equipment in the isolated structure. The non-classical nature of the
‘equipment mode’ is important, as we discuss in Section 4.4,

4.3 BILINEAR ISOLATION OF LINEAR STRUCTURES
4.3.1 Introduction

The discussion so far has dealt with linear isolation systems. However, as discussed
in Section 3.1 and Chapter 6, linear systems comprise only a small proportion of
the isolation systems used in practice. Linear systems include laminated-rubber
bearings, flexible piles with viscous dampers, etc.

The analysis of non-linear isolation systems is made easier by the fact that almost
all of them can be approximated as bilinear systems, namely they can be represented
by parallellogram-shaped force-displacement hysteresis loops. For instance, the
isolation and damping devices developed at the DSIR can be regarded as bilinear.
These include lead-rubber bearings, steel energy dissipators and lead-extrusion
dampers. Various systems utilising friction elements, which were compared by Su
el al. (1989). can also be represented by this type of model, including pure-friction
devices such as the sand-layer system used in China (Li, 1984), the resilient-
friction base isolator (Mostaghel and Khodaverdian, 1987), the Alexisismon system
(Ikonomou, 1984), and the Electricité de France (EDF) system (Gueraud er al.
1985). The sliding-resilient friction system (Su er al. 1989) can be represented by
a trilinear loop, but except in extreme motions it is a bilinear device.

Our study of bilinear hysteretic isolation systems begins with a simple one-mass
model, with the structure represented as a rigid mass mounted on a combination
of springs and a Coulomb damper, to give the required isolator characteristics.
Although inadequate for the study of higher-mode effects, this simple model gives
a good approximation to the base-shear and displacement responses for an isolated
multi-degree-of-freedom structure, and provides a close approximation to the first-
mode response of the isolated system.

The base shear and displacement are calculated using time-history analysis for
a scaled El Centro accelerogram, for a range of isolator and structural parameters.
This provides a basis for the initial design of bilinear isolation systems, as well
as providing a standard against which to compare the accuracy of the ‘equiva-
lent linearisation” procedure in which the bilinear isolation system is described by
‘effective’ values of period and damping and then treated as a linear system.
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Higher modes of vibration make insignificant contributions to seismic displace-
ments of the isolated structure, but may make substantial contributions to the
seismic loads, and dominant contributions to floor spectra for periods less than
1.0 s. A large measure of control of higher-mode contributions can be achieved
by an appropriate choice of isolator bilinear parameters, in relation to structural
parameters.

The contributions of individual vibrational modes to seismic responses may be
calculated accurately using mode-sweeping techniques. Mode sweeping i§ used to
build up a database for the modal responses of a wide range of representative com-
binations of linear structures with bilinear isolators. These data on modal responses
are presented in terms of the isolator and structural parameters, and also in terms
ol simple derived parameters. . .

The main isolation and structural parameters are the elastic and post-yield
periods Ty and Ty of the isolator, its yield ratio Qy/W, and the unisolated
fundamental-mode period 7,(U) of the structure. The unisolated period T;(U) cor-
responds to that of a system for which the isolator is rigid, i.e. Ky and Ky, are
infinite. The main derived parameters are the effective period (Tg) of the isolator
and either its damping (£g) or its non-linearity factor NL. These parameters have
all been defined in Chapter 2, in Figure 2.3 and the associated text. The isolation
factor I defined above, for linear systems, is extended to the bilinear case, so that
the ratios Ty, /T1(U) and T,/ T1(U) respectively give the isolation factors, /(Kp)
and 7 (Ky), for the elastic and yielding phases of isolator response. ;

The presentation in terms of the derived parameters gives a clear picture of
the important consequences of bilinear isolation in terms of the trade-off bet\a?recn
reductions in base shear and increases in isolator displacements. The simplified
presentation also assists during the important preliminary design stage for.s_tmc-
tures with non-linear isolation, as outlined in Chapter 5. This discussion of bilinear
isolation systems, and in particular the analysis of factors controlling higher-mode
effects, also forms a basis for the subsequent analysis of the seismic responses of
appendages.

4.3.2 Maximum bilinear responses

The ‘spectral response’ approach has been seen in Chapter 2 to be very useful
for linear isolation systems. The maximum seismic responses, for a single mass
mounted on a linear isolation system and excited by a given design earthquake, are
calculated by time-history analysis, a standard technique in engineering seismol('{gy
deseribed. for instance, by Newmark and Rosenblueth (1971), Clough and Penzien
(1975) and Dowrick (1987). The maximum responses are then tabulated or plotted
as functions of the fundamental period 7" and the fraction of critical viscous damp-
ing ¢, as shown in Figure 2.1. A designer wishing to use a given linear isolalion
system can use these spectra to arrive at suitable values of 7" and £ which wi]I‘ give
an appropriate ‘trade-ofl* between reduced seismic shear and acceptable seismic
displacement.
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It is therefore of interest to produce plots of maximum responses of a single rigid
mass mounted on a binear isolator and excited by a given design earthquake, as a
function of the parameters of the bilinear system. Although unable to indicate any
higher-mode effects, this model should give good approximations to the first-mode
responses, namely the base shear and overall displacement, of a linear structure
well isolated on a binear isolator.

To be useful for design purposes, the maximum bilinear response thus obtained
should present the maximum seismic displacements X, and accelerations Xy, or
equivalent base-shear-to-weight ratio S,/ W, for various values of the bilinear iso-
lator parameters Ty, Ty and Qy/W or for an equivalent set such as Ky, Ky,
Qy and W. Here Qy is the yield force of the isolator and W is the weight of the
single mass, representing the overall weight of the structure and isolation system.
The periods Ty, and Ty, relate to the elastic and post-yield stiffnesses Ky,; and Ky
respectively. These isolator parameters, together with the velocity-damping param-
eter &y which is usually of secondary importance compared with the hysteretic
damping, have been defined in Chapter 2.

Since a change in earthquake amplitude or period does not simply change the
amplitude or period scale of the bilinear responses, as would occur with linear
spectra, it is necessary to develop scaling procedures, as discussed in more detail
in Section 5.1.3.

Maximum displacement and acceleration bilinear responses are given
in Figure 4.5 for the amplitude- and period-scaled accelerations iiy(f) =
Pyiigrc(t/ Py), where iigic(t) are the accelerations for the earthquake, El Centro
NS 1940. Note that &y = 5% for this figure.

The smoothed maximum response plots of Figure 4.5 are based on values cal-
culated for a single mass mounted on a bilinear isolator, for 72 combinations of
isolator parameters, namely the twelve period combinations shown and six yield
ratios O,/ W, namely 1,2,3,5,7 and 10%. For the limit case of a zero yield ratio,
the system becomes linear and the maximum acceleration and displacement values
are given simply by linear response spectrum values, Sx(Ty2, &v2) and Sp(Tha, &b2),
where & = 5%.

The maximum bilinear response plots of Figure 4.5 play the same role in the
seismic responses of a single-degree-of-freedom bilinear isolator, as that of the
linear spectra of Figure 2.1 for a single-degree-of-freedom linear isolator. The
single-degree-of-freedom linear displacement spectra and bilinear maximum dis-
placements produce good approximations to the maximum displacements of multi-
degree-of-freedom isolated systems, since the first mode dominates the displace-
ment response of isolated structures. The maximum acceleration value multiplied
by the total mass is a good approximation to the base shear, which is also dominated
by the first-mode response. Higher modes make significant contributions to the ac-
celeration responses away from the base, particularly for highly non-linear isolators.

There are several important features of the single-degree-of-freedom displace-
ment and acceleration diagrams of Figure 4.5.
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Figure 4.5 Maximum seismic responses of a single mass mounted on a bilinear isolator

(1)

(i)

(1)

(1v)

are shown as functions of the isolator parameters Ty, Ty2 and Q,/W. Thc
responses are shown for El Centro NS 1940 with amplitude- and period-
scaling factors P, and P, respectively, as defined in the l_ext. (a) Maximum
displacements Xy, for values of T, = 1.5 x P, s and various values of _T.,,.
(b) Maximum displacements X, for values of Ty = 3.0 x P, s and various
values of Ty,;. (¢) Maximum displacements X, for values of Tz = 6.0 % Py s
and various values of Ty,. (d) Maximum accelerations (i.e. base-shear-to-
weight ratios) for three values of Ty and various values of Ty;.

For a given Ty, Ty and earthquake scaling factor P, and P,, there is an
optimal value of Q,/W for minimum base shear. Base shear is cc:ntrollcd
primarily by the fundamental-mode response (Section 4.3.5), so this result
holds for multi-degree-of-freedom systems also.

For a given Ty, the base shear and displacement decrease as Ty, decreases.
For multi-degree-of-freedom systems, higher-mode accelerations generally
increase as Ty, decreases (Section 4.3.6), so care should be taken in reducing
Ty 1o achieve reduced base shear and displacement. Results by Andriono and
Carr (1991a, b) for multi-degree-of-freedom systems indicate that base shear
and higher-mode accelerations increase as Ty, decreases, although the results
for the systems we analysed did not show this. -

For a given Q,/W. the base shear reduces as Ty increases. However, this
is generally at the expense of increased base displacement. ‘

The optimal yield level, (Qy /W)y, for minimum base shear scales directly
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Figure 4.5 (continued)

with the amplitude scaling of the earthquake. Thus if Oy = 0.05W is optimal
for El Centro, Qy = 0.10W will be optimal for 2 times El Centro motions
if all other parameters are held fixed.

(v) Increasing the yield force parameter O, beyond the optimal value for min-
imising base shear in a given earthquake motion generally produces a mod-
erate increase in the base shear and an increase in higher-mode responses,
but a reduction in the base displacement. Decreasing Q, below the opti-
mal value generally causes a rather rapid increase in base shear as well as
increasing the displacement. Taking the yield level larger than the optimal
value for the design earthquake scaling provides protection against a more
extreme event. Taking Qy less than the optimal value could place the system
in the rapidly increasing branch of the base shear curve obtained for small
(Qy/W) when the earthquake scaling factor P, is greater than the scaling
for the design-level earthquake.

It should be noted that the curves presented in Figure 4.5 represent smoothed trends
only and are limited by the 72 choices of isolator and structural parameters.

4.3 BILINEAR ISOLATION OF LINEAR STRUCTURES 165

4.3.3 Equivalent linearisation of bilinear hysteretic isolation systems

Linearised bilinear spectra

The discussion above has presented plots of maximum displacement and accelera-
tion for one-degree-of-freedom bilinear systems for a considerable range of isolator
parameters with scalings of the 1940 El Centro NS accelerogram as excitation.
Similar calculations can be performed for other sets of parameters and earthquake
ground motions, but the procedure of time-history analysis can be lengthy and time-
consuming. A simpler method of estimating the displacements and base shears is
described in the section which follows, and the accuracy of the two methods is
compared in terms of a ‘correction factor’ Ck.

One method of obtaining estimates of the system response is by defining a linear
elastic system which is equivalent to the bilinear hysteretic system, and then using
tabulated linear response spectra to estimate the resulting maximum responses.

There are a number of approaches to defining a linear system which is approxi-
mately equivalent to a given non-linear system. A simple linear system which gives
good agreement with the values obtained by time-history analysis, for El Centro
excitations, for a wide range of commonly used bilinear parameters, is the ‘equiv-
alent linearisation” approach. This is based on a closed bilinear force-displacement
loop with maximum seismic displacement X, and corresponding shear force S, as
shown in Figure 2.3 and the associated text. The ‘effective’ or ‘equivalent’ period
T is defined by the system mass M and the secant stiffness Kg = Sp/Xp. The
‘effective” or ‘equivalent’ viscous damping Zg is obtained by adding the actual
viscous damping to &, the damping associated with the hysteresis loop. A non-
linearity factor NL is defined in terms of the hysteresis loop and is proportional
to &,. As well as being one of the parameters determining the base shear and dis-
placement, the non-linearity factor is an important parameter governing the ratio
of higher-mode to first-mode response, as is shown in Section 4.3.5.

Values of Tg, NL and & for the scaled El Centro earthquake, as functions of
yield level @,/ W for various combinations of Ty, and Ty, are shown in Figures 4.6
and 4.7. For long post-yield periods Ty, the effective bilinear period Tg, as defined
from the secant stiffness, drops rapidly from Ty, as Q,/W increases from zero.
The equivalent viscous damping factor &,, corresponding to the hysteretic energy
dissipation, increases rapidly from zero as Q,/W increases. For a given yield
level, the damping increases rapidly as a function of 7y, and also increases rapidly
as Ty is decreased. A small Ty, and a large 7}, correspond to a hysteresis loop
approaching a rigid-plastic loop, which has the greatest &, for a given (Xp, Sp)
combination. The theoretical maximum of &, as defined, is 2/m, i.e. 63%, for a
rigid-plastic, i.e. rectangular loop.

Once these ‘effective’ values of period and damping have been obtained, the
seismic responses can be obtained by treating this like any other linear system. The
displacement S (7, &) can be obtained from tabulated values of linear spectra.
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Figure 4.6 Effective period Ty of a bilinear isolator with the parameters Ty, Tip and
Oy /W, for El Centro NS 1940 with amplitude- and period-scaling factors
P, and P, respectively. Note that Ty is related to Ky, the ‘effective’ (secant)

stiffness of the isolator, by Ty = 2w /(M /Kjg), where M is the total isolated
mass.

The maximum bilinear displacements Xy, of Figure 4.5 can now be compared
with the equivalent linear spectral displacements Sp(7g, &) obtained from the ref-
erence tables for linear isolators with ‘equivalent’ values Ty and &g. It is convenient
to relate them by a simplified correction factor Cy, to give, without scaling (i.e.
Py =P, p= 1) -

Xio(Tor, Tiay @/ W, &12) & CeSp(Th, Zp). (4.153)
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1or

Iigure 4.7 Variation, with bilinear isolator parameters Ty, Ty and Q,/W, of the non-
linearity factor NL and the hysteretic damping factor & = (2/m) NL, for
El Centro NS 1940 with amplitude- and period-scaling factors P, and P,
respectively

The Cr values obtained can then be plotted as a function of the isolator pa-
rameters to indicate the accuracy of the equivalent linearisation approach. Such
plots are important because they indicate the errors involved in using the simpler
‘equivalent linearisation” approach rather than the full time-history analysis. As
a result the correction factor has been studied for a range of multi-mass systems
as well as for the single-mass bilinear isolator. Figure 4.8 shows smoothed plots
of the correction factor, based on isolator seismic responses with a stiff five-mass
structure (with 7j(U) = 0.25 s). The comparison X,/Sp was also made for a rigid
structure and for five-mass structures with 7, (U) = 0.25, 0.5 and 0.75 s.

Changes in Cy: due to changes in structural period were also examined. For a few
cases the changes were considerable and the greatest changes found are indicated
by the dotted vertical arrows in Figure 4.8, Results suggested that the noise-like
character of the El Centro accelerogram conferred considerable irregularity on the
'y values upon which Figure 4.8 was based,
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Figure 4.8 Variation of the correction factor Cg = X,/Sp with the bilinear isolator
parameters Ty, Ti; and Q,/ W, for El Centro NS 1940 with amplitude- and
period-scaling factors P, and P, respectively. The two solid lines are for
Ty, =30P,and T, = 1.5 P,, while the dashed line is for Ty, = 6.0P,. These
curves were based on a stiff, rather than a rigid, structure (7, (U) = 0.25 s)

It is seen that Cg is approximately unity, within about 10%, for a wide range of
bilinear isolator parameters, but excluding those linked by the dashed line where
Ty, = 6x Py s. This shows that the equivalent linearisation approach, with effective
values of period and damping, is a useful approximation.

Chapter 5 describes how this approach can be used in the preliminary stages
of the design of isolated systems. The procedure is to calculate Sp(Tg, &) to
obtain an estimate of the maximum seismic displacement X,,. The acceleration can
then be derived on the assumption that isolator velocity damping Zy, makes little
contribution to the peak isolator force Sy, at least for &y, up to 0.15 or so. Hence

Sb = KBXIJ- (4]54&}
This is the force which accelerates the system mass M and hence

Xy = Sy/M. (4.154b)
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Substituting Equations (4.154) in (4.153) gives
Xy ~ 27/ Ts)*CrSp(Ts, &) (4.155)

since
Kg/M = (2n/Tp).

The expressions which arise for the approximations to Xy and Xy, are circular
because they involve Ty and Zg which are themselves dependent on the X}, and X,
values. This may be dealt with in design situations by selecting target values for Ty
and g and then selecting the required isolator parameter values and performing a
series of iterations. Selection of an appropriate target period and damping depend
on trial and error and on experience with bilinear spectra and isolator design.
Discussions and examples are given in Chapter 5.

When &g, which is dominated by hysteretic damping, is large, then the approx-
imately correct values for X, given by Equation (4.155) are substantially lower
than the corresponding Sa(Tg, £g) values. This is because velocity-damping forces
combine to increase the maximum elastic force, while the bilinear loop area does
not increase the maximum bilinear force, Sp.

Approximate bilinear spectra based on Ty and £ are important because they give
a simple method of obtaining the maximum displacement and acceleration for the
single-mass representation of a bilinear isolation system. The single-mass responses
in turn largely govern the maximum values of base shear and displacement for well
isolated multimass structures and all the structural displacements which have at
most a moderate increase over the height of the structure. The displacement profile
is given rather accurately by the static deflections under mass-proportional forces,
and with an isolator stiffness of Kz = 5,/ X.

Simplified earthquake spectra

Equations (4.153) and (4.155), and Figure 4.8 for approximate Cg values, express
the bilinear displacement and acceleration in terms of earthquake displacement
spectra. The analysis can be further simplified and somewhat generalised by using
simplified spectra for scaled El Centro-like earthquakes, or other stylised smoothed
spectra, as discussed in Chapter 5 and illustrated by Figure 5.1. This results in
useful analytical procedures for the design of isolation systems.

4.3.4 Modes of linear structures with bilinear hysteretic isolation

Introduction

The rigid-mass model mounted on a bilinear hysteretic isolation system produces
a good approximation to some features of the seismic responses of a structure |
with bilinear hysteretic isolation, However, for other features of the responses, it
is necessary (o model the strocture as several masses and springs, and then to
determine the responses ol various of its modes.



WWW.BEHSAZPOLRAZAN.COM

170 STRUCTURES WITH SEISMIC ISOLATION

For a linear vibrational system, the natural modes of vibration are well-defined.
However, for a non-linear system, such as a linear structure mounted on a non-
linear isolation system, there are a number of possible ways of defining the modes,
but the concept of the response consisting of the combination of a number of modal
responses remains a useful one. The various approaches to defining the modes of
the non-linear system assist in different ways in interpreting its response and in
obtaining estimates of its maximum response.

The alternative ways of defining the modes of a system consisting of a lin-
ear structure with bilinear hysteretic isolation depend essentially on the definition
adopted for the effective stiffness of the isolation system, the only non-linear el-
ement in the overall system. Once this stiffness has been defined, the mass and
stiffness matrices of the overall system are defined, and modal properties and re-
sponses can be determined using the standard methods.

Three different candidates for the equivalent linear stiffness of the isolator
are considered below. (1) adopts the instantaneous tangent values of the bilinear
force-displacement relation, Ky, during elastic-phase motions and K\, during yield-
ing-phase motions. (2) adopts the yielding-phase stiffness Ky; for both elastic-
phase and yielding-phase motions. (3) adopts a zero base stiffness for both elastic-
phase and yielding-phase motions and hence represents seismic responses in terms
of free-free modes.

When setting up the equations of motion for each of the above three cases, (1),
(2) or (3), all force terms are retained so that, for any particular case, the sum of
the modal responses at any time ¢ is equal to the total response at time 7, as given
by a time-history analysis.

Before investigating these various possibilities for defining the isolator stiffness,
and the modal properties and modal responses which result from these definitions,
it is appropriate to review some of the features which make modal analysis of linear
systems attractive, and the extent to which they carry over to a modal treatment of
non-linear isolation systems. Also, we present a technique for extracting responses
of individual modes from the response histories of all masses of an N-degree-of-
freedom structure.

The first feature is that the total response u(t) of an N-mass system can be
written as the sum of the modal responses

N N :
u(t)y =Y wt)=7y ¢:&@) (4.158)
fe=+1 i=1

where ¢; is the ith mode shape and & (r) is the ith ‘modal coordinate’.

For a classically damped linear system, the response of any natural mode (n)
to a ground acceleration i, (f) can be written in terms of a linear second-order
differential equation uncoupled from all the other modes

'%n“) + 34’.':.(”""';",.“1 + ‘95&_" — —'[k‘,,f.ig(f) (4159)

where &, and w, are the modal damping and circular frequency and @, =
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(¢I[M]l)/(¢I[M]¢") is closely related to the mode-n participation factor I',.
In terms of the modal displacement vector u, () = ¢,&,(1),

iy (1) 4 250 @it (1) + 1, (1) = —atuyiig(t)
= —Tpiig(r). (4.160)

Usually the participation factors become small for high modes, so only a few
modes need be retained in the summation. Thus a set of coupled differential equa-
tions of motion involving matrices of dimension N x N are reduced to a few
uncoupled equations for single-degree-of-freedom oscillators for which the solu-
tions are well known.

For a non-linear isolation system, we can define the response as the sum of the
responses of a number of modes. However, the modal equations of motion will
be coupled, either directly in the equation of motion at any time (¢), or through
‘initial conditions’ at the onset of a particular phase of the response. In general, the
participation factors will be smaller for higher modes, but the importance of the
higher modes may be much greater than for linear isolation systems, because of
non-linear coupling effects feeding energy into them. Such important higher-mode
responses are clearly evident in Figure 2.7, cases (v) and (vi).

Sweeping to obtain modal accelerations a,(t) from total accelerations a(t)

In order to find the contributions of individual modes to the total seismic responses
of a linear structure on a bilinear isolator, it is first necessary to compute the
time-history of these modal responses. For this computation it is useful to have an
operation which extracts, or sweeps, the responses of individual modes from the
time-histories of the overall responses of the system. This may be achieved readily
by the technique described below.

A complete set of modes which are orthogonal with respect to the mass matrix
is defined. The mode set would normally be the natural modes given by the system
masses and stiffnesses, or by simple modifications of the stiffnesses as described
later. The system responses are then obtained in terms of responses of this mode
set, with the overall responses given by summing the responses of the individual
modes. In linear algebra terms, the modes provide a set of ‘basis vectors’ for the
system response. The technique may be used to obtain the exact natural-mode
responses for a linear system which is undamped or classically damped. For other
linear systems, or non-linear systems, the technique can be used to extract modal
responses from the overall responses, when the modes have been defined in terms
of a set of vectors which are orthogonal to each other with respect to the mass
matrix. Such non-natural modes will be coupled through the stiffness matrix and/or
through the damping matrix.

The natural-mode vectors of any general undamped linear structure are linearly
independent and are orthogonal with respect to the mass and stiffness distributions,
as discussed in Chapter 2. Any vibrational response, for example the absolute
accelerations a(r) of the masses, can therefore be expressed as a linear combination
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of modal responses as follows

N

a(t) = it(t) + Liig(t) = Y (iin(t) + itga (1)) . (4.161)

n=1

The absolute acceleration response @ (¢) of the N-mass system is written in terms
of the modal relative acceleration responses ii,(f) and the modal decomposition
iy, (1) of the ground acceleration excitation iig (1.

The modal decomposition of the relative acceleration response is given by

N N
AOEDIAOED PR AGY (4.162)
n=1 n=1

Pre-multiplying by ¢[M] and using the orthogonality of the modes with respect
to the mass matrix gives

& IMJii (1) = ¢ M, &, (2). (4.163)

The modal relative acceleration vector ii,(f) is given by

ﬁn(’) = ¢u§n(f}

‘]" we
T[MJii (1)
=Py 4.164
> s, PG
Performing the same operation on the excitation Liig(7) leads to
" ¢ MIL
g (1) = p—<———iig(t 4.165
o ()= grivng, e B
= [piig(1). (4.166)
Similarly, the absolute acceleration of mode n is given by
1 [Mla(r)
o7 g I . i o 2 4.167
oTIMIg, G
For interpretation of the modal absolute acceleration, note that
a, (1) = i, (f) + ﬁgﬂ(r)
= i, (t) + Tyiig(r). (4.168)

Thus the modal absolute acceleration is the modal relative acceleration plus the
participation factor vector times the ground acceleration.

For other linear or non-linear systems, the modal responses can be extracted by
sweeping the total response vector by ¢'[M] in the same way, provided that the
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mode-shape vectors have been defined such that they are orthogonal with respect
to the mass matrix. As for linear systems with classical modes, the total response
is the sum of the modal responses. Unlike linear systems with classical modes,
the equations governing the individual modal responses will be coupled with the
responses of the other modes.

The following sections present the equations governing the modal responses of
systems with bilinear hysteretic dampers, with the modes defined in various ways.
The modal responses are those which would be obtained by sweeping the response
vectors with the appropriate mode-shape vectors.

Equations of motion of a linear chain structure on a bilinear hysteretic isolator

While the following discussion is illustrated by a chain structure for convenience
and easy visualisation, it applies to a much wider range of linear structures. The
main constraints are that the dynamics are controlled by horizontal motions of the
masses in the direction of the ground acceleration, and that the only connection to
the ground is through the isolator components. The isolator allows no vertical or
tilting motion at its interface with the structure, and provides some resistance to
horizontal motion at the interface.

A linear chain structure, of masses m and stiffnesses k, mounted on a bilinear
hysteretic isolator, is shown in Figure 4.9. The Coulomb damper is represented as
a slider which yields at a force Q, thereby changing the stiffness of the system. An
alternative representation has been shown in Figure 1.3(b). As shown in Figure 4.9,
('} is the isolator velocity-damping coefficient. [y, is the isolator force arising from
its bilinear resistance to displacement.

The equations of motion are:

[M]it + [Cla + [K]gpz + ( ) = —[M]1Liig (4.169)

Fy(uty)
where

[C] = [Clgr + [0 C ] (4.170)
b

[Clpr and [K]gp are the damping and stiffness matrices for the free-free system,
i.e. when the base isolator has zero horizontal stiffness and damping coefficient.
These were denoted [Cy] and [Kg] in the perturbation expressions of Section 4.2
for linear isolation systems. In the elastic phase,

Fi(uy) = (K — K () — ) + Kip 1y
= Kyt — (K — Ki2)ug (4.171)

with 2, remaining zero, and |(Kyy — Ky (g — wy)| < Q. where Q is the force
across the Coulomb slider at which it yields, Here w, is the displacement of the
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‘slider’. In the yielding phase,

Fy(uy) = Kouy + Q sgn(uy) (4.172)

until & = 0. Also s = u,.

Let us consider next the modal forms of these equations and estimates of the
peak modal response quantities for modes defined in terms of the various candidates
which have been proposed for the effective base stiffness.

(1) Modes based on instantaneous isolator stiffnesses Ky; and K,

A candidate for the effective stiffness, which can be defined for an isolator with
any non-linear force-displacement relation, is the instantaneous tangent stiffness
of the force-displacement relation. For a general non-linear relation, this must be
redetermined for every instant of the response. However, for bilinear hysteretic
isolation, it alternates between two values, Ky, and Ky, as defined in Figure 4.9.
The mode shapes and frequencies associated with these stiffnesses are effective for
the elastic and yielding phases of the response respectively. ‘Initial conditions’ in
terms of the co-ordinates of the new phase need to be determined at changes from
the elastic to yielding phase of response, and vice versa.

The stiffness matrices for each of the two phases may be expressed, as for linear
isolation, by

Kl = [K]pr + [0 K ] (4.173)
bl

(4.174)

(K], = (Klrr + [" 2

Figure 4.9 Model of a linear chain structure
comprising masses m and intermass
stiffnesses &, mounted on a bilinear
isolator of stiffnesses Ky and Ky,

CSUSUSSU ~ SIS, with viscous damping coefficient C),

GSH S CS Sph S 5 and Coulomb-damper force 0,
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In the elastic phase, Fy, is replaced by its residual after Ky, u; has been subtracted
Fé — '_(Kbl == sz)ﬂs. (4.175)

This has a constant value during any particular elastic phase, since ity = 0 during
elastic phases, but its value will be different in different elastic phases, since us
changes during the intervening yielding phases.

In the yielding phase, F, is replaced by

F) = Q sgn(iy). (4.176)

This has the same value, apart from its sign, during all yielding phases of response.
The natural frequencies and mode shapes are defined by

[Kle@e,n = wi,, [M]¢e, 4.177)
[Klydy.n = @}, [MIgy,0. (4.178)

Equations (4.177) and (4.178) define a set of normal modes for each response
phase. The equations of motion become:
(i) elastic phase

(be.m‘p;[:n {C] Z ¢c,iérs,e‘
i rn + : - wgn“e.m
X o7, M., '
e rn¥e ?IF’ .
+ Smtel e _ _r iy (4.179)
(ii) yielding phase
¢y.rn¢;{" [C] Z ¢y,féy,i
iy rn + : +w2n“ i
e o7, Mg, , Ea
rn HF!
__zi [‘i;']; gl i (4.180)
y.n Y.
where n
Cern = ¢‘;:HTR"I?7:IT]1 (4.181)

with y replacing ¢ in a corresponding expression for I'y .. The modal absolute
accelerations at position r, obtained by sweeping with ¢, and ¢, , respectively,
are (iig o -+ Ueputiy) and (i 1 Uy i), as they appear in the above equations.

The damping terms are likely 1o be coupled between modes, but the coupling
terms can generally be neglected, The /) and £ terms essentially change the
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effective excitation, but can be handled without difficulty, as they are constant
within a given phase of the response. The participation factors vary between the
two phases, making interpretation of modal responses in terms of the response of
a single-degree-of-freedom oscillator difficult. Non-linear coupling arises through
the initial conditions of the new phase of response at changes from the elastic to
the yielding phase and vice versa.

For a change of response phase at time 1.,

ulte) = ) teit) =Y my ;(tc) (4.182)
i j

or

D beibeilt) =Y by iy (10 (4.183)
i 7

From the use of orthogonality conditions with respect to the mass matrix

X ¢;,. [M}¢e_f§e,i (fc)

yllc) = - 4,
or
X &y, [Mluc; (zc)
Uy () = — ” (4.185)
y T Mg,
similarly
> ¢l [Miuy, (1)
emlle) = : e m - ;
e O M T (4.186)

Analogous expressions exist between the modal velocities ay (1) and g, (1),
These expressions show that a response which is purely in one mode in the elastic
phase excites all yielding-phase modes at the change of phase of the response,
and similarly a single-mode yielding-phase response induces responses in all elas-
tic modes when the velocity reverses. Examples of the decomposition of elastic-
phase modal responses to multiple yielding-phase modal responses are shown in
Figure 4.10, discussed later. Through this non-linear modal coupling, the energy
of the response is transferred between various frequency bands around the natural
frequencies for the two phases of the response.

As indicated by the high-frequency content in the seismic responses of cases (v)
and (vi) in Figure 2.7, higher-mode accelerations may play an important role in the
design of structures which have bilinear isolators. Equations (4.185) and (4.186),
and the corresponding relationships for modal velocities and accelerations, may
be used to study the mechanisms by which higher-mode accelerations are excited
when the isolator is bilinear. Such studies help in identifying simple parameters,
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such as the non-linearity factor and the elastic-phase isolation factor, which play
an important role in controlling the severity of higher-mode acceleration responses.
These parameter studies then assist the designer in balancing the benefits of mod-
erate higher-mode accelerations against the benefits of other features of the seismic
responses, such as low base-level shear forces or moderate overall displacements.

When the isolation factors, /(Ky;) and /(Ky;), as defined in Section 4.2, for
the elastic-phase and the yielding-phase responses are both large (i.e. T2/ T (U) >
T/ T;(U) > 2), then the period and shape of any elastic-phase mode n is close to
the period and shape of the corresponding yielding-phase mode n, with each being
close to the period and shape of free-free mode n, as indicated by Figure 4.3. The
greatest departure from the free-free period and shape is for elastic-phase mode 1,
since I (Ky;) is often substantially less than / (Ky;) with effective bilinear isolation.

Since all modes have nearly free-free shapes when the isolation factors are
large, mode 1 has a participation factor near unity, and all higher modes have small
participation factors for both phases of the response, as indicated by Figure 4.3.
Hence direct earthquake excitation is largely confined to mode 1 for both response
phases.

Since elastic-phase mode n has almost the same shape as yielding-phase mode
n, the mode-n accelerations change little at a phase transition, as shown by the
acceleration version of Equation (4.186) which gives,

ﬁg,n (r) =~ ﬁy,n(’c)-

Again, since the elastic-phase mode m is almost orthogonal (with respect to
the mass matrix) to the yielding-phase mode n for m # n and vice versa, Equa-
tions (4.185) and (4.186) show that there is little transfer of motion between modes
of different number at either phase transition. The most significant, but still small,
transfers of motion are accelerations from the first mode to the second mode and,
to a lesser extent, to the third mode. Hence with small higher-mode participation
factors, and small or moderate transfers of motion to higher modes, the higher-
mode accelerations resulting either from direct excitation or by transfer of energy
at yielding remain moderate. The only other source of excitation is from the F;,
term in Equation (4.180b), which involves the Coulomb damper force Q. This term
is usually of order (1/2)(Q/W)g or less, so for small yield ratios @/ W contributes
at most small accelerations. Thus when the structure is well isolated in both the
elastic and yielding phases of the motion, the higher-mode contributions to seismic
loads are moderate and their contributions to floor spectra are not severe.

For any well isolated structure the yielding-phase isolation factor I (Kyy) is large.
When the unisolated first period 7 (U) is small or moderate, the elastic-phase iso-
lation factor /(Ky ) = Ty, /T(U) can also be made large while retaining a value
of Ty which is also compatible with bilinear loops which give high hysteretic
damping. While the high non-linearity factor which is unavoidable with high hys-
teretic damping (since NL = (xr/2)43,) tends to promote higher-mode responses, as
discussed in Section 4.3.5 ‘Higher-mode maximum acceleration responses’, these
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responses are progressively suppressed by increasing values of the elastic-phase
isolation factor 7 (Ky;), as illustrated by the curves of Figure 4.12.

It is desirable to keep the elastic-phase isolation factor I(Ky;) = Ty /T (U)
relatively large to ensure small higher-mode accelerations. However, there may be
design constraints, such as a need for high hysteretic damping or limitations on the
type of isolator which can be provided (for example, simple frictional supports),
which may result in a relatively low (or even zero) value for /(Ky,), particularly
when the first unisolated period T(U) approaches 1.0 s or more. When [ (Ky;)
is small, say 0.5 or less, then the elastic-phase mode-1 shape is closer to that
for a fixed-base structure than that for a free-free structure. Moreover, mode 2
(and to a lesser extent mode 3) may also be somewhat closer to a fixed-base than
free-free shape, and its participation factor is increased from the zero free-free
value towards the fixed-base value. Hence elastic-phase mode 2 (and sometimes
mode 3) may have significant direct earthquake excitation. :

With substantial contrasts in the shapes of the first few elastic-phase modes
and the shapes of corresponding yielding-phase modes, elastic-phase mode # is no
longer approximately orthogonal to yielding-phase mode m for n # m, at least for
the first few modes, and there is considerable transfer of motion between modes of
different numbers at phase transitions, as given by Equations (4.185) and (4.186)
and the corresponding equations for velocities and accelerations. The combination
of significant direct excitation of the elastic-phase higher modes, the transfer of
these motions to corresponding and near-corresponding higher modes, and also
a transfer of considerable motion from mode 1 to higher modes at each phase
transition, may produce considerable excitation of higher-mode motions when the
elastic-phase isolation factor is small. Higher modes are also driven in both phases
of the seismic responses by the off-set forces, F; or F|, arising from the non-
linearity of the isolator.

While the increases in the small higher-mode displacements have little design
significance; the increased higher-mode accelerations may cause serious increases
in loads, and may result in rather severe floor spectra at shorter periods, as illus-
trated by cases (v) and (vi) of Figure 2.7. The full potential for large higher-mode
accelerations, which arises when there is a small elastic-phase isolation factor, is
realised when this is combined with a high non-linearity factor which may be
adopted to achieve the benefits of high hysteretic damping. The combined effect
of high non-linearity NL and a low elastic-phase isolation factor /(Ky;) is again
illustrated by the curves of Figure 4.12 (see below).

The phase-2 modes play the dominant role in describing the peak seismic re-
sponses of an isolated structure, since the maximum base displacement and base
shear occur during the isolator phase-2 response. The maximum responses of the
first mode are likely to occur at a time similar to that of the maximum isolator
displacement, since this is made up very largely of first-mode displacement. Max-
imum higher-mode acceleration responses may tend to occur soon after yielding
in the largest base-displacement cyele, This is because their near-zero participation
factors result in little direct forcing of the higher modes from ground excitation
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during the yielding phase, and so their energy is at a maximum soon after yield-
ing before it is dissipated by viscous damping. This is illustrated by the mode-2
accelerations shown in Figure 4.11, where the strongest response occurs when the
modal acceleration next reaches its maximum after yielding.

The higher-mode energy is gradually dissipated during the remainder of the
yielding phase, which may occupy several cycles of a higher-mode response be-
cause the period of the fundamental mode is much longer than the periods of the
higher modes. During the yielding phase, the higher modes respond with essentially
damped sinusoidal motions at their damped natural frequencies, with a rate of de-
cay depending on their damping, which is mainly contributed by viscous damping
in the superstructure.

The transfer of energy from mode 1 to higher modes during phase transitions,
together with the direct excitation of higher-mode accelerations during elastic-
phase responses, may result in higher-mode accelerations and forces which are
substantially greater than those of mode 1. However, the energy in mode 1 is
usually much larger than the energies of higher modes since the square of the modal
forces must be weighted by the square of the modal periods if modal energies are
to be compared. Hence even if most of the excitation of higher modes is due to
energy transfer from the elastic-phase mode 1, this would give little change in the
mode-1 energy at a phase transition.

The small influence of higher modes on the responses of mode 1 may be demon-
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Figure 4.11 Sample time-history of modally swept acceleration response to El Centro
NS 1940 for the top of a uniform 3-mass shear structure mounted on a
bilinear isolator with parameters given in the text. During the time inter-
val from 10-12.5 s the isolator was in the yielding- and elastic-phases at
the times shown, Yielding-phase mode-2 was approximated by sweeping
for free-free mode 2, The average loparithmic decrement corresponds 1o a
damping factor of 0,054
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strated for a structure and bilinear isolator combination which gives severe higher-
mode responses. If the higher modes are suppressed, by modelling the structure as
rigid, it is found that there is little change in the mode-1 responses, as can be seen
by comparing base shear for corresponding single-mass and multi-mass systems in
Tables 2.1 and 4.1.

The equations of motion, (4.179) to (4.181), can be used for response-history
analysis, leading to a significant reduction in the amount of computation if the
number of modes required is much less than the number of degrees of freedom
in the system. The modal approach also throws light on the non-linear response
mechanisms which may not be provided as clearly by the step-by-step solution of
the matrix equations of motion. It explains some of the features of the response
which will be illustrated later by applying modal sweeping to the response-history
results.

The transfer of motion between modes at transitions from elastic to yielding-
phase responses, as given by Equations (4.185) and (4.186), is illustrated in
Figure 4.10 for two contrasting cases. Both cases have a five-mass uniform shear
structure with T;(U) = 0.5 s, and an isolator with Ty, = 3.0 s, so that both have
yielding-phase isolation factors /(Ky;) = 6.0. For case (a), the isolator elastic
period Ty = 0.3 s, so that the elastic-phase isolation factor /(Ky;) = 0.6, and
hence there is good isolation only in the yielding phase. For case (b), Ty = 1.2 s,
and hence /(K1) = 2.4 and there is good isolation for both the elastic and yielding
phases of the responses.

Figures 4.10(a) and (b) illustrate the first few elastic-phase mode shapes, and rep-
resent them in terms of the yielding-phase mode shapes. The figures show to scale
the decomposition of the elastic-phase mode shapes (for displacements, velocities
and accelerations) to their yielding-phase components. The elastic-phase modes are
scaled such that ¢, ,"[M]¢e., are the same for all modes. The relative strengths of
the motion in the various elastic-phase modes vary from instant to instant within
an earthquake response. The figures also summarise the periods associated with the
various modes and their top-mass participation factors. The elastic-phase partici-
pation factors provide some indication of whether various modes are likely to be
strongly excited.

For the first example, the elastic-phase first-mode decomposition in terms of the
yielding modes produces a significant contribution to the second post-yield mode,
which is thus excited by the first elastic mode on yielding. On yielding, 15% of
the first-mode elastic-phase kinetic energy is transferred to the post-yield second
mode. Also, the higher elastic-phase modes have significant participation factors,
so are likely to make sizeable contributions to the total elastic-phase response.
When significant mode-2 post-yield response is set up by the first-mode elastic
response, in most cases mode 2 will be excited directly in the elastic phase also.
The second elastic-phase mode produces response in mainly the second and third
post-yield modes on yielding, with a lesser proportion of mode-1 response. The
third elastic-phase mode, which has a participation factor of 0.2, produces sizeable
proportions of mode 3, mode 4 and mode 2 on yielding,
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For the second case, with Ty, /T (U) = 2.4, i.e. well isolated even in the elastic
phase, the elastic-phase modes are very similar to the corresponding yielding-phase
mode. Thus on yielding, very little energy is transferred from elastic-phase modes
to higher yielding-phase modes. For both the first and second elastic-phase modes,
over 99% of their kinetic energy is transferred to the corresponding post-yield mode
on yielding. Only the first and second elastic-phase modes are shown, as the higher
modes have insignificant participation factors even in the elastic phase (0.019 for
the third mode).

(2) Modes based on post-yield isolator stiffness Ky;

In this case the stiffness matrix for both phases of response is the same as [K]y in
the previous section.

[Kly = [Kler + [" sz] . (4.187)
In the elastic phase, Fj, in the equation of motion is replaced by Fy(e)
Fy(e) = (Kv1 — Kw2) (uy — us). (4.188)
In the yielding phase, F}, becomes
Fy(y) = Qsgn(iy). (4.189)
The mode shapes and frequencies are defined by
(Klypy.n = @, [M]y . (4.190)
The equations of motion become
by.m®y ,[C] Z‘: Py.iby.i

v.n M1y,

‘py,m‘;by.]n F:: &
TR e ‘_ry_.mag
@y (Ml ,

I 2
Uy tn e +w},‘” Uy

(4.191)

where the appropriate form of F{ is used for the two phases of the response.

In the elastic phase, the modes defined in this way are coupled through the
Fy term. In the yielding phase, the modes are coupled only through the viscous
damping matrix, for which the coupling can usually be neglected, with the Fy term
modifying the excitation but not coupling the modes.

Similar comments apply to this choice of mode shape as were made in the
previous section. This selection of base stiffness has been included as a separate
case because it leads to the “natural” modes for the strongest amplitude portion of
the response. The maximum maodal responses usually occur in the yielding phase
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of the response, so the phase-2 mode shapes are more appropriate than the phase-1
mode shapes for interpreting the maximum responses through modal sweeping.

(3) Free—free modes

A further candidate for the appropriate set of mode shapes to represent the response
of an isolated structure is the set of free-free modes. These mode shapes deserve
consideration because of the low stiffness of the isolation system relative to the
structure, at least in the post-yield phase, and by analogy with the free-free modes
used in the perturbation analysis of a structure with a linear isolation system which
was studied earlier in this chapter (Section 4.2). It turns out that this characterisation
of the modes produces a convenient method of representing the first-mode response
and the base shear, in terms of a rigid-mass representation of the superstructure on
the bilinear isolator, with linear higher modes driven by the base shear.

For the free-free mode-shape representation, the stiffness matrix is [K]gg, and
the offset force Fj, is as defined for the equation of motion in (4.171) and (4.172).
It is convenient to add the isolator damping force Cyii; to the isolator offset force
Fy.

The mode shapes and frequencies are defined by

(Klerdrr, = ofp ,[MIGEr . (4.192)
The equations of motion become

o % 2
T 2§Fli,nwF]:,nHF}‘,rn + WEE nUFF,rn

PeE,rn®rE 1 (Fy + Cott)

: = —D'pp uilg. (4.193)
bir,.[MIdrr., [ ¥
For the fundamental mode n = 1, the frequency wgg = 0, the participation
factor I'gg,p = 1 and
% 3 1 :
UFF 1 +lig = ———(Fy + Cylty). (4.194)
Mr

The right-hand side of this equation is simply the negative of the base shear di-
vided by the total mass My of the system. This corresponds to the first-mode base
acceleration, for the selected mode shapes. This result can be arrived at in another
way. The base shear is the sum of the inertia forces over all masses. Summing the
inertia forces is the same process as sweeping the inertia forces with the first-mode
shape, which consists of unity, at each degree of freedom.

For higher modes (1 = 1), the participation factors I'rg,, = 0. The equations
of motion become

fp["lﬂnr‘p[‘l",]u (Fh 3t (:‘hz:"h)
q‘JIII"T-',nl M I‘fbl"l".n

n = 1.
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(4.195)
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Thus the higher-mode responses are excited by accelerations defined by scalings
of the base shear divided by the total mass, which we have already shown is
the negative of the first-mode absolute acceleration. Thus the fundamental-mode
response, defined in terms of the free-free modes, drives the higher-mode responses.

In practice, the first-mode acceleration response will not be known unless the
complete response-history of the structure has been calculated. The first-mode re-
sponse can then be extracted by sweeping with the first free-free mode shape. The
maximum values of the first-mode acceleration, the first-mode and total displace-
ments, and the base shear can be estimated accurately by using a one-mass model
of the superstructure. However, this model does not produce the higher-frequency
content of the response well enough for its base shear to be used as the excitation
in Equation (4.195) for calculating the higher-mode responses.

A typical yielding-phase higher-mode acceleration response-history, for a bi-
linear isolator which gives a small elastic-phase isolation factor, is shown in
Figure 4.11. A uniform three-mass isolated shear structure has a bilinear isola-
tor with Ty; = 0.3 5, Ti,p = 1.5 s, Q/W = 0.05 (Qy/W = 0.052), and &, = 0.05.
Its unisolated period is 7;(U) = 0.43 s and it has free-free modal damping factors
of 0.05. Hence /(Kp;) = 0.7 and /(Ky) = 3.5. Also, since X, = 0.053 m
and §, = 430N, for M = 3kg, Tz = 1.21s, NL = 0334, 7, = 0.21,
& =& + &p2 = 0.26.

Figure 4.11 shows the top acceleration for yielding-phase mode 2 of the three-
mass structure. The mode-2 acceleration was computed using Equation (4.164)
with ¢, given by the shape of free-free mode 2, which approximates the shape
of yielding-phase mode 2. The modal sweeping removed the orthogonal free—free
modes 1 and 3. The true modes in the elastic-phase response are far different from
the free-free modes, so the net result is a modified top acceleration during elastic-
phase responses, and the top acceleration of mode 2 during yielding-phase re-
sponses. Yielding-phase mode-2 accelerations have been excited during transitions
(0 the yielding-phase responses. The mode-2 yielding-phase accelerations closely
approximate a decaying sinusoidal curve. The average logarithmic decrement cor-
responds to a damping factor of 0.054, showing that the decay rate is controlled
by the structural damping factor, 0.05 in this case. The figure clearly indicates the
low excitation given to higher modes during the yielding-phase response.

Since the most severe higher-mode accelerations are approximately sinusoidal,
and typically persist for several cycles, they may result in quite severe responses
for moderately damped appendages when they are tuned to yielding-phase higher
modes, as discussed later.

4.3.5 Higher-mode acceleration responses of linear structures with
bilinear isolation
Systematic case studies

In this section we show that higher-mode accelerations may make large contri-
butions to the seismic loads and the floor-acceleration spectra for linear structures

|
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with bilinear isolation. A systematic study was undertaken to establish broad trends
for these higher-mode contributions, to clarify the mechanisms involved and to es-
tablish guide-lines for preliminary design.

Modal and overall seismic responses to the El Centro NS 1940 earthquake
accelerogram were studied for 81 different combinations of structural and isolator
parameters. The results are presented in Table 4.1, which shows the maximum
responses of three uniform five-mass shear structures, each isolated on 27 different
bilinear isolators.

A five-mass uniform shear structure, as shown in Figure 4.9 with N = 5, was
given one of three ‘unisolated’ periods

e T7(U) = 0.25, 0.5, 0.75 s.

Each of the major bilinear isolator parameters were given three values:

® Thl = 03. 06, 0.9 s

[ ] sz = 15, 30, 6.0s

e O0,/W =0.02, 0.05, 0.10.

For typical structures with bilinear isolation involving energy dissipation through
hysteresis of lead or steel, these parameter values tend to represent low, medium
and high values. Responses for some other limiting cases may be evaluated readily.
For example, Qy/W = 0 gives a linear isolator, and 7;(U) = 0 s gives a rigid
structure with seismic responses simply related to the maximum responses of one-
mass bilinear systems (Figure 4.5). Designs using other types of bilinear isolation
systems may have parameter values well outside these ranges; for example, a sliding
isolator may have Tp; =05, Ty ® oo and Qy/W ~ 0.2.

The structure was provided with a set of intermass velocity dampers which
gave to each of the 4 higher free-free modes a damping factor of 0.05. The iso-
lator velocity-damping coefficient Cy, was chosen to give a yielding-phase isolator
damping of &,y = 0.05, where &y = CpThn/ (4 M).

T,(U) is intended to be representative of the flexibility of the structural compo-
nent of the overall isolated system, and has been defined as the first-mode period
when the isolator stiffness is infinite. The maximum responses presented are the
base displacement Xy, the top-mass modal accelerations X5, X552, and X53 and
the approximate mid-height shear S,,(3,4) given by the average of the shears for
springs 3 and 4. The modal responses are defined in terms of the free-free modes.
Also shown, at the side of the first set of results, are the base displacements and
base accelerations of a rigid structure, T, (U) = 0, mounted on the various isolators.

Higher-mode maximum acceleration responses, X, ,.n > 1

The maximum acceleration response of the top mass, number 5, was calculated
for each mode using the modal sweeping technique (Section 4.3.4) with free-free
mode shapes. These free-free mode shapes were only a fair approximation to the
mode shapes with an isolator stiffness Ky for the nine cases with Ty = 1.5 s
and Ty (U) = 0.75 s, since [(Ky) = 2.0. For the remainder of the 81 cases,
I(Ky) = 3, and hence the free free mode shapes were quite close to the shapes
with an isolator stiffness Ky,
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Table 4.1 Maximum responses of uniform 5-mass shear structures isolated on various
bilinear isolators when excited by the El Centro NS 1940 accelerogram. &, =
0.05, &g = 005, m =1 kg

(a) T1(U)=025s T, (U)y=0

No.Ty The O)/W X, Xs; Xs» X3 NL S.(3.9 X, X,
(s) (s) (%) (m) (ms?) (ms?) (ms?) (N) (m) (ms?)
03 1.5 2 0079 1.574 0.692 0448 0.12 4.19 0.079 1.579

1

2 5 0052 1388 1929 0768 033 479 0053 1412
3 10 0.040 1.653 2957 0850 054 683 0043 1717
4
q

3.0 2 0.125 0.751 0.820 0476 026 217 0.126 0.754
: 5 0.072 0810 1922 0773 0.59 441 0.075 0.822
6 100 0051 1.205° 2993 0985 077 732 0.056 1.221

7 6.0 2 009 029 1.020 0461 0.66 220 0.091 0298
8 5 0.087 059 1995 0.704 0.82 450 0,078 0.591
9 10 0061 1.054 3.139 1.013 090 7.8I1 0.079 1.070

10 0.6 1.5 2 0.081 1.594 0478 0261 0.10 4.14 0082 1.611
11 5 0.060 1468 1.024 0253 027 4.28 0.061 1.492

12 10 0053 1759 1661 0466 039 522 0053 1753
13 30 2 0.134 0784 0614 0241 024 207 0.135 0.787
14 5 0.081 0.835 1289 0308 054 337 0.087 0.841
15 10 0062 1222 1833 0466 066 557 0.068 1.248
16 6.0 2 009 0307 0636 0304 062 1.70 0.100 0312
17 5 0082 0582 1450 0317 079 369 0076 0574
18 10 0072 1.058 1822 0488 0.80 5.61 0.085 1.072
19 09 15 2 0087 1664 0348 0.135 0.07 420 0.087 1.663
20 5 0071 1560 0723 0.138 0.17 4.17 0.072 1.588
21 10 0075 1953 0780 0264 024 548 0.075 1.963
22 3.0 2 0.145 0.819 0522 0.118 021 0.211 NA NA

23 5 0.089 0.840 0780 0215 047 258 0.087 0.834
24 10 0.079 1247 0960 0254 053 399 0.080 1253
25 6.0 2 0.103 0313 0516 0.169 059 156 0.105 0315
26 5 0.127 '0.627° 0.793° 0200, 070 254 0.122 0621
27 10 @101 1.075 . 0947 0:2128 071 418 0.104 1.076

It was found that in all cases, X 5.1, the maximum acceleration of mode | at
level 5, was close to the isolator bilinear spectral accelerations with the struc-
ture treated as rigid, with mode-1 accelerations being moderately less when there
was a large excitation of higher-mode accelerations. Without energy loss from
mode 1, there should be agreement between mode-1 and spectral accelerations,
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Table 4.1 (continued)

(b) ' T (U)=05s
No. Tw T OQ,/W Xp X5, X5 Xss NL. S5.(3.9)
(s) (%) (m) (ms?) (ms?) (ms?) (N)
1 03 123 2 0.074 1.495 0.991 0.839 0.13 429
2 5 0.050 1.363 2.049 1.139 034 5.46
3 10 0.043 1.699 2.810 2.154 0.53 7.05
4 3.0 2 0.122 0.736 1.136 0.629 0.26 2.38
5 5 0.067 0.789 2.017 1.313 0.61 4.39
6 10 0.066 1.265 2516 2.062 0.75 7.01
7 6.0 2 0.084 0.296 1.266 0.869 0.66 2.37
8 5 0.067 0.567 1.908 1.513 0.85 4.18
9 10 0.075 1.067 2.382 2.068 0.89 7.02

1054.20:6 . 515 2 0.079 1.564 0.880 0.424 0.10 4.42
11 5 0.059 1.461 1.639 0.961 0.27 4.92
12 10 0.049 1.683 2.489 0.872 0.40 6.75
13 3.0 2 0.131 0.767 1.047 0.521 0.24 245
14 5 0.075 0.812 1.653 1.055 0.55 4.06
15 10 0.055 1.186 2676 1.202 0.66 6.78
16 6.0 2 0.099 0311 1.273 0418 0.61 241
17 5 0.088 0.589 1511 1.068 0.79 3.99
18 10 0.076 1.059 2.696 1.182 0.81 7.04
199 09 LS5 2 0.088 1.676 0.832 0.269 0.07 4.56
20 3 0.069 1.525 1.460 0.508 0.18 453
21 10 0.070 1.866 1.926 0518 0.24 6.07
22 30 2 0.142 0.806 0.821 0.441 0.22 248
23 5 0.088 0.841 1.497 0.635 0.47 3.62
24 10 0.074 1.219 2.253 0.544 0.53 6.00
25 6.0 2 0.103 0312 0.759 0.288 0.59 1.68
26 5 0.133 0.635 1.501 0.691 0.70 3.99
27 10 0.095 1.068 2.369 0.626 0.71 6.31

continued overleaf

since sweeping with free-free mode shapes assumes an undeformed or rigid struc-
ture for mode 1. The mode-1 accelerations were reduced from the values for the
rigid superstructure model, presumably because a major source of higher-mode
energy is due to transfer from mode 1 by non-lincar mechanisms, as discussed ear-
lier. The transfer, to higher modes, of energy associated with a small reduction in
mode- 1 accelerations is able to produce relatively large higher-mode accelerations,
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Table 4.1 (continued)

(c) T({U)=0.75s

No. T,y Ty Q)W Xy Xs,, Xs, Xsa NL  S.(3,4)
() () (%) (m) (ms?) (ms?) (ms?) N)

1 03 1.5 2 0.075 1.507 1.201 0.779 0.12 4.38

2 5 0.046 1.291 1.711 1.615 0.36 4.87

3 10 0.037 1.604 2.924 2.221 0.56 7.88

4 3.0 2 0.120 0.727 1.008 0.622 0.27 2.47

5 5 0.055 0.738 1.764 1.514 0.65 4,76

6 10 0.040 1.160 2.929 2.258 0.80 7.75

7 6.0 2 0.089 0.300 1.143 0.752 0.65 2.22
8 5 0.077 0.578 1.787 1.554 0.84 4.77
9 10 0.041 1.036 3.000 2.231 0.90 1.71
10 06 1.5 2 0.079 1.554 1.349 0.643 0.10 4.56
11 5 0.053 1.353 1.635 1.054 0.29 4.88
12 10 0.055 1.810 2.290 1.655 0.38 6.88
13 3.0 2 0.127 0.751 0.718 0.521 0.25 2.56
14 5 0.073 0.798 1737 1.202 0.56 4.44
15 10 0.057 1.203 2.283 1.874 0.66 6.44
16 6.0 2 0.101 0312 0.819 0.651 0.61 2.30
17 5 0.109 0.609 1.687 1.242 0.77 4.29
18 10 0.064 1.054 2.261 1.872 0.79 6.33
21 S S [ 2 0.085 1.616 1.310 0.376 0.07 4.77
20 5 0.061 1.385 1.763 0.703 0.19 4.74
21 10 0.066 1.806 2.183 0.876 0.24 6.31
22 3.0 2 0.136 0.784 0.655 0.456 0.22 2.59
23 5 0.091 0.853 1.472 0.694 0.47 3.78
24 10 0.081 1.261 2.292 0.835 0.53 6.04
25 6.0 2 0.102 0.315 0.851 0.597 0.58 23,
26 5] 0.146 0.648 1.587 0.687 0.69 4.04
27 10 0.112 1.093 2.049 0.817 0.72 5.83

because higher modes require much smaller energies to achieve a given maximum
acceleration. This ensures that although higher-mode responses may be severe,
which is important for the overall distribution of shear and floor-response acceler-
ation spectra, the mode-1 response which governs base shear and displacements is
little affected by the interaction with higher modes, as observed,

We have found that three factors can be expected to contribute to the sometimes

large maximum higher-mode nccelerations Xs . for 1 = 1. These are the degree
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of isolator non-linearity NL, the level of excitation of mode 1, and the size of
the elastic-phase isolation factor [/ (Ky,;). The first two factors are discussed below,
while the role of 7(Ky;) has been described in Section 4.3.4.

Some convenient generalisations follow from the results of the systematic study
summarised in Table 4.1 and discussed below. The non-linearity factor NL may
be regarded as a simplistic measure of the non-linearity which gives the contrasts
between the seismic responses of structures with bilinear and with linear isolation.
Other factors, such as the degree of excitation of mode 1, the elastic-phase isolation
factor and bilinear loops of extreme shape, may then be regarded as features which
modify the consequences of a given degree of non-linearity. Although simplistic in
definition, the non-linearity factor gives simple approximate response relationships
for a surprisingly large range of system parameters.

In quite general terms, as a result of trends towards equipartition of energy
between the modes, a moderate degree of non-linear coupling between a high-
energy vibration and other low-energy vibrations should tend to transfer energy to
the low-energy vibrations at a rate which increases with the degree of non-linearity.

The maximum mode-1 acceleration X 5.1 gives some measure of the capacity of
mode 1 to contribute to higher-mode accelerations X 5., for n > 1. We have found
from the range of cases outlined in Table 4.1 that generally the ratios X s/ x 5.1
are more simply related to system parameters than is Xs5,,. An exception is when
Ty» = 6.0 s, when the large changes of X5, with the yield ratio Qy/ W (Figure 4.5)
are accompanied by substantially smaller changes in Xs,,, and the ratio Xs /X5,
masks the direction of changes in % s5.n. However, it is still convenient to present
maximum higher-mode accelerations as a fraction of the maximum mode-1 accel-
eration with the same system parameters Ti(U), Ty, T2 and Qy/W. Moreover,

approximate values for Xs ; can be obtained from the responses of one-degree-of-
freedom systems. As shown by Equation (4.195), the higher-mode responses are
driven by the base shear, which is proportional to the first-mode acceleration, so
it is physically reasonable that the strength of the first-mode response affects the
strength of the higher-mode responses.

The elastic-phase isolation factor /(Ky;) plays an important role in the exci-
tation of higher modes, as discussed in Section 4.3.4. Small 7(Ky,;) values give
the contrast between the shapes of elastic-phase and yielding-phase mode 1, which
is the basis of the transfer of mode-1 motions to higher-mode motions. A small
elastic-phase isolation factor is also associated with increased elastic-phase partic-
ipation factors of higher modes and hence increases their direct seismic excitation.
Such motions are then transferred to yielding-phase modes, mostly to those of the
same or similar mode number.

The maximum accelerations for higher modes 2 and 3, namely j&j‘g and )?5_3
listed in Table 4.1, have been plotted as fractions of mode-1 accelerations Xs
in Figure 4.12, as functions ol the non-linearity factor NL and the elastic-phase
isolation factor 1 (Kpp). It is seen that Tor most cases the ratios ,‘\.’t._,,j’/"{"_-,lg increase
approximately linearly with NL Tor o given value of /(Kyp), although there is
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Figure 4.12 Ratios of higher-mode to first-mode acceleration responses to El Centro NS
1940 for 63 of the bilinear isolation systems given in Table 4.1. The top
acceleration ratios are plotted against the isolator non-linearity factor NL,
and grouped in terms of the elastic-phase isolation factor Ty, /T, (U). For
later design-guide purposes, groups of responses are approximated by the
near upper envelope lines shown. (a) Second-mode acceleration responses.
(b) Second-mode acceleration responses. (¢) Third-mode acceleration re-
sponses. (d) Third-mode acceleration responses

a fair degree of scatter. Notable exceptions occur when Tyy = 6.0 s, when the
exceptionally small values of J'fs‘l for Qy/W = 0.02 give ratio values well above
the linear trend lines. Again the rapid increase in J'ff,‘l as 0, /W is increased from
0.05 to 0.10 tends to give ratio values below the trend line. Some of the more
extreme values for Ty, = 6 s have been excluded from the plots of Figure 4.12,
but results for all cases are given in Table 4.1. Hence, where the trend curves are
used as a design guide (Figure 5.3(a)), they should not be used to estimate the
maximum higher-mode accelerations [or the parameter combination of Ty = 3.0 s
and Qy /W < 0.05. Also, estimates of the higher-mode responses for cases where
Qu/W = 0,10 may be quite conservative,
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(b)

Figure 4.12 (continued)

Distribution of seismic shears

For linear isolation systems with isolation factors / = T,/T1(U) of about 2 or
greater, the overall seismic response can be approximated very well by the first-
mode response, since the higher-mode participation factors are near zero. For a
uniform structure, the first-mode shear distribution is approximately triangular,
from zero at the top to a maximum value at the base. Also, the base shear can
be found approximately by using a simple one-mass model, with the structure
represented as a rigid mass supported on the isolator.

For non-linear isolation systems, the base shear can be found approximately
from a one-mass rigid structure model, but the shear distribution is generally more
complicated than a triangular distribution. We have shown in the previous section
that the maximum acceleration responses in the higher modes can be up to several
times the maximum first-mode responses, with the ratio of the higher-mode to first-
mode responses depending primarily on the isolation ratio in the unyielded phase of
the response, i.e. Ty / 1) (U), and the non-linearity factor NL. Thus the contributions
of the higher modes to the shears may be significant at various positions in the
structure,

For modes defined in terms of the post-yield stiffness Ky of the isolator, the
shapes ol the shear distributions for all modes are the same as for a lincar system
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(c)

Figure 4.12 (continued)

with an isolation factor corresponding to Tiy/T)(U). Typical distributions are as
plotted for a linear isolation system in Figure 4.3. In common with structures with
linear isolation systems, structures with non-linear isolation have shear distributions
for modes higher than the first with a zero just above the base, giving higher-mode
base shears generally much smaller than the first-mode base shear. Thus the base
shears for systems with non-linear isolators are essentially the same as the first-
mode shears, as for well isolated linear systems. However, this result arises because
ol the near-nodal nature of the shear distributions at the base, rather than because
the shear distributions in the higher modes are negligible. At positions other than
the base, the contributions of the higher modes must usually be taken into account
to obtain adequate estimates of the shears.

The contributions of the higher-mode shears will be most important at the antin-
odes of the higher-mode shear distributions. Since the shear is proportional to an
integration of the acceleration or displacement profile from the top of the struc-
ture to the point of interest, the antinodes of the modal shear distributions oceur

at the nodes of the acceleration or displacement modal profiles. For a uniform
structure, the second-mode shear distribution has a maximum near mid-height (ex-
actly at mid-height for a free free system with zero base stiffness). It is thus to be
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(d)

Figure 4.12 (continued)

expected that the shear profile for a structure with non-linear isolation, in which
higher-mode effects are important, will depart significantly from the triangular dis-
tribution expected for a system with a high degree of linear isolation, with a bulge
in the shear distribution in the mid-height region of the structure. Such bulged
shear distributions are shown for cases (iv) to (vii) of Figure 2.7.

Lee and Medland (1978a, b) pointed out the bulge in the shear distributions
for structures on non-linear isolators, recognised that it was caused by higher-
mode contributions, and quantified it in terms of a ‘bulge defining parameter’.
They discussed the relative importance of modes higher than the first in unisolated
structures and in structures with bilinear isolation. They also considered the effects
of higher modes on the responses of appendages.

Andriono and Carr (1991a, b) recently performed a systematic study of the
lateral force distribution in structures with non-linear isolation. They found that
the non-linearity factor NL (which they described as the hysteresis loop ratio ‘R’),
the fundamental period of the structure when unisolated, and the amount of frame
action in the superstructure were the three factors which have the major influences
on the shape of the shear distribution. These results are in line with our own. We
have presented the non-linearity factor as being a major parameter governing the
higher-mode response, which in turn determines the shape of the shear distribution,
We have preferred to use the ratio of the first-mode isolated and unisolated periods
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rather than the unisolated period on its own as our second parameter. We restricted
our analysis to shear structures so the third parameter did not occur in our studies.
The comments of Andriono and Carr (1991a, b), on the dependence of higher-
mode response on various parameters of the isolation system, are consistent with
our observations and interpretations.

When the initial stiffness of the isolator is low so that the structure is well
isolated even in the elastic range of the isolator, the nature of the response is similar
to that with good linear isolation. The higher modes are virtually orthogonal to some
distribution of the inertia force excitation resulting from the ground motion, so are
not strongly excited. Only the fundamental mode will be excited to any extent, and
its low natural frequency will provide isolation against high-frequency excitation.
The response will be dominated by low-frequency fundamental-mode motions. A
rigid-structure-like response will occur, with the accelerations nearly uniform over
the height of the structure.

Higher initial stiffnesses of the isolator will increase the ‘fatness’ of the hys-
teresis loops (i.e. the non-linearity factor NL), which we have just shown to be
correlated with a larger ratio of higher-mode to first-mode accelerations. The higher
modes will have increased participation factors in the elastic phases of the re-
sponse, and there will be stronger coupling from the first-mode elastic response
to the higher-mode post-yield responses. The higher modes will make important
contributions to the response, resulting in a bulged shear distribution.

Increasing the yield strength or decreasing the post-yield stiffness also leads
to fatter hysteresis loops with larger non-linearity factors, and hence to stronger
higher-mode responses.

As the shapes for the modal shear distributions can be approximated by half-
cycle sine-waves, maximum shear envelopes can be estimated if the strength of
the individual modal components and appropriate modal combination rules can be
established.

The traditional modal combination rule is the square-root-of-sum-of-squares
(SRSS) (Der Kiureghian, 1980a, b). This rule is based on uncorrelated modal
responses, which are often obtained with well separated modal frequencies. Al-
though structures with non-linear isolation have well separated frequencies, the
higher-mode responses may be correlated, in that the post-yield mode shapes are
very similar to the free-free mode shapes, and we have shown in Section 4.3.4 that
the higher-mode free-free responses are driven by the first-mode acceleration.

The SRSS modal combination method has been tested for the top mass accel-
cration for the 27 cases with 77(U) = 0.5 s in Table 4.1. It was found that the
true peak accelerations exceeded the SRSS values by a factor which increased with
both the non-linearity factor NL and the yield-ratio Q,/W, with typical but by
no means constant acceleration ratios of 1.13, 1.3 and 1.4 for Q,/W values of
0.02, 0.05 and 0.10, when NL exceeds 0.5. Problems with selecting an appropriate
maodal combination rule have led to attempts to estimate the shear envelopes by
other methods as described below,
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Estimation of the shear distribution using the mid-height bulge factor

For the design of structures with bilinear‘isolation, it is often important to estimate
the maximum seismic shears over the height of the structure. It is useful to relate
the profile for overall shears to the profile for mode-1 shears, which may be derived
approximately from the structural masses M, and the base level shear for mode 1,
as given by bilinear acceleration spectra and the total mass.

Since the top-level shear is given by the top acceleration and mass, knowledge
of the top-mass acceleration provides a shear value at this level. Also the base
shear is approximated by shear due to mode 1 alone. Hence if a mid-height shear
is obtained, the shears at three levels give some indication of the shear profile. (For
moderately non-uniform structures it may be appropriate to find the intermediate-
level shear at about the level of the node of mode 2.)

The mid-height shear may be given by a bulge factor BF defined as the ratio of
total mid-height shear S(0.54) to the first-mode mid-height shear §,(0.5h).

BF = S(0.5h)/S;(0.5h). (4.196)

For a purely first-mode response, the bulge factor is 1.

Usually, the most significant contribution to the variation from the first-mode
shear distribution would be expected from the second mode, particularly at mid-
height where the mode-2 shear distribution has a maximum. The mid-height shear
could be estimated from a SRSS combination of the first- and second-mode con-
tributions, but the SRSS approach using all modes appears to give poor results for
structures with bilinear isolation. Also, modes higher than the second also contribute.

As a generalisation of the SRSS combination of the first two modes to estimate
the shear at mid-height, we have sought a correlation between the bulge factor BF
and the ratio of the first-mode to second mode top-mass accelerations of the form

BE = /1 + a(Rx o/ K1 (4.197)

The relationship between the mid-height bulge factor BF and the ratio of second-
to first-mode top acceleration Xs5,/Xs, was examined for the 81 case studies of
uniform shear structures with bilinear isolation (Table 4.1).

As shown in Figure 4.13, it was found that, when most isolators with Ty, = 6.0 s
were excluded, then Equation (4.197) with a = 0.85 gave a good fit for the bulge
factors for T,(U) = 0.25 s or 0.75 s. However, it somewhat overestimated the
bulge factors for T} (U) = 0.5 s, when the bulge factor was approximated better by
taking a = 0.6.

For cases with Ti,, = 6.0 s, a number of mid-height bulge factors were consid-
erably less than given by Equation (4.197), while some were moderately greater
(when Qy/W = 0.02). This approach is therefore qualitative only, but useful in
many cases.

For the 81 cases the bulge factors were caleulated in two ways. First the bulge
factors were calculated at the exact mid-height, that is with hall of the mass-3 forces
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Figure 4.13 Mid-height shear bulge factor BF as a function of the top-level acceleration
ratio X5,/Xs,; for 63 of the bilinear isolation systems shown in Table 4.1,
together with the relationship BF = /(1 + a(X;52/X5)*) and the best-fit
values of ‘a’

included in the shear values. Since modal shears were based on free-free values,
modes 3 and 5 had shear nodes at the mid-height and therefore did not contribute
to the computed mid-height bulge factor. Secondly, the mid-height bulge factors
were computed using the mean of the shears just above and below mass 3. This is
denoted S,,(3,4) in Table 4.1. This approach has some contribution from all five
modes, The two approaches gave much the same relationship between the mid-
height bulge factors and the top accelerations as expressed by Equation (4.197).
The second approach using average near-mid-height shears showed somewhat less
scatter from the trend lines given by Equation (4.197).

This approach of estimating the overall shear distribution in terms of the mid-
height bulge factor, with the top and base shear already known, has been used in
the preliminary design procedure presented in Chapter .
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Estimation of the shear distribution in terms of exponent p and non-linearity
factor NL '

Use, in design, of the method based on the mid-height bulge factor requires an esti-
mate of Xy »/Xy., from the non-linearity factor NL and the elastic-phase isolation
factor /(Ky1) = Tipy/T1(U), and then the use of an equation of the form (4.197) to
obtain BF in terms of Xv,vlleNJ y

Andriono and Carr (1991a) give an approach for obtaining the shear distribution
directly from the non-linearity factor NL (which they call the hysteretic shape ratio
‘R’) and the unisolated period T; (U). They quantified the shear distribution in terms
of an exponent p describing a power-law variation of acceleration with height in the
structure. They enveloped the equivalent lateral force distribution by a distribution
given by

W.h?

Vel (4.1982)

where F; is the inertia force at level i, V is the base shear, W; the floor weight
and h; the height of the floor from the base.

For a constant acceleration distribution, corresponding to a structure with a
high degree of linear isolation, p = 0. With non-linear isolation, the accelerations
usually increase towards the top of the structure, corresponding to a positive value
of p. The exponent p was found to be highly correlated with the hysteretic shape
ratio R (non-linearity factor) for a given unisolated first-mode period. Regression
analyses were performed to obtain p as a linear function of R

p=A+ BR. (4.198b)

This expression was usually fitted with a high correlation coefficient. For a given
value of R, the exponent p was found to be larger for greater values of 7;(U), in
line with the general conclusion that higher-mode effects are more important when
the structure is more flexible with respect to the isolation system. The correlations
were found to be earthquake dependent (Andriono and Carr, 1991a, Figure 14).
The approach is used as part of a design procedure recommended by Andriono
and Carr (1991b), to find the overall shear distribution once the base shear and
displacement have been estimated.

4.4 SEISMIC RESPONSES OF LOW-MASS SECONDARY
STRUCTURES

4.4.1 Introduction

Importance of secondary-structure seismic responses

Many structures contain subsystems, or secondary structures, which are essential
for their design functions; in some cases the main role of a structure is to pro-
tect the systems which it contains, These secondary systems can pose significant
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seismic design problems, in that they may suffer much more severe seismic attack
when mounted (above ground level) in a structure than they would experience if
mounted on the ground. Greatly increased responses can occur when a secondary
system has a natural frequency tuned to a natural frequency of the primary system,
so that it is excited by a nearly sinusoidal support motion to which it responds
resonantly. On the other hand, those secondary structures which are within ap-
propriately isolated primary structures may experience much lower seismic attack
than they would if ground mounted, because the support motions have both their
amplitudes reduced and their dominant frequencies much lower than the natural
frequencies of the secondary systems. Some types of seismic isolation system can
reduce the earthquake response of secondary structures by an even greater factor
than that by which they reduce the response of the primary supporting structure.
For some important systems which are seismically vulnerable, installation within an
appropriately isolated structure may be the only really effective means of providing
protection from seismic attack.

F'eatures of secondary-structure seismic responses

The general features of the seismic responses of a secondary structure may be
outlined as follows. A secondary structure with very low mass compared with
that of its supporting structure responds to the accelerations of its supporting floor
in the same way that the structure itself responds to the seismic accelerations
ol the ground. However, floor accelerations differ in severity and character from
the typical noise-like ground accelerations which generate them. For first-mode
structural periods up to about 1.0 s, floor accelerations are typically more severe
and of longer duration than ground accelerations. Also, floor accelerations are more
periodic, being concentrated within frequency bands centred on the frequencies of
prominent structural modes. As a result, the seismic attack on secondary structures
i Irequency selective, with more severe attacks on those secondary structures that
have a frequency close to that of a prominent primary mode.

"The traditional approach to determining the maximum response of secondary
systems with a single attachment point is through floor-response spectra calcu-
lated by neglecting any interaction between the primary and secondary structure,
as discussed in Section 2.1. These spectra provide a convenient summary of the
frequency characteristics of the support-point motion, and such spectra are com-
pared for different isolation systems in Section 4.4.5, but the neglected interaction
cffects can be important even when the ratio of the mass of the secondary system
to that of the primary structure is low.

Three important factors which determine the responses of secondary structures
(o floor accelerations have been highlighted (Igusa and Der Kiureghian, 1985a).
These factors are tuning, interaction and non-classical composite modes. When
o secondary mode has its frequency tuned to a primary-mode frequency, its re-
sponses 1o the accelerations of that primary mode are much more severe than the
primary-mode motions of its support. For increasing ratios of the effective mass
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of a secondary mode to that of the primary structure, the tuned responses of the
secondary system are reduced by interaction between the tuned primary and sec-
ondary modes. Finally, when the damping of a primary mode is different from
the damping of a tuned secondary mode, the pair of natural modes, given by the
composite action of the primary and secondary ‘modes’, are non-classical. These
non-classical mode shapes influence the extent to which a secondary mass reduces
a tuned secondary-mode response. In its simplest form, a secondary structure sup-
ported by a primary structure can be modelled as a two-mass structural system
with a very small mass ratio, as shown in Figure 4.14. For small mass ratios, it
is convenient to express seismic responses, to a good approximation, in terms of
the independent modal features which the primary and secondary structures would
have if they were separately mounted on the ground. These independent modal
features are given in Figure 4.14 for the simple two-mass system.

The main features of the seismic responses of a secondary structure are most
easily derived and understood in terms of the responses of this simple two-mass
system. The above factors of tuning, interaction and non-classical mode shapes
are included in the derivation of the two-mass responses, for which the results are
given below.

The effects of a significant mass-ratio on a secondary-mode response may be
provided for by using the mass ratio as one of the parameters in the floor spectra
defined by the seismic responses of a two-mass primary and secondary structure.
The floor spectra for a particular design earthquake may be found by computing the
peak accelerations of the secondary mass when the two-mass system responds to
the earthquake accelerogram. Alternatively, floor spectra may be related to ground
spectra by factors which are derived using a statistically defined approximation
to the accelerogram, as described below, or by modal combination rules which
account for closely tuned, non-classical, interacting modes.

ms

mp |—:%J l"‘}F‘-Z-:p‘
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Figure 4.14 Model defining the parameters of a linear 2-mass primary-secondary sys-
tem. The frequency and damping parameters apply when the systems are
mounted separately on rigid ground
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4.4.2 Seismic responses of two-degree-of-freedom secondary and
primary structural systems

Problems with tuned secondary-structure modes

For a near-tuned secondary structure with a very low mass ratio it is not satisfactory
to derive the maximum responses of the secondary structure using a square-root-
sum-of-squares (SRSS) combination of the response spectrum values for the modes,
as described in Section 2.4.4. Each of the two modes includes both secondary and
primary mass motions. For a tuned secondary structure the mode shapes become
extreme, with the secondary mass displacements very much greater than the primary
mass displacements. The correlation between the appendage-mass responses for the
two modes approaches —1. Moreover, these extreme mode shapes are generally
non-classical.

A response spectrum approach can be restored by deriving floor spectra based
on a two-degree-of-freedom, ‘2DOF’, model of the mode and the near-tuned ap-
pendage. For particular earthquake accelerograms, time-history analysis may be
used to find the responses of the 2DOF model as described by Penzien and Chopra
(1965) and Skinner et al. (1965). Such 2DOF spectra are difficult to apply in prac-
tice. For a given earthquake, they have five parameters, including the mass ratio.
They call for time-history analysis for each design earthquake, since they cannot be
derived from individual or average earthquake response spectra. These difficulties
may be avoided by using an approach based on statistically-defined earthquake
accelerations (Igusa and Der Kiureghian, 1985a) as described below.

General modal features of 2-mass primary-secondary systems

The peak responses of a secondary-structure mode, to the seismic motions of a
primary-structure mode, follow simply from the seismic responses of an equivalent
2DOF system, as shown in Figure 4.14, with a secondary mass mg of frequency
o, and damping &5 mounted on a primary mass m, of frequency w, and damp-
ing &p. The peak responses of the 1-mass secondary structure or appendage, as
a function of ws and &, are given by the floor spectra of the one-mass primary
structure.

Igusa and Der Kiureghian (1985a) show that the modal shapes, frequencies
and damping ratios of the combined primary-secondary system can be expressed
b

2
w; =w, 11 £1/2sgn(B)Re \/y + {i (?gp - %Q) + ‘3} (4.199)

a
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G =— { —Gpt =&k sgn(A)Im [y + |i| &% — —& )+ B| §(4.200)
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1

where f = (wp — ws)/w, is the tuning parameter, y = ms/my is the interaction
parameter and 84 = (gp — (wp /ws)z;s) @y /ws is the non-classical damping parameter
with

average frequency

b o wp + Wy
T2
average damping
&p + &5
Ga = - )
and damping difference
fa = é'p =i

The first and second elements of the mode-shape vectors correspond to the
primary and secondary degrees of freedom respectively. ¢, is related to the pri-
mary structure, (the ‘structural” mode shape), and ¢, is the secondary structure, or
‘equipment’, mode shape.

When the secondary system is detuned from the primary system, i.e. where there
is a large separation between their natural frequencies so that 8 is large compared
with the mass ratio y and dampings ¢, and ¢, the frequencies and damping ratios
of the two modes of the combined system are essentially those of the individual
systems. Both modes of the combined system are also (almost) real, i.e. the overall
system is (almost) classically damped.

Detuned modes

The detuned mode with the primary system frequency (the ‘structural mode’) has
a mode shape in which the secondary system displacement is a factor of w?/(w? —
mf,) times the primary system displacement. The ‘equipment mode’, which has
the frequency of the secondary system, has a structural displacement a factor of
yw; [(w; — w;) times the equipment displacement.

The amount of excitation of the structure and the equipment in each of the
detuned modes is proportional to the participation-factor vector. The nature of
these vectors depends on whether the secondary system is stiff’ with respect to the
primary system (w, 3 @,) or whether it is flexible (w; < ;). The mode shapes
produce the participation factors summarised below, where the structural degree of
freedom is the first element ol cach vector,
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Table 4.2 Approximale participation factors for detuned primary-secondary
systems

Primary (Structural) mode Secondary (Equipment) mode
W) X wp, & =g,

an =Wy, § g

2

! L

2

)y 2> ay l‘, X ml': Ir; = %
' =L w?

A l‘”; __P
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2
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1 2

. - 2 @
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As seen in Table 4.2, for a stiff secondary system detuned from the primary
system w 3> . In the structural mode the secondary system moves virtually with
its support point, with a participation factor of slightly greater than unity, while the
equipment mode has low participation factors for both the primary and secondary
§ymem masses. For a flexible secondary system (o, < @p), the structural mode
involves little displacement of the equipment with respect to the ground, with the
structure having a participation factor of unity, while the equipment mode involves
little displacement of the structure, with the equipment having a participation factor
near unity, i.e. the structure and equipment respond directly to the ground motion
with their own natural frequencies and dampings. For detuned systems, none of
the participation factors substantially exceeds unity, and some are considerably less
than this. As the mode shapes are (almost) real for these detuned systems, and their
natural frequencies are well separated, their responses can be calculated by standard
response spectrum methods with SRSS combination of modal responses. The nature
f’f the results differs, depending on whether the frequency of the secondary system
is much greater or much smaller than that of the primary structure.

; For the relatively ‘stiff’ appendage, with ws > wy, using the above expres-
sions for the participation factors leads to the following SRSS expression (Der Ki-

ureghian, 1980) for the peak acceleration response of the secondary system mounted
on the primary system:

] \*. wp )
Xps - 1 o+ w_f Sg(wp, Ep) =+ (;P_) Si(ws- ‘;-s)

w? 4 2
~ Spwn e | 14 =2 4 L (ﬂ) (1 + M) . (4.202)
w: 2 \w Silwp. ¢ p)

In this case, the equipment responds rigidly with the structure, so has essentially

4.4 SEISMIC RESPONSES OF LOW-MASS SECONDARY STRUCTURES 205

the same response as its support point. Damping in the equipment has little effect
on its absolute acceleration response. The ratio of the structure-mounted equipment
response to its response if ground mounted is approximately Sa (@, p)/Sa(ws. &5).
This is the usual situation for equipment mounted in seismically isolated structures.
As wp < @ and usually &, >> &, the equipment response can be significantly less
than when it is ground mounted. If the equipment was tuned to the first mode
of the unisolated structure, its response would have been much stronger than its
ground-mounted response.
For a flexible appendage, w; < wy

2

4 2
- [N 5 ws 2
— _ v ! I == 158
Xps (wp) Six(wp ‘:p)"}'( -+ w!) SA(w* &)

P
@ 1 [ # Si(a)p‘ &p)
s b=z 2 ol Fhos. < = 2
Salws, &) |:l - : < 5 ( ) St | (4.203)

The maximum absolute acceleration response is essentially the same as that of
the ground-mounted equipment. The effect on flexible equipment of introducing
isolation to the structure would be to move from the case of w, < @, for the
unisolated structure to @, = w, for the isolated structure. As has been shown in a
discussion of perfectly tuned systems (Skinner and McVerry, 1992), the equipment
tuned to the isolated structure would have two to three times its ground-mounted
response; so also two to three times its response in an unisolated structure. However,
for an isolated structure, @, is small and hence Sa(w, &) is generally small in
absolute terms. The floor-response spectra of Figure 2.7 show the reduction in
appendage responses in isolated structures compared with those in an unisolated
structure.

Features of tuned modes

For well tuned primary and secondary systems, in which the tuning parameter
B = (wp — ws)/w, is sufficiently small, the nature of the response is considerably
different. The complex frequencies of the two modes of the system are located
close to, and symmetrically about, the average complex frequency of the primary
and secondary systems,

For small mass ratios y, the complex frequencies of the two modes are close to
those of the primary and secondary systems, diverging from these values for larger
y. For small y, the equipment mode involves little structural motion.

For perfectly tuned systems, in which g = 0, the nature of the complex fre-
quencies depends on the relative size of the mass ratio y and the square of the
damping difference 7. For # = 0 and & < y, the two modes have equal damping
ratios &, but different natural frequencies. For g = 0 and 2,"13 = y, the frequencies
are both equal to @, but the damping ratios are different, and there is a 90° phase
difference between the motions of the equipment and the structure in both modes,
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The imaginary components of the mode shapes for tuned systems are significant
unless the damping difference ¢, is zero, which is the only case where the mode
shapes are real-valued, corresponding to classical damping. If the damping ratios
of the primary and secondary systems are equal, the damping for the two combined
modes takes the same value.

To illustrate the potential for high amplification with a tuned secondary system,
consider the participation factors when &y is zero. For this case the tuned mode

shapes are (a;, 1) where &; = —8 ¥ /v + B2. The participation factor vectors

are
Py (“) (4.204)
af+y \ 1

For the completely tuned case, 8 =0, o; = F /v and the participation factors are

1
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For low mass ratios y, the equipment participation factor is very high in both
modes and of almost equal amplitudes but opposite signs.

The effect of the degree of tuning on the participation factors can also be in-
vestigated for £; = 0 as the mass ratio y goes 1o zero. The structural-mode par-
ticipation factor vector is (1, —1/(28))T while that for the equipment mode is
(0, 1+ 1/(28))". For small B, but 2 >> . the equipment participation factor is
again high but of almost equal amplitude and opposite sign in the two modes.

For equal damping &, = &, so that &; = 0, and for very small y and B, there is
a large measure of cancellation between the secondary-mass responses of the two
modes. As shown below, the response for the combined modes is limited by the
damping in the system, for # and y sufficiently small. Moreover. if the parameters
are f = y = 0 with the dampings &p = & = 0 also, the peak response is still
limited, usually at a very high value, by the duration of the excitation.

The nearly tuned systems have close modal frequencies and, except for the case
&g = 0, have non-classical modes. Hence their responses cannot be calculated by
the standard response-spectrum methods.

4.4.3 Seismic response of a multimode secondary structure on a
multimode primary structure

Parameters of multi-mode primary-secondary systems
Igusa and Der Kiureghian (1985b) extended the analysis of two-degree-of-freedom
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equipment-structure systems to a secondary system with m degrees of freedom,
mounted with multiple support points-on a primary system with n degrees of
freedom. The combined system has four key parameters linking lhe characteristics
of mode i of the primary system and mode j of the secondary system. Three of
these are analogues of the two-degree-of-freedom system parameters:

Tuning parameters:

gy= TN (4.206a)
Wy jj .
Interaction parameter: .
yij = o3 =L, (4.206b)
Hpi

Non-classical damping parameter:

8 = (;1,,- = w%"_gs J,-) >, (4.206¢)

(1)5_,'

where @y ;j = (wpi +w;;)/2 is the average frequency of the primary and secondary
modes. Here @ denotes frequency, ¢ damping, the subscripts p and s refer to the
primary and secondary system respectively, and i and j refer to the modes. pi;
and p,; are the modal masses ¢ [M]¢.; and ¢; (M), where ¢; land @, are
the mode shape vectors for the secondary and primary systems on their own.

The fourth key parameter «;; is a spatial coupling parameter between the two
subsystems. For the case where there is a single support point at dcgr;e—of—ﬁ‘eedom
¢ of the primary system, referred to as the coupling point, the cPuphng parameter
«;; between the ith primary mode and jth secondary mode is given by

. ¢5Mr
7 ¢l IML1gs;

o ¢pﬂ' = rsj%,'. (4.20?3)

Here r is the influence vector, a vector of unity for a simple chain primary or

secondary structure. ‘ : vl
When the secondary system is a single mass oscillator, this further simplifies to

o = P (4.207b)

For the multi-mass secondary system with a single support point, the interaction
parameler becomes b
~2 42 M) 1
Vi =T doei— (4.208)
Hpi

(@) IM,]r)’
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and Penzien, 1975) of mode j of the secondary system. The appropriate mass

] 1% s *afforty . " aen? v
The product pe ' 15 the ‘effective modal mass™ (Clough
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of the primary system for calculating the interaction coefficient is up;ﬂﬁsﬂ- =

;}[Mp]gbp,- / ¢§“., which is dependent on the coupling point ¢. Both effective masses
are independent of the normalisation of the mode shape.
The criterion for a primary mode i and a secondary mode J to be considered
tuned is analogous to that for the two-degree-of-freedom system. The modes are
modified by tuning if

g2 Vii
AR PR —*’—) 4.209
ﬁI = € ( Esj‘:pf ( %)

where ¢ is the acceptable relative error in the secondary system mean-square re-
sponse from the detuned approximation

E(x}) (detuned) — E(x2)
E(x2)

(4.209b)

Here &, ;; is the average damping o +&:)/2.

Igusa and Der Kiureghian (1985b) consider several categories of tuning. When
one primary mode is tuned to one secondary mode, this pair of modes is defined as
singly tuned. There may be several pairs of singly tuned modes. When there is a
cluster of several primary and secondary modes with closely spaced frequencies so
that they are tuned to each other, the situation is referred to as multiply tuned modes.
Finally, primary modes which are not tuned to secondary modes, and secondary
modes which are not tuned to primary modes, are called detuned. In general a
combined primary-secondary system may consist of a combination of several pairs
of singly tuned modes and several clusters of multiply tuned modes, with the
remainder of the modes detuned.

Modal features of primary-secondary systems

Expressions are given by Igusa and Der Kiureghian (1985b) for the mode shapes,
frequencies and dampings of detuned primary and secondary modes, and for singly
tuned modes, with a low-order eigenvalue problem formulated to determine the
properties of multiply tuned modes.

The results for the detuned and singly tuned cases are summarised below. Pa-
rameters of mode & of the overall system are denoted by an asterisk superscript and
a k subscript. Parameters of the primary system and secondary system modes have
a subscript p or s before the mode or position subscript. The superscript ¢ denoting
the coupling point is dropped in «;;. The 7 4+ m modes are numbered with the first
n corresponding to structural modes and the remaining m to secondary modes. In
the mode shape vector, the first n elements correspond to primary system degrees
of freedom and the second m to secondary system degrees of freedom.

e Mode corresponding to detuned primary mode k:

wy (o (4.210a)
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¢pk
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For a single support location this becomes

Do

;= . (4.210d)
= m w; :
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This compares with the two-mass expression

1
¢ = wiiz . @.211)

w? — wl

The mode shape is real, so its participation factor can be found by the standard
means. Dropping terms of order y;;, the participation factor for the mode corre-
sponding to the detuned primary mode £ is

=T Fpk¢pk
M@f - no _ (4.212)
9T IMIg] O .
j=1 wsj. == (.t)pk

The corresponding expression from the analysis of the two-degree-of-freedom sys-
lem is

Lg= w? , (4.213)
w? — w}
Thus the responses of structural degrees of freedom in mode k of the combined
system are identical to those in the primary system alone, and equal to the Stl'l..lC—
tural response of the two-degree-of-freedom system n'fultlplled by the effective
participation factor of structural mode & at the point of interest. .

The effective participation factors of degrees-of-freedom corresponding to [}.IC
sccondary system in a mode corresponding to a detuned primary mode ?ontaln
contributions from all secondary modes. The natural frequency and damping: are
those of the primary system mode.,

For the secondary system participation factors, the weighting ['ac!nr F,,mp(.;f falls
rapidly with increasing mode number & for typical unisolated ‘t:hzull-lypc. primary
structures, With effective stractural isolation Iy = 1.0, while values for k > 1
are quite small,
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e Mode corresponding to detuned secondary mode [:

O =0g L=ty (4.214a, b)
Y @
wtt = | i=1 @i 0 — & ik (4.214c)
bq

For a single support location, this becomes

b=\ i=1 w;,v — &} Tudpi |. (4.2144)
Pq

This mode shape is real-valued, so the participation factor takes the conventional
form for a classical mode given above

Z": Yuwh Dyi

= ¢’:L[M]"
¢:If[m¢;-r!
Evaluating T, ,; to lowest order produces (Skinner and McVerry, 1992)

L M (4.215)

nl

n N 2
LS. _Ya®y e
SR Z wﬁrp;%f i=1 & — @2 i | . (4.216)
i=] “Tpi sl r's.f¢d

In the case of one primary and one secondary mode, this simplifies to the two-
degree-of-freedom expression

wawg
(] — w2)?
s Sihary il 4.217)
wP

TR
W — w;

The participation factors for the structural degrees of freedom for the detuned
secondary modes are small, of order y;,. The participation factors for the secondary
system degrees of freedom may be of order 1. They differ by a factor of

" 2
(Z ST
2 2 piPpei
i=1 Wpi — Wy

from their ground-mounted values, which is small if wy is large, but may be of
order unity il wy lies in the range of the low modal frequencies of the primary
system or is less than the fundamental mode frequency of the primary system.
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The effective participation factor of primary mode i at the connection point ¢,
[pi®pei. falls rapidly with increasing mode number i for typical unisolated chain
structures. Again with effective isolation the factor is approximately 1.0 for i = 1
and is small for i > 1. Hence with effective isolation only the first term of the
summation may be required.

e Modes corresponding to a singly tuned primary-secondary mode pair:  We next
consider modes corresponding to the singly tuned modes, mode £ in the primary
system and mode [ in the secondary system.

The criterion for tuning of a pair of primary system and secondary system modes
has been given earlier. The frequencies, dampings and shapes of the two modes
r =k and r = n + [ of the combined system, corresponding to the tuned modes,

are

2
w; = weu § 1+ 1/25gn(By) Re ‘/ v + [i ( 2 o — %ts:) + ﬁu]
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The tuned modes are in general complex-valued if the non-classical damping
parameter is non-zero,
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. For complex-valued mode shapes, the standard participation factor expression
for a clagsical mode is replaced by generalised participation factors as given by
Igusa and Der Kiureghian (1985a). For the case of exact tuning, i.e wp = wy
80 fly; = 0, it can be shown that the effective participation-factor vector for sec-
ondary system degrees of freedom is the equipment participation factor in the
(wo-degree-of-freedom system times i@y 'y g, For the primary system degrees
ol freedom, the effective participation factor vector is the two-degree-of-freedom
structural participation-factor times I"p.¢ppi. These results should be good approx-
imations for near-tuned cases as well. For a base-isolated structure, the product
[pi@per is approximately unity for the first mode and nearly zero for higher modes.

Combination of modal responses

The detuned modes are well separated in frequency and real-valued, so the combi-
nation of their peak modal responses can be treated by the standard SRSS approach
(Der Kiureghian, 1980).

Pairs of singly tuned modes are both very closely spaced in frequency and in gen-
eral complex-valued. Igusa and Der Kiureghian (1985) give a modal-combination
rule for calculating their contribution to the overall peak response, but it is a rather
complicated expression. We take a different but similar approach which gives a
simpler, although more approximate result.

Consider first the nearly-tuned two-mass system. Analytically it is convenient
to express a peak seismic response of the structure, and a peak response of the
appendage, either mounted on the structure or mounted on the ground, as the
product of the root-mean-square, RMS, value of the response and a ‘peak factor’
P, which is defined to be the ratio of the peak response to the RMS response.
Hence for peak displacement responses,

X = P - X(RMS). (4.219)

For a ground-based 1DOF oscillator, with frequency @ and damping ¢, X (w, &) is
the displacement spectrum value Sp(w, £) for the ground motion.

The peak seismic responses of the secondary structure can be derived from the
ratios of RMS seismic responses and of peak factors, using Equation (4.219):

Xps = [Xps(RMS)/ Xo(RMS)][ Pys/ P,] X, (4.220)
where

Xps, Xps(RMS), P, = peak response, RMS response, and peak factor for the
secondary structure when mounted on the primary structure,

X, X;(RMS), P, = peak response, RMS response, and peak factor for the
secondary structure when mounted on the ground.

A common assumption is to neglect the effects of the ratio of the peak factors, a
conservative assumption in that this ratio generally lies between about 0.75 and 1.0
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(Skinner and McVerry, 1992). As a second assumption, take the RMS ratio in the
first bracket to be the same as for the ‘white-noise case. Then, from Equation (36)

of Igusa and Der Kiureghian (1985a),

1 o\
i : (2)"x
\/Sgpe:a\/l +- 32/(4";;) + }’f(4?,’s€p) Wy
N 1-38/4
V8GLay/ 1+ B2/ (45]) + v/ (48:%p)
It is implicit in this assumption that response-spectrum values for frequencies in
the vicinity of the near-tuned primary and secondary frequencies s and wj scale in

the same way with frequency, and particularly with damping, as the RMS response
of a ground-mounted oscillator to white noise, i.e.

SD(“)SI C’s)- (4-221)

X(RMS) = [7Go/(@¢w*))"? (4.222)

where Gy is the white-noise power density spectrum, and hence

(4.223)

1
Sp(w.l,') o _ﬁ

Generalising to the multi-mass case involves replacing the parameters by their
multi-mass analogues, and multiplying by the appropriate component of the par-
ticipation factor product Ipi@pck Cuga for the point of interest. The expression for
combining the modal responses to find the maximum relative displacement response
dyax.r at point r of the secondary system then becomes

)’ = 3 TgSh@nd+ Y, (Tpdpaludan)’

idetuned k.l muned pairs
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The effective participation factors Iegr ; at point r in the secondary system of
detuned mode i can be obtained from Equation (4.212) for detuned primary modes
and Equation (4.216) for detuned secondary modes. For the tuned-mode term, the
expression gives the combined contribution of the two contributing modes so is
evaluated only once for each contributing pair.

Similar modal combination expressions can be written for velocity or accel-
eration responses, although strictly the tuned-mode expressions vary for different
response quantities. It is expected that using the displacement form of expression,
with Spy replaced by Sy or Sa for the relative velocity or absolute accelerations,
should be of comparable accuracy to other approximations used in the derivation.

When the tuned modes are high-frequency modes ol the system, the contribu-
tions from the lower-frequency detuned modes may be a significant portion of the
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total response. Note that the above expression assumes that the primary system
modes are well separated, and also that the secondary system modes are well sep-
arated. Also, the expressions have been developed for the individual subsystems
being classically damped.

4.4.4 Response of secondary systems in structures with linear isolation

The analysis of combined primary-secondary systems given so far does not apply
exactly to structures with linear isolation, as the isolated primary system has non-
classical modes. Kelly and Tsai (1985) and Tsai and Kelly (1988, 1989) have
performed three analyses of equipment in base-isolated structures. In each case
they have restricted their attention to equipment with a single mode. In the first
analysis (Kelly and Tsai, 1985) they consider the base-isolated structure represented
by two modes, the rigid-body-like isolator mode and the first superstructure mode,
assuming classical damping with the equipment represented by a single spring-
damper-mass system. In the second analysis (Tsai and Kelly, 1988) they again
consider a two-mode representation of the base-isolated structure, this time with
non-classical damping. In the third analysis (Tsai and Kelly, 1989) they consider
a multi-mode representation of the base-isolated structure, but revert to classical
damping.

The results we have derived for a classically damped primary structure with an
attached secondary system can be applied directly to a base-isolated structure if
the non-classical nature of the primary system mode-shapes is neglected. This is
a reasonable approximation in that the structural motion of a well isolated struc-
ture is dominated by the first mode. From the results of Section 4.2.3, the two
leading terms in the perturbation expression for the fundamental mode shape of a
well isolated structure are real, with the effects of damping first appearing at order
(e /wrg1)’, an order higher than the effect of the base-isolation spring. Higher
modes, for which the effect on the mode shape of the isolator damping appears
at O(wp/wep1)?, the same order as the effect of the isolator spring, have small
participation factors, of order (wy/wy0)?, while the fundamental mode has a partic-
ipation factor of order 1. Even when the superstructure deformation with respect
to the isolator is considered, the first mode is still dominant. Its superstructure
deformation is O(wy/wgg;)>, while the superstructure deformation of the higher
modes is O(wy/wu0)?, wWhere wy is the bearing frequency \/(Kh/MT), wrp) is the
first-mode frequency of the fixed-base structure, and ,q is the nth-mode free-free
frequency of the free-free superstructure, with w,o = (2n — 2)wgg; for a uniform
structure. Thus the higher-mode contributions to the superstructure deformation are
of order (wpg/wy0)* times the first-mode superstructure deformation, which is of
order 1/(2n — 2)%.

These features of the mode shapes and participation factors of a linear struc-
ture with a linear isolation system mean that the first-mode approximation to the
superstructure deformation retains the essential features of the response,

Consider first the case of an Nemass superstructure mounted on an isolation
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system consisting of a mass, spring and damper, so the primary system has (N +1)

degrees of freedom, with non-classical damping effects of the primary structure

neglected. The equipment is modelled as a single-degree-of-freedom oscillator of

mass me., frequency . and damping & and is attached at degree of freeldom c
of the superstructure, giving an (N +2) degree-of-freedom system. For ?qu;pmem
detuned from all the isolated modes, the maximum absolute acceleration of the

equipment is given as

2 1/2
N+l i y N+l T ¢ ;
=17 Lo s, (o ) | + Y — S L)
i=1 | 1 _ Wpi. i=I]_(_€
e Wyi
(4.225)

Here Tpi, @peir @pi and p; refer to the parameters of the isolated modes of the
primary system, with non-classical mode shape effecl§ neglected, not to the modal
parameters of the unisolated structure. The first series of terms corresponds to
the detuned structure modes, while the second term corresponds to the detuned
equipment mode, which has contributions from all the structure modes. ’

For the equipment tuned to isolated mode k of the structure, the result given
carlier simplifies in the case of a single-mass appendage to

2
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where @, = (won + @.)/2 and &, = (G + Ze) /2.

For the case of detuned equipment, the first term dominates the first bracket
<ummation. because the first-mode participation factor is much greater than _t'or
other modes. In the second bracket, even this term can be neglected assuming

e 3> Wy, so for the detuned case
Xe & l‘pl‘bprls.'\{‘”pl-z:pl)-

For the tuned case, the tuned-mode expression will dominate when the term
under the square-root sign is of the same order as Cpebper oOr less. Fu‘r luning with
the first mode, Uy 18 of order 1, so the tuned mode will dt'munalc. l:xc.cpl
for long-period items like sloshing water tanks, or equipment with very ‘ﬂcxlhlc
mounts, the equipment is unlikely o be tuned to the first mode of an isolated
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structure. For higher-mode tuning, Fpi@per is of order (wy,/w,0)* while the term

under the square-root sign at least equals its value of v 4pk ok + &) obtained when
e =0 and B = 0, which is of order &y. Often this is greater than (w/wy0)?, so
the tuned mode does not dominate. The maximum response of a ‘high frequency’
(@e ~ O(wrp1) or greater) appendage in an isolated structure will be of the same
order as the maximum response of the isolated structure, rather than the structure
response amplified by a factor of O(1/ /) which may be very large.

Tsai and Kelly (1989) give an example of a very lightweight piece of equipment
attached to a base-isolated structure with a first-mode period of 2 s and damping
of 10%, and higher-mode and equipment damping of 1%. The first-mode response
dominates except when the equipment is tuned to the second mode, when both terms
are of similar size. Generally, similar results for somewhat different dampings are
given by cases (ii) and (iii) of Figure 2.7.

This analysis showed that the response of ‘high-frequency’ equipment (i.e. nat-
ural frequency of order wpp, or greater) in a base-isolated structure was strongly
dependent on the first two modes, at most, of the isolated structure. Tsaj and Kelly
(1988) used a simple representation of the base-isolated structure to consider the
effects of non-classical damping. They represented the superstructure deformation
by its first mode only, so the isolator-structure-equipment system became repre-
sented by a three-mode model. They chose the equipment frequency so that it was
nearly tuned to the second mode of the isolated structure. The results discussed
above showed that this is the only case when the equipment response is likely to
be dominated by a mode other than the first isolated mode.

It was found that the deformation of the equipment relative to the floor involved
terms corresponding to the classical-mode terms with slightly different natural fre-
quencies and dampings, plus two additional terms arising from the imaginary parts
of the eigenvector, which do not occur in the classical-mode method. One of these
terms is of O(1), so the equipment response calculated from the classical-mode
approximation may be completely different from that given by the more exact
complex mode method. For the particular example considered, the true response
was about double that given by the classical-mode method. This ratio is also given
by Equation (48) of Igusa and Der Kiureghian (1985a) for a two-mass system for
very small y and a maximum value for &%, i.e. £2 or &2, where £, or &, are zero
respectively.

Chalhoub (1988) and Chalhoub and Kelly (1990) considered the earthquake
response of cylindrical water tanks in base-isolated structures, with an experimental
shake-table study supported by a theoretical treatment. The sloshing frequency of
tanks of fluid may be close to the frequency of the fundamental mode which
generally dominates the response of isolated structures. The natural frequencies of
most other equipment are unlikely to be tuned to the low fundamental frequency
of an isolated structure.

Pressures on the walls of tanks containing fluids consist of an impulsive com-
ponent and a convective component. The impulsive pressure results from the ac-
celeration of the container wall against the fluid. The convective component results

4.4 SEISMIC RESPONSES OF LOW-MASS SECONDARY STRUCTURES 217

from waves causing changes in the free-surface elevation of the fluid. The results
showed that low-frequency sloshing could be of larger amplitude in a tank mounted
on an isolated structure, but the slight increase in convective pressure was much
more than offset by the decrease in the impulsive pressure because of the reduced
accelerations in the isolated structure. Thus even for sloshing water tanks, where
isolation could be perceived as introducing problems, isolation has real advantages
in reducing the accelerations on contents of a structure. The only serious concern
is the possibility of spillage from open tanks with insufficient freeboard.

In summary, the earthquake response of equipment in structures with linear iso-
lation is not susceptible to the strong amplification of the ground acceleration which
may occur for equipment mounted in fixed-base structures. Even for the worst case
where the equipment is tuned to the frequency of the lowest superstructure mode of
the isolated system, the amplitude of the acceleration response of the equipment is
only of the same order as its response when mounted on the ground. For accurate
calculation of the expected response of equipment in an isolated structure, it is
necessary to account for the non-classical nature of the equipment-structure modes
since the classical mode method may grossly underestimate the true responses.

4.4.5 Response of secondary systems in linear structures with
non-linear isolation

Introduction

The previous section has treated the response of secondary systems in linear struc-
tures with linear isolation by using an analytical response spectrum approach which
accounts for interaction between the primary and secondary systems and the non-
classical nature of the combined primary-secondary modes when there is near
tuning between modes of the two systems. The approach relied on the synthesis
of the modal properties of the combined system, and the development of appropri-
ate modal combination rules (Skinner and McVerry, 1992) derived from random
vibrations theory, based on the results of Igusa and Der Kiureghian (1985a, b).

Systems with non-linear isolation are much less amenable to such an approach,
although Igusa (1990) has extended it to two-degree-of-freedom primary-secondary
systems with moderate non-linearities. However, the single-mass representation of
the structure in this simple model eliminates the non-linear interaction effects which
feed energy between the different modes of the primary system, which we have
shown in Section 4.3 to be very important for structures with non-linear isola-
tion. Also, the assumption of moderate non-linearity inherent in the perturbation
approach used in the analysis may be violated for a base-isolation system.

The results in this section for appendage response in non-linear primary struc-
tures have been derived in two ways. First, standard floor-response spectra derived
by ourselves and Fan and Ahmadi (1990) and Fourier spectra of the floor mo-
tions obtained experimentally by Kelly and Tsai (1985) are used to indicate the
frequency bands in which energy is available in the floor motions to drive ap-
pendages. This approach neglects interaction effects, which are important in linear
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systems for the response of lightly damped appendages tuned to lightly damped
maodes of the primary system. An important result of Igusa’s exploratory study
ol non-linear primary-secondary systems is that interaction is less important than
for linear primary-secondary systems. This is presumably because hysteretic en-
ergy dissipation in the non-linear system gives a high value of equivalent viscous
damping, in which situation interaction is not a significant factor for linear systems.
However, this result needs to be treated with caution for appendages tuned to the
higher modes of the non-linearly isolated structure. High viscous damping at the
base was shown in Section 4.2 to produce high first-mode damping in the base-
isolated system, but small to moderate damping in the higher modes. If hysteretic
base damping makes a similar small contribution to the damping in the higher
!'nodes. then lightly damped appendages tuned to a higher mode of the non-linear
isolation system give the situation of lightly damped primary and secondary sys-
tem modes, for which interaction may be important. The amount of damping in the
higher non-linear modes is difficult to assess, in that the energy dissipation mecha-
nisms are competing with energy transfer through non-linear interaction. However,
the results shown in Figure 4.11 indicate that higher-mode energy dissipation within
the yielding phases of a system with bilinear isolation is small, although there may
be significant higher-mode accelerations imparted from the non-yielding phases of
the response.

The second approach considers response histories calculated for one-mass ap-
pendages attached to multi-mass isolated structures. Fan and Ahmadi (1992) calcu-
lated response histories to derive exact floor-response spectra including the effects
of interaction for appendages on a structure supported by various isolation systems.
Fan and Ahmadi compared the appendage responses for an unisolated structure and
for a linear isolation system with those for bilinear isolation systems with either a
rigid pre-yield phase or perfectly plastic post-yield phase or both. The responses of
these types of bilinear isolators contain strong high-frequency components, as they
involve a low isolation ratio /(Ky,) in the pre-yield phase or a high non-linearity
factor. We performed a less extensive study which was restricted to appendages
which were perfectly tuned in the post-yield phase of the response to either the
second or third mode, but with spring elements active in both response phases for
the bilinear isolators.

Floor-response spectra

The traditional approach to evaluating lightweight appendage response is through
floor-response spectra, in which the support-point excitation of the appendage is as-
sumed to be unmodified by the presence of the appendage. ‘Floor-response spectra’
f:alculated from the support-point motion in the absence of the oscillator are shown
in Figure 2.7 for the top floor of a structure supported by a variety of base-isolation
systems. Similar results have been calculated by Fan and Ahmadi (1990).

The systems considered in Figure 2.7 are tabulated in Table 2.1 and comprise
a ground-mounted four-mass structure with 77(U) = 0.5 s: and a similar structure
(in some cases with T;(U) = 0.25 s) mounted on non-zero-mass base isolation
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systems. Two of these systems are linear and four are non-linear (bilinear) as
detailed in Table 2.1 and the associated text. The north-south component of the
1940 El Centro accelerogram was used as the earthquake ground motion. The floor
response spectrum was calculated for an appendage with 2% damping subjected to
the top-mass motion in each case, and compared with the corresponding spectrum
for appendage responses to the first-mode contribution to the floor motion. The
first-mode motion was obtained by sweeping with the free-free first-mode shape
for the isolated systems, and with the exact first-mode shape for the ground-mounted
structure.

The discussion of the characteristics of isolation systems in Sections 4.2 and 4.3
indicates that relatively little higher-mode response should be expected for the
linearly isolated structures and for cases (iv) and (vii) which have a high degree of
isolation in the elastic phase (see Table 2.1). Cases (v) and (vi) with stiff isolators
in the elastic phase are likely to produce significant higher-mode responses. The
floor-response spectra obtained confirm these expectations, as shown in Figure 2.7.

The ground-mounted structure has peaks in its floor-response spectrum corre-
sponding to the first-, second- and third-mode periods, with the first-mode peak
the strongest. All peaks show a much stronger response of the appendage than it
would experience if ground-mounted.

The lightly damped linear isolation system has a strong first-mode peak, although
much reduced in acceleration from the strongest peak of the unisolated system, and
small second- and third-mode peaks. The first-mode peak occurs at a period close
to Ty, while the second-mode peak is at about T}(U)/2, as expected for the second
mode of this well isolated structure. The floor-response spectrum differs little from
that for the first-mode floor motion alone, as obtained by sweeping the overall
response by the first free-free mode shape.

The more heavily damped linear isolator led to a reduced first-mode appendage
response, but a slightly stronger second- and third-mode appendage response com-
pared with that for the lightly damped isolator. The increased higher-mode re-
sponse is presumably related to the higher effective participation factor arising
from the non-classical mode shape and increased base impedance for the more
highly damped isolator, as discussed in Section 4.2.

As anticipated, the bilinear isolation systems with stiff elastic phases, i.e. low
I(Ky;), produced floor-response spectra showing strong short-period excitation of
appendages. The strongest of these peaks is of smaller amplitude than the first-mode
peak of the unisolated structure. However, the higher-mode peaks have amplitudes
similar to those for the higher modes of the unisolated structure. The higher-mode
peaks are considerably stronger than the first-mode peak. The periods of the higher-
mode peaks correspond to the natural periods in the post-yield phase, which are
close to the free-free periods for the higher modes.

The floor-response spectrum for cases (iv) and (vii) is similar at low frequencies

to that for the linear isolator with high damping. However, there is a significant
peak at the second-mode frequency for case (vii), which has an isolator with a
virtually elasto-plastic force displacement characteristic, and hence a high non-
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linearity factor. This is consistent with the considerable strength of the second-mode
response for this system, as predicted by the plot of second-mode to first-mode
response as a function of non-linearity factor (Figure 4.12).

Floor-response spectra for 2% damped appendages mounted on the top storey of
structures with various types of isolation systems were also produced by Fan and
Ahmadi (1990). The results were summarised in their Figure 5, reproduced here
as Figure 4.15. Fan and Ahmadi considered a uniform three-mass structure with a
fundamental period of 0.3 s mounted on a fourth mass of the same value supported
by the non-linear springs and viscous damper of the isolation system. They gave
results for five types of isolation system, as well as the unisolated structure. The
systems considered were a linear isolation system with 2 s natural period and 8%
critical damping, taken as a representation of laminated-rubber bearings, and four
non-linear systems containing frictional sliding elements. Two of these isolators
had rigid characteristics in the non-sliding phase.

Fan and Ahmadi found that, for excitation by the El Centro 1940 north-south
component, the base isolation systems which they considered eliminated the res-
onance peak of about 10g in the floor-response spectrum which occurred for the
unisolated structure at its fundamental period. The amplitudes of the floor-response

(g9)
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Figure 4.15 Floor-response acceleration spectra with various isolation systems, at the
top of a uniform three-mass structure with a fundamental period of 0.3 s
and a damping factor of 0.02, for El Centro 1940 NS (from Figure 5 of Fan
and Ahmadi, 1990), Systems shown are fixed-base (F-B), pure friction (P-
If). resilient friction (R-FBI), sliding resilient friction (SR-F), Electricité de
France (EDF) and laminated-rubber bearing (RB). Note the high-frequency
content in the response of the PF, R-FBI and SR-F systems which have
rigid non-sliding phases
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spectra at the fundamental period of the unisolated structure were generally reduced
by a factor of 10 or more for the various'isolation systems, except for the pure fric-
tion (i.e. rigid/perfectly plastic) system with a coefficient of friction of 0.2 which
had a series of peaks of about 2g amplitude. The linear rubber bearing system, with
2 s period and 8% damping, produced a peak of about 1.8¢ at its natural period, but
its amplitude over the rest of the spectrum was about 0.15-0.3g, the lowest for the
various isolation systems considered. The spectrum for the rubber bearing isolator
was smooth with only a few peaks, corresponding to the modes of the isolated
system. The second peak was at about 6 Hz, about twice the natural frequency
of the ground-mounted structure as expected for the second isolated mode. The
spectra for the other systems generally fell between those for the rubber-bearing
system and the pure friction system. The spectra were very irregular for those sys-
tems with stick-slip frictional sliding characteristics, particularly where the isolator
was rigid in the non-sliding phase. The ‘EDF’ system, with elastic-perfectly plastic
characteristics, had a spectral shape similar to that of the rubber-bearing system,
although with larger amplitudes, with a well defined second-mode peak. This sys-
tem is similar in response characteristics to our case (vii), with reasonable isolation
in even the elastic phase of the response but a high non-linearity factor because of
its elasto-plastic character.

Fan and Ahmadi (1990) showed further differences in the nature of the various
isolation systems by comparing the floor-response spectra at various levels in the
structure. Their Figure 6 and some additional material are given as Figure 4.16.

For the linear rubber-bearing isolation system (Figure 4.16b), the spectra were
virtually identical for all floors except for frequencies in the vicinity of the small
second-mode peak, where the appendage response was strongest at the level imme-
diately above the isolator and at the top of the structure. This is consistent with a
rigid-body-type fundamental mode contributing most of the response, with a small
contribution from the second mode which is characterised by antinodes of virtually
equal amplitude at the top and immediately above the isolators, with a node at
mid-height.

The ‘EDF’ system, an elasto-plastic system with a coefficient of friction of
0.2 and a 1 s period in the non-sliding phase, showed an essentially rigid-body
first-mode response (Figure 4.16(e)), with the differences between the mid-height
response and those at the top and base of the structure more accentuated by rela-
tively stronger second-mode response than in the rubber-bearing system.

The resilient-friction system (R-FBI), where the isolator is rigid in the non-
sliding phase but has spring resilience during sliding, showed evidence in the
floor-response spectra from the various levels of at least the first three modes
participating in the response (Figure 4.16(d)). The acceleration response in the
third mode, at about 10 Hz, was strongest in the mid-height region.

Fan and Ahmadi also considered the response of the isolation systems to ex-
citation by the 1971 Pacoima Dam S16E and 1985 Mexico City SCT cast-west
records. The Pacoima Dam component had o very strong peak ground acceleration
of 1.17g, and produced an extreme resonance (about 50g) in the top-floor-response
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Figure 4.16 Floor-response spectra with various isolation systems at the floor levels of
the structure considered by Fan and Ahmadi (Figure 6 of Fan and Ahmadi,
1990, and personal communication, 1992). Note the second-mode response
at approximately 6 Hz and the third-mode response at approximately 10 Hz
for the isolated structure. (a) Fixed base system. (b) Laminated-rubber bear-
ing. (c) Pure friction system. (d) Resilient friction system. (e) Electricité de
France system

spectrum of the unisolated structure. The SCT record had only a moderate peak
ground acceleration (0.17g), but was characterised by strong frequency content in
the 0.45-0.5 Hz band, which may be important for some types of isolation system,
particularly the linear rubber bearing system when the natural period is 2 s.

As with the EI Centro excitation, all of the isolation systems considered com-

4.4 SEISMIC RESPONSES OF LOW-MASS SECONDARY STRUCTURES 223
3.0
f-\2.5 >
2.0 A
c
.0
B 1.5 b
% \’{M A%
0 (R
2 1.6 = " :'
[H
| y ,N\ /
a 0.5 B 2
0.0 T T T T T T T T T T T T 1 T T T
0 5 10 15 20
© Frequency, f, ( Hz )
3.0
R—FBI
~2.5 A 3rd L
..................... 2 d
A AT RIS T SR e I T I8t FL.
Rl R AL R M | s e Bose FL
c
2
©1.5
o]
[1}]
o
21.0
X
o
& 0.5
0.0

Frequency, f ( Hz )

Figure 4.16 (continued)

pletely eliminated the resonant peak of the unisolated structure at 3.33 Hz in the
Pacoima response, with maximum amplitudes of the floor-response spectra 10 to
25 times lower than for the unisolated structure. For the Mexico City excitation, the
rubber bearing system, with 2.0 s period, showed the expected resonance at about
0.5 Hz, reaching an amplitude of about 10g compared with about 1.7g for the uniso-
lated structure. At greater frequencies, the floor-response spectrum was almost flat.
The three isolation systems with rigid non-sliding phases, that is the pure friction,
resilient friction and sliding resilient friction isolators, showed strong second-mode
peaks under the low-frequency, near-sinusoidal Mexico City excitation. The pure-
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Figure 4.16 (continued)

friction system introduced this extra peak while failing to eliminate the fixed-base
peak at about 3.3 Hz. For the Mexico City base excitation, the elasto-plastic EDF
system, with an elastic phase period of | s detuned from that of the structure at 0.3 s
and that of the excitation at 0.5 Hz, gave the best performance in terms of the floor
acceleration response spectrum. These results show that isolation systems must be
selected with care if there is a possibility of low-frequency, nearly sinusoidal exci-
tation. Even highly non-linear isolators which suppress the low-frequency motion
may produce higher-frequency secondary system responses which are stronger than
the secondary system responses in an unisolated short-period structure.

The final section of the paper by Fan and Ahmadi (1990) considered the effect of
damping in the structure, in the secondary system and in the isolator for a resilient
friction isolator. They found that damping in the structure “has no effect on the floor
spectrum for frequencies lower than 4 Hz'. From the spectra presented in Figure 8
of their paper, we interpret this result as showing that damping in the structure
has little effect on the first-mode response of an isolated structure and increasingly
greater effect on the higher modes. This is consistent with our analysis of linear
isolation systems, for which the isolator contributes most of the damping in the first
mode, while the damping in the structure becomes progressively more important
at higher frequencies.

Increased damping in the secondary system significantly reduces its response
for secondary-system frequencies less than 15 Hz, but has little effect for higher-
frequency appendages. We interpret this as showing that damping in the appendage
has significant effect in the frequency range of the modes of the isolated structure.
In the example considered, 15 Hz is a higher frequency than the natural frequency
of any of the modes of the isolated structure, so appendages with frequencies
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greater than this essentially respond as rigid bodies with the same motion as their
attachment point. '

Fan and Ahmadi (1992) considered the same structure and isolation systems
as in their 1990 paper, with the omission of the resilient sliding friction system.
This paper took into account interaction effects, with maximum values extracted
from the response histories calculated for appendages with various mass ratios. The
interaction effects were found to be important only for the stronger peaks of the
floor-response spectra, and then only for appendage masses of 0.01 times the floor
mass, or greater, for the isolated systems. The interaction between the primary and
secondary systems generally reduced the peak response of the secondary system,
so that the standard floor-response approach neglecting interaction is usually con-
servative. The nature of the spectra was generally similar to that of those discussed
above, for which interaction effects were not modelled.

Experimental studies of appendage response on isolated structures

Kelly and Tsai (1985) carried out an experimental shaking-table programme to study
the response of appendages attached to the top of a five-storey steel frame mounted
on isolation systems consisting of laminated-rubber bearings with and without lead
plug inserts to provide hysteretic damping. One oscillator had a natural frequency
close to that of the lowest mode of the fixed-base structure, while the second
and third oscillators were tuned to the second and third-mode frequencies of the
base-isolated structure. The shake table was driven by various scalings of the El
Centro 1940 north-south, Taft 1952 S69E, Parkfield 1966 N65E and Pacoima Dam
1971 S14W motions. The case of an appendage tuned to the first-mode isolated
frequency was not considered as most equipment is unlikely to have such low
natural frequencies.

The peak accelerations of the oscillators on the base-isolated systems were less
than those on the top of the fixed-base structure, even when the oscillators were
tuned to the second and third-mode frequencies of the isolated structure. For the
rubber bearings without lead plugs, the peak accelerations of the oscillators were
less than those of the shake table.

For the appendages on the structure with non-linear lead-rubber isolators, the
magnification, defined as the ratio of the peak oscillator acceleration to the peak
shake-table acceleration, reduced as the earthquake scalings increased. This demon-
strated that the non-linear nature of the lead-rubber isolator system provides more
isolation as the intensity of the earthquake excitation increases.

The reduction factors for the peak oscillator accelerations on the isolated struc-
tures with respect to those on the unisolated structure were large for the rubber
bearings with no lead plug, typically around 15-20 for the first-mode oscillator and
usually 10-15 for the higher-frequency oscillators. The factors were much less for
the oscillators on the lead-rubber isolator system, ranging from 1.4-4.9. Greater re-
ductions would have been possible by reducing the yield forces of the lead-rubber
isolators by reducing the size of the lead plugs, but the lead plugs are effective
mainly for reducing the isolutor displacements rather than reducing the accelera-
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tion response of oscillators tuned to the higher-mode frequencies of the yielded
isolator-structure system. These experimental results show the same trends as our
calculated floor-response spectra shown in Figure 2.7. The calculated spectra are
for systems with bilinear hysteretic loops, while the loops for the experimental sys-
tem were likely to have been curved. Fourier spectra of the measured floor motions
showed much stronger high-frequency content with the lead-rubber isolators than
with the linear isolation system obtained with the rubber bearings alone.

Another experimental study of the response of contents in base-isolated struc-
tures was that by Chalhoub (1988) and Chalhoub and Kelly (1990), which con-
sidered containers of fluids with sloshing frequencies similar to the first-mode
frequency of the isolated system, a situation where it might be thought that isola-
tion would increase the response. However, as discussed earlier, the reduction in
the impulsive forces through isolation was much greater than the increase in the
convective forces from sloshing, leading to much reduced dynamic forces in the
tank compared with those when the tank is installed in an unisolated structure.

4.5 TORSIONALLY UNBALANCED STRUCTURES
4.5.1 Introduction

A structure is torsionally unbalanced when its centre of stiffness is offset from its
centre of mass. Some structures are inherently torsionally unbalanced, due to an
asymmetric floor plan (probably dictated by the needs of the building), an asym-
metric layout of the structural members, or the location of stair-wells and lift-shafts,
etc. With nominally balanced structures, accidental torsional unbalance can arise
due to material inhomogeneities; distribution of live loads; inhomogeneous struc-
tural stiffening around cladding, windows etc; or failure of structural members.
Again, when an isolated structure is nominally balanced, allowance must be made
for inevitable accidental unbalance. Design codes therefore call for a minimum ec-
centricity in calculations, typically 10% of the length of the structure perpendicular
to the direction of loading.

When a transverse mode is coupled to a rotational mode by moderate static
torsional unbalance, there is a dynamic amplification of the torsional component
of seismic responses if certain conditions are met. The main conditions are: close
modal frequencies, sufficiently large torsional unbalance and sufficiently low modal
dampings.

The principal effects of torsional unbalance on the seismic responses of linear
structures have received considerable attention (Newmark and Rosenblueth, 1971).
The treatment of modal features which is closest to that given in this section is
presented in papers by Skinner er al. (1965) and Penzien (1969). These papers give
combined seismic responses of close-frequency torsional modes, based on time-
history analysis of responses to earthquake accelerations. Combined responses are
treated more systematically by Penzien, who proposes special response spectra for
close-frequency mode pairs. The need for these special spectra has been largely
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removed by the introduction of the more convenient CQC rules for modal combi-
nation (Der Kiureghian, 1980a, b; Wilson er al. 1981). The CQC treatment is used
in the present discussion.

The approach used here is an analytical treatment of the modal features and
seismic responses of a 2DOF structure whose centre of stiffness (C.S.) is offset
from its centre of mass (C.G.). This applies to linear structures with or with-
out linear isolation. Secondly, there is consideration of a torsionally unbalanced
structure with bilinear isolation. The seismic responses of a torsionally unbalanced
structure, with and without bilinear isolation, have been evaluated by Lee (1980)
using response-history analysis. This shows the clear-cut reduction in torsional (and
other) responses that can be achieved by mounting the (single-storey, asymmetric)
structure on a bilinear isolator. As with linear isolation, the bilinear isolation sys-
tem was found to be most effective if mounted with its centre of stiffness below
the centre of mass of the structure.

4.5.2 Seismic responses of linear 2DOF structures with torsional
unbalance

Modal features

The modal features of 2DOF structures with torsional unbalance are given in detail
by Skinner er al. (1965). The present treatment emphasises cases with moderate
unbalance and with close translational and rotational frequencies.

The quantitative effects of torsional unbalance may be well illustrated with a
simple two-degree-of-freedom, 2DOF, model, as shown in Figure 4.17(a), in which
a torsionally unbalanced structure is oriented along the x-axis and translation in
the y-direction, and/or torsion in the horizontal (x — y) plane, occur in response to
excitation in the y-direction. Here the circled dot and cross refer to the centre of
mass (C.G.) and centre of stiffness (C.S.) of the structure respectively. The structure
is assumed balanced for excitation in the x-direction.

Figure 4.17(b) shows a simplified plan view of a model with two equal masses
M /2 (equal weights W/2), which retains the same C.G. and angular momentum as
the original structure of Figure 4.19(a). The masses are separated by £ from the
C.G. Torsional unbalance is given by offsetting the centre of stiffness (C.S.) by ré
from the C.G. The supporting ‘springs’ of stiffness K /2 are taken as equidistant
from the C.S., with a radius of torsional stiffness which is (1 + A) times the radius
of inertia r. The masses are displaced by ¥, and V), respectively during the mode-1
rotation shown, and the springs are displaced by Y, and Y.

If both § = 0 and A = 0 then the system has equal translational and torsional
frequencies but it is degenerate and no unique natural mode shapes are defined.
Close frequencies and moderate unbalance are achieved by giving A and 8, respec-
tively, small fractional values. For small values of A and § the modal features may

be expressed approximately as perturbations of the features of the equal-frequency,
balanced modes, as discussed below,
The model in Figure 4,17 may be interpreted as representing a one-storey uniso-
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Figure 4.17

STRUCTURES WITH SEISMIC ISOLATION

(a)

Modal features of two-degree-of-freedom (2DOF) structures with close fre-
quencies and moderate torsional unbalance. (a) Elevation of a model of a
torsionally unbalanced 2DOF structure. (b) Plan view defining the structural
parameters and the coordinate system. (¢) Modal deflection when a small
unbalance is dominant, case 1, (broken line) and when a small frequency
separation is dominant, case 2 (solid line). (d) The modal participation fac-
tors Iy () and 500, and a combined-response participation factor 'y, (x),
as derived in the text, are shown for case |
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Figure 4.17 (continued)

lated structure with a shear stiffness K, or as a model of a structure with linear
isolation, with K = K}, and with the structure approximated as rigid. The shapes
of the two normal modes and their natural periods may be obtained by equating
translational forces and by taking moments about a node such as that on the right
of Figure 4.17(b), for free vibrations at frequency @ in the absence of external
forces. Thus

from forces: % 2(Yy + Yp) = gcyc + Yy) (4.227a)

and

from moments: _':—vmz()’f +Y) = g-(}’f + Y. (4.227b)
2¢

Geometrical relationships may now be used to express the displacements ¥ in
terms of distances (o the node; eliminating o gives

\ 2=y =t =1 (4.228a)
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where
e=A+(A*+8)/2 (4.228b)

so that £ & A for small A and 8. The positions of the two nodes, which define the
two mode shapes, are then

Mode 1 : x1 = (r/8)[ /(> + %) +¢] (4.229a)
Mode 2 : X = —(r/OLJ(E +8) —e]. (4.229b)
Note that x;x = —r?, which shows that the nodes of the two modes lie on opposite

sides of the C.G., one within and one beyond the radius of inertia.
The natural (circular) frequencies can be obtained from Equations (4.227a) and
(4.229) which give:

o] =gK/W[l+e— J(*+8%)] (4.230a)
) =gK/W[l+e+ f(e®+8)]. (4.230b)
It is useful to define the term in the above square root separately, as the variable
" B = /(e +8). (4.231)
Note that 8 is a measure of the relative separation of the modal frequencies, as
B~ (@ — 1)/ w,
where the average frequency

W, = (w1 + wn) /2.

The mode shapes y = ¢(x) are defined conveniently by the locations x; and
x, of their nodes, (Equations 4.229) and are scaled to give unit displacement at
x = 0. Hence

d(x) =1—x/x (4.232a)
and

Pa(x) =1 —x/x3. (4.232b)
Modal participation factors

From the mode shapes and mass distribution, the participation factors are given by

Cy(x) = (/2|1 + /B = (6/B)(x/r)] (4.233a)
a(x) == (L/2)1 /B + (8/B)(x/r)]. (4.233b)
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The above modal features may be illustrated by the modal displacements for
an acceleration of —g along the y-axis, as shown for two cases by the plan view
in Figure 4.17(c). For case 1, A = 0.01 and § = 0.05, the unbalance parameter
8 exceeds the frequency separation parameter A, and both modes contain large
(and opposite) rotational components. Modal displacements ¥; and Y, are given
by broken lines, while the dotted line shows the static deflection for this case. For
case 2, A = 0.05 and § = 0.01, the frequency separation parameter A exceeds
the unbalance parameter 8, and both modes contain small (and opposite) rotational
components. Mode 1 is dominantly translational and mode 2 is dominantly tor-
sional, and small, as shown by the modal displacements ¥, and ¥, given by solid
lines.

In case 2 there is little axial-mode interaction. In case | strong axial-mode in-
teraction is caused by the small unbalance § of the translational mode, with little
suppression by the even smaller frequency separation term A.

Peak combined responses of modes 1 and 2

The peak seismic displacements of modes 1 and 2 may be obtained using the
participation factors of Equation (4.233) and the response spectrum values for the
modal periods and dampings. For close modal frequencies, as considered here, it
may be assumed that

Sp,1 & Sp;2 & Splwa, &a)

where w,, &, are the average values for the modal frequencies and dampings. The
modal responses may be combined using the CQC approach (Der Kiureghian,
1980a, b) to give the peak seismic response at x as:

Y(x) = \/1“;2(1-’) + 201271 (0)T2(x) + T2 (x) Sp(@a, L) (4.234a)
On substituting for the participation factors 'y (x) and I';(x), this becomes

Y = (1/2)JI(1 + R?) + p12(1 — R*)1Sp (s, &)
= [Me2(x)Sp (4.234b)

where

R=¢/B—(5/B)(x/r). (4.234c)

From Der Kiureghian (1980a, b) it can be shown, for the close modal frequencies
considered here, that the correlation coelficient p;» may be approximated by

pra = /11 -+ (B/28)2). (4.2344)

The coefficient of Sy in Eguation (4.234b) may be regarded as the participation
factor Mo (v) of the combined modes | and 2,
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The participation factors of the combined modes reflect the features of the par-
ticipation factors of the individual modes. When § < A (case 2) then f ~ ¢ and
Equation (4.234) gives

[Mea(x) = 1.0. (4.235a)

Alternatively if there is strong interaction, (case 1) given by A « § then ¢ < B,
and

M) = /1 + (/22 /r? = 1)/(48]/8* + ). (4.235b)

If there is a high correlation p;» =~ 1.0, given by 427 > 82, which may readily
occur, then the combined participation factor is again approximately unity.

The greatest dynamic amplification is given when strong interaction occurs, as
for Equation (4.235b), and at the same time there is a low correlation between
modal responses, given by 4¢2 < 8%; which is however a relatively extreme case.
The upper limit of the combined participation factor, for this case where A < §
and p; 2 <« 1.0 is then given as:

M) = /1 + 1723/ = 1)]. (4.235¢)

Example of individual and combined participation factors

Figure (4.17d) shows examples of individual and combined participation factors,
as given by Equations (4.233) and (4.235). To give strong axial-mode interaction,
the frequency separation A was made smaller than the torsional unbalance 8, with
A = 0.01 and § = 0.05, as in case (1). The damping was taken as &, = 0, 0.02,
0.05, 0.20, which give the correlation coefficient the values p; > = 0, 0.38, 0.79,
0.98, respectively.

The dotted lines in Figure 4.17(d) give the individual participation factors I'y (x)
and I'>(x) for modes 1 and 2, while the full lines give the corresponding values
for the combined participation factors I'jc2(x) for various average modal dampings
&y, and hence for various correlations between modal responses. The figure shows
that the combined participation factor is greater than unity whenever the values of
I"y(x) and I";(x) have opposite signs. This combined-response participation factor
illustrates the ability of modal damping to largely suppress the effects of small, but
dominant, torsional unbalance.

The above features of the combined modal responses may be summarised as
follows. When a translational mode is coupled to a rotational mode, then sufficiently
close modal frequencies give strong modal interactions. If strong modal interaction
occurs when there is also a low correlation between modal responses, given by
sufficiently low modal dampings, then there is a dynamic amplification of the
combined seismic responses in those regions of the structure which have normal
mode responses of opposite sign.

High dynamic amplification of torsional unbalance requires

&y < <.
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Therefore an increase in the torsional unbalance & allows dynamic amplification
to occur with a greater frequency separation f§ and then also with greater modal
damping &,. Conversely dynamic amplification can be suppressed by a sufficient
increase in the frequency separation and/or in the modal damping.

4.5.3 Seismic responses of structures with linear isolation and
torsional unbalance

Using the above 2DOF model, seismic isolation may be used to reduce the torsional
unbalance & to a small value. This can be achieved by an appropriate placement
of the isolator springs. The isolator may also provide large damping in the pair
of modes. The seismic isolation reduces the responses of the first pair of modes,
and the small unbalance and high damping limit the torsional components of these
modes 1o their static values by suppressing dynamic amplification of torsional
responses.

Consider a torsionally unbalanced three-dimensional structure with its C.G. di-
rectly above the centre of stiffness, C.S., of its linear isolator. The first triplet of
isolated modes is given by a system which is almost torsionally balanced since the
modal motions involve little structural deformation, and with no structural defor-
mation the system would have exact torsional balance. Next consider a moderate
offset between vertical axes through the structural C.G. and through the isola-
tor centre of stiffness, which will normally occur despite a nominally zero offset.
Torques will then be introduced by seismic forces perpendicular to this offset.
Since the torsional and translational frequencies of the first isolated modes may be
quite close, a moderate torsional unbalance of the isolator (corresponding to §) may
be sufficient to overcome the inhibiting effect of the small frequency separations,

* as discussed above. The mode shapes are now the 3DOF equivalent to case | in

Figure 4.17(c), with each natural mode containing a large component of each of the
three axial modes, for unbalance along both horizontal axes. With sufficiently low
isolator damping, such a system of modes results in large dynamic amplification
of rotational motions, as shown for its 2DOF counterpart by Equation (4.235b),
and illustrated for a particular case by Figure 4.17(d). However, the equation and
figure indicate that an isolator damping &, which is equal to the unbalance offset,
expressed as a fraction of the radius of inertia of the structure, is largely sufficient
to suppress dynamic amplification of torsional unbalance for the first triplet of
isolated modes.

The second triplet of isolated modes, arising from the second modes for the
three axes, may again have close [requencies for a regular shear-like structure.
If the torsional unbalance ol these structure-dominated axial modes is relatively
high, and structural damping 15 moderate, there may well be dynamic amplification
of the torsional unbalance for this second triplet of isolated modes. This may give
comparable responses [or the rotational and translational components of the second
triplet of isolated modes, These adid litle o the displacements and loads of the first
triplet of isolated maodes, where our cases (i) and (iii) of Figure 2.7 give some
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indication of the consequences of combining the translational components of the
first and second modes.

4.5.4 Seismic responses of structures with bilinear isolation and
torsional unbalance

The consequences of torsional unbalance, for a simple linear structure supported
on a bilinear isolator, were investigated by Lee (1980) using seismic response-
history analysis. Lee modelled a square building by a single storey with corner
masses, columns and bilinear isolator components. The C.G. was at the centre of the
building. When the building or the isolator was torsionally unbalanced, these shifts
in their centre of stiffness had equal components along the x- and y-axes. Since
all springs and masses were at the same distance from the centre of the structural
model, the radii of inertia and stiffness were equal and, when torsionally balanced,
the frequencies of the translational and torsional modes were equal, corresponding
to A =0 for the two-dimensional model of Figure 4.17.

The bilinear isolator parameters were Ty =09s, Ty, = 2.0s and QW =
0.05. These parameters were close to the isolator parameters for our case (iv) in
Figure 2.7. Lee’s seismic responses gave isolator displacements moderately larger
than for our case (iv) (as a consequence of exciting the isolated structure by both
components of the El Centro 1940 earthquake simultaneously) and the equivalent
period and damping for Lee’s isolator were close to our values, namely 1.45 s
and 24%. Lee’s model included a set of small masses at the interface between the
isolator and the structure which appear to have caused little change in the character
of the seismic responses of the isolated structure.

Initially the structure was given eccentricities typical of code prescriptions for
accidental unbalance, with ¢, = ey = 0.1 b, where b is the length of the sides of
the structure. This corresponds to an unbalance factor § = 0.2 along a diagonal of
the structure. The structure was given periods from 0.1 to 1.2 s and responses were
obtained for simultaneous excitation by the El Centro 1940 accelerograms, with
the N-S component along the x-axis and the E-W component along the y-axis.

Without isolation, the x-axis and y-axis responses were approximately those
which would have resulted from the 5% damped spectra of the N-S and E-W
accelerograms respectively (with a balanced structure). The torque, at various struc-
tural periods, corresponded to column forces which equalled or exceeded the col-
umn forces for x-axis responses. Hence, all three components of the structural
responses were high and the torques corresponded to a considerable dynamic am-
plification of the torsional unbalance.

With a balanced bilinear isolator all three components of the response were
greatly reduced, with the x- and y-axis forces close to the value given by the
acceleration of 1.08 m s~2 for our case (iv) in Figure 2.7. The torques were reduced
to give corresponding column forces which were a small fraction of the small x-
and y-axial forces. Hence the balanced isolator was very effective in suppressing
torsional responses to the structural unbalance.
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Lee also investigated the effects of isolator unbalance. The resulting torques were
essentially those given by the static unbalance, without dynamic amplification. This
was the result to be expected for an unbalanced system with high equivalent viscous
damping.

It appears that all the results reported by Lee have the general trends which
would be given by replacing the bilinear isolator by a linear isolator with the
effective period and damping based on maximum loop displacements, as described
in Section 4.3, and approximated above by comparison with our similar balanced
system (case (iv)).

When a multi-storey structure is mounted on a bilinear isolator, with structural
and isolator parameters corresponding to cases (v) and (vi) of Figure 2.7, then the
second triplet of isolated modes will be more severely excited, and they may make
significant contributions to the ‘static’ unbalance responses given by the highly
damped first triplet of isolated modes. Such higher-mode torsional responses will
have the greatest design significance for structures with high-value, seismically
vulnerable contents.

4.6 SUMMARY

The main results in this chapter are summarised here. The seismic responses of
isolation systems can be regarded as falling into two categories. The first category
comprises first-mode responses, or responses which are dominated by first-mode
contributions; examples are the maximum base shears and isolator displacements.
The second category comprises higher-mode quantities, or responses which are
strongly affected by higher-mode responses; examples are the distribution of accel-
erations and shears in the structure, and the floor-response spectra for frequencies
greater than about 2 Hz.

A high degree of linear isolation markedly reduces both first- and higher-mode
responses within the structure itself compared with those in the unisolated structure.
‘Floor spectra’, which govern the earthquake forces on the contents of the struc-
ture, are correspondingly reduced at short periods. These large reductions in the
accelerations, loads and deformations in the structure are obtained at the expense
of large displacements across the isolators.

The acceleration reductions result from a lengthening of the fundamental period
of the structure so that it lies outside the range of periods of the dominant peaks
of the acceleration spectra of most earthquakes. For linear isolation systems, the
higher-mode excitations are suppressed because the mode shapes are nearly or-

thogonal to the distribution of inertia forces imposed by the ground motions. The
base shear is determined almost entirely by the first-mode response, because the
shapes of the higher modes mean that the higher-mode inertia forces almost cancel

when summed across the varfous masses, as well as the higher-mode participation
factors being nearly zero, The displucements are also controlled by the first mode,
because of the low participation fnetors of the higher modes and their much shorter
periods compared with the st mode.
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In the first isolated mode, the structure responds almost as a rigid body, with
the fundamental period determined by the overall mass and the stiffness of the iso-
lator. The first-mode damping is determined largely by the damping in the isolator
because of the low deformations in the structure. The low base-stiffness produces
free-free type higher modes, with the periods of the higher modes a function mainly
of the stiffness of the structure rather than that of the isolator.

Because of the rigid-body nature of the first mode and its dominance in the
overall response, the base shear and isolator displacement can be estimated accu-
rately by a one-mass model, with the stiffness and damping corresponding to those
of the isolator.

The degree of linear isolation depends on the isolation factor / = T,,/T,(U),
namely the ratio between the period 7 of the isolator and the fundamental pe-
riod T}(U) of the unisolated structure. The isolated mode shapes and higher-mode
periods are very close to the free-free values for / > 2.

The isolator displacements can be reduced by increasing the energy dissipation
in the isolator. This can be achieved either through viscous damping, in which
the isolation system remains linear, or through non-linear hysteretic damping from
yielding of metals or frictional sliding mechanisms.

Providing a high viscous damping in the base, such as about 20% of critical, pro-
duces non-classical mode shapes. The base impedance may increase significantly
from that due to the isolator stiffness alone, and the higher modes are no longer
orthogonal to the inertia force excitation. Both these effects may lead to substan-
tially increased higher-mode effects. The higher-mode contributions are important
in producing deviations from the mass-proportional force distribution of the first
mode, and in increasing the floor-response spectra at higher frequencies.

Non-linear hysteretic energy dissipation in the isolator can lead to response char-
acteristics significantly different from those for high degrees of linear isolation. The
significant features of non-linear isolation can be modelled by bilinear hysteretic
isolation. The different character of the response of non-linear isolation systems is
related to the excitation of higher modes. The first-mode response, which governs
the maximum base shear and the isolator displacement, can be closely approximated
by that of a one-mass model, as for linear isolation.

The similarity between the first-mode responses of linear, viscously damped
and bilinear-hysteretic isolation systems makes it useful to define an ‘effective’
or ‘equivalent linear’ period and damping for the bilinear system. This period
and damping can then be used in a ‘response spectrum’ approach as for linear
systems. The maximum base shear and isolator displacement of the non-linear
isolation system when subjected to an earthquake ground motion can be obtained
from linear response spectra. The accuracy of this approach can be estimated by
comparing these values with the maximum displacements and accelerations of
single-mass models on bilinear isolators, calculated from response-history analyses
and presented in Figure 4.5. The approach is sufficiently accurate that it is useful
as the basis for the preliminary design procedure recommended in Chapter 5.

The high-frequency (=~ 2 Hz) responses ol bilinear-hysteretic isolation sys-
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tems can be understood in terms of their modal character. The seismic responses
of a linear structure with a bilinear isolator are controlled by two sets of natural
modes and the interactions between them. The elastic-phase set of modes is that
given with an isolator stiffness K. The yielded-phase modes are those resulting
from an isolator stiffness Ky,. The yield-level ratio plays an important role in deter-
mining the level of first-mode response, and in the degree of excitation of the higher
modes of the yielded-mode set. Interaction between the elastic-phase and yielded-
phase modes is strongly dependent on the elastic phase isolation factor 7 (Ky;)-

Since the maximum seismic responses typically occur during the yielded phase
of the isolator, the distributions of maximum modal responses within the structure
are given by yielded-phase mode shapes. These mode shapes are the same as for a
linear isolation system with an isolation factor 7 (Ky). However, the amplitudes of
the higher-mode responses may be considerably greater than for the linear system
because of the various non-linear excitation mechanisms besides direct excitation
by ground motion during the yielding isolator phase. As for linear isolation systems,
the higher-mode forces again almost cancel when summed over the structure, and
the low frequency of the fundamental mode in the yiclded phase means that it
dominates the displacement response. Unlike the case of effective linear isolation
systems, higher modes may make important contributions to the overall acceleration
and shear distributions, and to the floor-response spectra for non-linear isolation
systems.

The elastic-phase isolation factor /(Kyp) and the non-linearity factor NL, for
which the yield ratio is an essential parameter, combine to play an important role
in the strengths of the yielded-phase higher-mode responses. A low value of / (Kp1)
combined with a large non-linearity factor is correlated with a high ratio of higher-
mode to first-mode acceleration response. Poor elastic-phase isolation allows strong
excitation of the higher modes directly by the ground motion in this phase of the
response. In addition, a low value of 7 (Ky) produces a strong contrast between the
shapes of the elastic-phase and yielding-phase modes of the same number, resulting
in significant coupling between elastic-phase and yielding-phase modes of different
numbers. In more general non-linear systems with curvilinear rather than bilinear
force-displacement characteristics, this coupling process occurs continuously as the
effective mode shapes change with the amplitude of the motion, rather than at the
discrete times associated with the changes in response phases as in the bilinear
model. A large non-linearity factor is often required as the equivalent viscous
damping from hysteresis is proportional to NL, and high damping is required to
reduce isolator displacements. Idealised simple-friction sliding systems have no
isolation in their locked phase and have the maximum possible non-linearity factor
of 1 because of their rigid-plastic force-displacement loop, so usually have strong
higher-mode responses. On the other hand, by designing isolation systems with
hysteretic mechanisms which provide considerable isolation in their elastic phase,
it is possible 1o achieve the desired property of high damping to limit the first-
mode responses without inducing strong high-frequency responses which will attack
subsystems and contents of the structure,
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Strong higher-mode responses produce an overall shear distribution which is
‘bulged” in comparison with the first-mode distribution, producing substantially
increased values in the top half of a structure in particular. Strong higher-mode
responses also make important, and often dominant, contributions to floor spectra,
which determine the seismic forces on the contents of the structure.

The installation of seismic isolation is shown to reduce the effects of torsional
unbalance, particularly if the centre of stiffness of the isolating system is beneath
the centre of mass of the structure.

In summary, structures with a high degree of linear isolation and low isolator
damping have much reduced acceleration responses and floor spectra compared
to those of unisolated structures in El Centro type earthquakes, but may require
large isolator displacements. Lightly damped linear isolation produces mainly first-
mode response, which is characterised by nearly uniform, rigid-body-like motion
in the structure which is insensitive to irregularities in the structure. The isolator
displacements may be reduced by introducing high viscous damping or hysteretic
damping in the isolator, but this generally increases the higher-mode responses
which may be important for the overall shear distributions and floor spectra. Rigid-
plastic isolator characteristics give particularly bad high-mode effects. Non-linear
systems with good isolation in the elastic phase retain the desirable feature of
first-mode dominated response as for linear isolation, producing both low forces
throughout the structure and moderate isolator displacements.

5 A Basis for the Design of
Seismically Isolated Structures

5.1 GENERAL APPROACH TO THE DESIGN OF
STRUCTURES WITH SEISMIC ISOLATION

5.1.1 Introduction

Design approaches for seismically isolated buildings and bridges are presented
in this chapter, together with a numerical example and some comments on de-
sign codes and guidelines. The procedures follow from the features of seismically
isolated structures and the properties of the isolating devices, as discussed in Chap-
ters 2, 3 and 4, The preliminary aseismic design of an isolated structure calls for
approximate estimates of seismic loads, deformations and floor-acceleration spectra
(which indicate levels of appendage loads) when the structure is subject to design
carthquake accelerations. The procedure for structures with bilinear hysteretic iso-
lation is similar to that recommended by Andriono and Carr (1991b), for a wide
range of earthquake excitations and for a range of structures with bilinear isolation
(Andriono and Carr, 1991a).

These initial estimates of seismic responses allow an assessment to be made
of the effectiveness of seismic isolation for the particular structure and site. The
estimates also allow initial decisions to be made on structural form and isolator
parameters, and a tentative assignment of member sizes. These preliminary design
choices form the basis of the second design stage, which calls for further opti-
misation of the aseismic design based on more accurate evaluations of seismic
responses, and for a more detailed design of the structure and isolator.

It is emphasised that the procedures outlined in this chapter are intended as
i design guide only, namely as a means of enabling the designer to arrive at
suitable starting values for system parameters, which will then be refined in further
computation and dynamic analysis.

As discussed in Chapter 4, when a structure and isolator can be treated as
linear, then seismic responses may be evaluated approximately by the general modal
procedures used for non-isolated linear structures, namely using modal periods,
dampings and participation factors, together with design-earthquake spectra. With
lnear isolation, the response 1s dominnted by a simple first mode. Higher-mode
digplacements are usually insignificant, First-mode loads can be combined with the
small higher-mode contributions to give the overall structural response,
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Even moderate isolator non-linearity tends to increase the higher-mode accel-
erations and hence to increase the floor spectra. Therefore when low appendage
responses, and hence low floor spectra, are an important design consideration, a
more detailed analysis may be required to evaluate the floor spectra, even when
non-linear isolator effects are only moderate.

When the effects of isolator non-linearity are large, or when an irregular structure
with a linear isolator has seismic responses which are complicated by close modal
periods or greatly non-classical mode shapes, then the evaluation of the modal
participation factors and the definition of rules for combining modal responses
become more difficult. It is then usual to compute the seismic responses of the
structure directly, using step-by-step evaluation of the responses of a model of the
structure to the time history of design-earthquake accelerations. However, a modal
approach may be retained for the more complicated linear structures by adopting
the analytical approaches presented by Hurty and Rubinstein (1964), Wilson et al.
(1981) and Der Kiureghian (1980),

Even when structural response evaluations call for detailed time-history analy-
sis, an understanding of the importance of various structural and isolator features
is increased by also computing the contributions of individual isolated modes. This
increased understanding assists in selecting the structural and isolator modifications
required to improve aseismic performance. When it is difficult to compute the re-
sponse contributions of significant modes directly, these individual mode responses
may be derived from the time-history responses by using the mode-sweeping tech-
nique which has been described in Chapter 4 and used to derive many of the results
presented in Chapters 2 and 4.

5.1.2 The seismic isolation option

Principal features given by isolation

Seismic isolation below all or part of a structure provides flexibility and usually
damping, which generally reduce the severity of earthquake attacks. Chapters 2
and 4 demonstrated the principal reductions in attack which isolation can confer
on structures and their contents. These chapters also showed the isolator deforma-
tions and structural displacements which must be accepted in order to achieve the
reductions in seismic attack. Three central features emerged:

(1) Isolators may give large reductions in the seismic loads and deformations for
those structures, with short periods and low dampings, which are most prone
to suffer severe seismic attack if unisolated.

(2) Selected isolators may give very large reductions in the seismic loads on
secondary structures and on the contents of appropriate structures.

(3) An isolator which is effective in reducing seismic attacks on a structure must
have features which result in relatively large isolator displacements. The total
structural displacements are then a little larger than the displacements of the sup-
porting isolator, since they are moderately increased by structural deformation.
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Seismic isolation may be used to give additional benefits:

(1) Isolation gives a large increase in the first-mode period and substantial in-
creases in higher-mode periods and this may sometimes be used to reduce
severe seismic responses of secondary structures if the severity is caused by
approximate tuning to the period of an unisolated structural mode, particularly
unisolated mode 1.

(2) Isolated bridge superstructures may lead to more integrated and balanced
structures with a better distribution of seismic loads between vulnerable sup-
port substructures.

(3) Hysteretic isolators may be used to confer ductility on otherwise brittle struc-
tures, thus enabling them to resist seismic loads. If the structure has high
stiffness and low damping, effective ductility can be introduced without large
increases in structural deformations.

Factors favouring seismic isolation

At the initial design stage, it is necessary to consider whether the addition of
seismic isolation will prove to be a cost-effective means of providing appropriate
levels of seismic resistance for a structure and its significant secondary structures
and contents. However, the final decision to use seismic isolation must be made
on a case-by-case basis. The introduction of seismic isolation may be beneficial
when several of the following conditions apply to a proposed structure, when
unisolated:

(1) The unisolated structure is subject to severe seismic attack due to high seis-
micity at its site, and due to its responsiveness to design-earthquake accel-
erations. Dominant structural modes, that is modes with high participation
factors, have moderate damping together with periods within the high-value
range of acceleration spectra, and therefore high seismic responses may occur.

(2) Earthquake motions likely to occur at the site have relatively short-period ac-
celerograms, typically with dominant periods not greater than those for the El
Centro 1940 record. When the seismic attack has short periods, less isolator
flexibility is required for a given reduction in the spectral acceleration val-
ues for isolated mode 1, which usually dominate the seismic attack. Both the
reduced flexibility, and the consequent smaller isolator deformations, should
generally reduce the costs of the isolator components and the cost of providing
for structural displacements. Dominant seismic spectral periods are generally
reduced by smaller site flexibility, particularly as occurs at rock sites. Mod-
erate epicentral distance and earthquake magnitude, and the absence of large
movements on nearby faults, may also tend to give short-period spectra.

The fact that earthgquake motion dominated by short-period content favours
the adoption of seismic isolation does not rule out its use where “fault-fling’
type motions with long-period displacements are expected. The large dis-
placement demands imposed by fault-fling components may be more readily
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accommodated by isolated structures with provision for large isolator dis-
placements than by conventional structures.

(3) Primary or important secondary structures are particularly vulnerable to seis-
mic attack. This includes primary or secondary structures with moderate
strength and a low capacity for inelastic deformation, that is, with low ductil-
ity. Vulnerability of secondary structures may be increased by near-resonance
with dominant unisolated structural modes.

(4) Structural foundations are weak and have low ductility. This may present
severe problems since such foundations are usually difficult to inspect, and to
repair if damaged.

(5) Seismic loads and deformations are increased in parts of the unisolated struc-
ture by an irregular structural form. Such forms include severe set-backs,
irregular floor profiles such as an L-shape, and mass and stiffness distribu-
tions which give torsional unbalance. Unbalanced foundation stiffness may
also cause torsional vibrations of a structure.

(6) Seismic deformations of the unisolated structure make it difficult to protect
non-structural components.

(7) The structure requires little modification to accommodate an isolation sys-
tem. Such structures include bridges with superstructures which already have
provisions for substantial length and shape changes. They may also include
structures already isolated from ground-transmitted non-seismic vibrations,
such as those generated by railway traffic. Buildings with three-dimensional
beam-column frames may have a distribution of columns which gives ap-
propriate locations for isolator mounts. Buildings which have deep slender
piles to gain support from a high-strength subsurface layer may be given hor-
izontally flexible mounts by making the piles free-standing within clearance
sleeves.

(8) Reliable isolator components, which provide the required isolator features
are available at an acceptable cost.

5.1.3 Design earthquakes

In principle, design earthquakes for seismically isolated structures should be se-
lected on the same general basis as design earthquakes for an unisolated structure
at the same site. In practice, design motions for isolated structures tend to place
greater emphasis on excitation with strong long-period content than is usual for con-
ventional structures. In particular, accelerograms with long-duration ‘fault-fling’
components are often considered for base-isolated structures located near faults.
Appropriate return periods for ‘design-level’ and extreme or ‘maximum credible’
motions are selected on a similar basis to those for unisolated structures, taking
into account the seismicity of the region and the importance and risk factors for
the structure.

For many sites with high seismicity, and ground of moderate flexibility and high
strength, amplitude-scaled El Centro-like accelerograms and spectra may be used
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for seismic design; other conditions such as near-fault location or highly flexible
soil give different accelerograms and spectra. In some cases the significant features
of the accelerograms and spectra can be approximately matched by scaling the am-
plitudes and periods of the El Centro NS 1940 accelerogram ii,(¢) by the multipliers
P, and P, respectively, to give the scaled El Centro accelerogram Pyiiy(t/Fy). The
period scale factor increases the spectral periods and the duration of the accelero-
gram by the multiplier P,. For linear structures with bilinear isolators, the seismic
responses to scaled El Centro accelerograms can be obtained from the responses
to the El Centro accelerogram by weighting the structural and isolator parameters
and response quantities by appropriate factors involving P, and P,, as presented
in Chapter 4 and included in the seismic response summaries below.

A factor which may influence the character of the earthquake motions at a site
is the proximity to the causative fault, and the nature of the faulting action. A
large movement on a nearby fault is thought to increase the amplitude of long-
period ground accelerations through the presence of a ‘fault-fling” pulse, which
is important for isolator displacements. The Uniform Building Code (UBC)(1989)
commonly used in the USA calls for increases of 20% and 50% in design dis-
placements of isolators when an active fault is within 10 km and 5 km of the site
respectively, compared with those in the absence of an active fault.

Response spectra for some typical design earthquakes are discussed in Chapter 2,
where it is shown that the acceleration response spectra are dominated by periods
in the range 0.1-1 s while displacement spectra are dominated by much longer
periods. With seismic isolation it is usually found that a number of important
design features, such as the isolator-level displacements and shears, are dominated
by displacement spectral values for periods in the range from 1.0 s to 3.0 s, and
frequently within the range from 1.5 s to 3.0 s, as illustrated in Figure 2.1. For this
period range, the spectra of El Centro-like earthquakes may be approximated by
very simple trend curves.

Figure 5.1(a) shows simplified linear acceleration, velocity and displacement
response spectra for the scaled El Centro earthquake. The long-period ‘enhanced’
option, shown dotted, makes some provision for greater long-period spectral values
which may be appropriate for some sites or for earthquakes with magnitudes greater
than the Ms 7.0 value of the 1940 Imperial Valley earthquake which produced the
il Centro accelerogram.

To denote that these are simplified spectra, the symbols are underlined in the
ligure and text below.

Figure 5.1(a) is based on a simple model in which, for a given spectral damping
&, the El Centro NS 1940 velocity spectrum Sy (7T, ¢) is approximated by a curve

Sy (T, &) which is proportional to period from 0.25 s to 0.5 s, is independent of
period from 0.5 s to 3.0 s, and is inversely proportional to period from 3.0 sto 4.5 s.
The model also adopts a simple relationship between the acceleration, velocity and
displacement spectra given by

Al S Gl &) w86 (0 &) = (aa/ TS (T4i8) (5.1)
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Figure 5.1
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Simplified linear response spectra. (a) Smoothed and simplified approxima-
tions to the 5% damped linear response spectra S, , Sy, and Sy, for the scaled
El Centro NS 1940 design earthquake (solid lines). The spectra with ‘long-
period enhancement’ are also shown (dotted lines). (b) Multipliers Cy, Cy
and Cp which can be used to derive simplified scaled El Centro spectra with
other damping-factor values, from the 5% damped curves in Figure 5.1(a).
(c) Simplified EI Centro displacement spectra with long-period enhancement
(dashed lines) for damping factors of 5, 10 and 20%, multiplied by a factor
of 0.9 (see text) and compared with the average spectra for eight earthquake
components (solid lines)

where a,(¢) and a;(¢) are constant for a given damping factor . This approach
gives relationships between the acceleration, velocity and displacement spectra
similar to, but not the same as, the commonly used pseudo-acceleration spectra
@Sy and pseudo-displacement spectra Sy /@ for which a; and @, are 1/27 and 27
respectively for all dampings.
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Figure 5.1 (continued)

The vertical scales of the curve shapes of Figure 5.1(a) were adjusted to give best
fits to the corresponding 5% damped spectra for El Centro NS 1940. The curves of
Figure 5.1(a) show the simplified spectra S(7', 0.05) for a spectral damping factor
& = 0,05, The curves of Figure 5. 1(h) give the scale multipliers C'(&) required to
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give simplified spectra for greater damping values. Hence
S(T,%) = C(Z)S(T, 0.05). (5.2)

There are different factors Ca(¢), Cv(Z) and Cp(Z) for the acceleration, velocity
and displacement spectra respectively. The velocity factor has the same role as
the factor 1/B of the UBC code, and has very similar values to 1/B. A detailed
study of the variation of acceleration response spectra with damping is given by
Kawashima and Aizawa (1986), who find a relation lying between our C4 and Cy
curves.

Figure 5.1(c) superimposes 0.9 times the simplified El Centro spectra of Figure
5.1(a) on the average spectra for eight scaled earthquake components, as given in
Figure 2.1(c). The good agreement demonstrates that the shape of the displacement
spectra is representative of this set of eight scaled earthquake components, and for
many purposes justifies the simplification adopted for the spectral curves. The factor
of. 0.9 arises because of the method used to scale the various accelerograms, which
was to equate the areas under the 2% damped acceleration response spectra, over
the period band 0.1-2.5 s, to that of the El Centro NS 1940 component, while the
simplified spectra were derived directly from the El Centro spectrum.

Any earthquake motion whose smoothed spectra approximate the smoothed
spectra of the El Centro accelerogram when scaled by P, and P, as described
above, including sets of artificial noise-based accelerograms, may be regarded as
‘El Centro-like’ for many design purposes. It is in this sense that earthquake ac-
celerograms are described as El Centro like in discussions of design earthquakes.

For more detailed analysis of the seismic responses of isolated (and unisolated)
structures, acceleration-time histories of design-earthquakes are required. These may
be scaled accelerations of recorded earthquakes. Such recorded earthquakes may be
supplemented by artificial accelerograms with appropriate frequency content and
the required variation of the acceleration amplitude envelope with time. A suite of
similar recorded, or artificial, accelerograms may be used to improve the statistical
basis of aseismic design when responses are evaluated by time-history analysis.

5.1.4 “Trade-off’ between reducing base shear and increasing
displacement

The simplified spectra of Figure 5.1(a) show that in the period range which applies
for the effective fundamental period of isolated structures, namely about 1 s or
greater, increasing the period reduces the spectral acceleration for a given damp-
ing while increasing the spectral displacement. Considering the Cx(¢) and Cp(Z)
curves of Figure 5.1(b), it can be seen that increasing the damping, from 5% of
critical, reduces the spectral displacement for a given period, while the accelera-
tion decreases until 25-30% damping and then increases with a further increase in
damping. For a single-degree-of-freedom system, or a linear system in which the
base shear is dominated by the fundamental mode as for isolated structures, the
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Figure 5.2 “Trade-off” curves for a bilinear isolator. A single mass or rigid structure of
weight W is supported by a bilinear isolator which has ‘effective’ period Tg
and ‘effective’ damping factor £ as defined in Chapter 2. The system is
subjected 1o scaled El Centro NS 1940, enhanced to a long period of 4.0 s, the
conservative option. Approximate values of the maximum displacement X,
(solid line) and maximum shear force ratio S,/ W (dashed line) are given as
functions of Ty for various Zg. The scaling factors P, and P, are defined in
the text in Chapter 5, and the correction factor Cp is discussed in Figure 4.8
and in the associated text in Chapter 4. The isolator velocity-damping was
&y = 0.05, which gives an effective velocity-damping for bilinear spectra
of approximately &, = 0.05Tg/ T

spectral acceleration is proportional to the base shear. Thus there is a ‘trade-off’
between reducing base shear and increasing displacement as the fundamental-mode
period is increased, and also 10 a lesser extent as the damping is increased beyond
about 30% of critical,

For linear isolation systems these trade-offs can be emphasised by plotting on
a single diagram the spectral displacements Sp(7y, Zy) = Xy (Ty, &) and the nor-
malised spectral acceleration Sy (7, &) /g = S/ W, as a function of Ty, for various
dampings &y, where it is assumed that 7y and &, are close approximations to the
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true isolated first-mode period and damping. However, these values can be read
directly from the spectral curves.

For non-linear systems, a similar set of curves can be plotted by making use of
the ‘equivalent linear system’ approach discussed in Chapters 2 and 4. For non-
linear isolation systems, the variation of base shear with equivalent viscous damping
is somewhat different than for a true linear system. We have found that the base
shear is approximated better by S, &~ KpSp(Tg, Zg) than by S, ~ MSA(Tg, Lg).
The base shear for a given period T continues to decrease like Sp(Tg, Zg) when
the equivalent viscous damping increases in the high-damping range, rather than
to increase like Sa(7g, &p). This different behaviour arises because. for the non-
linear system, the actual viscous damping is small, so that the force corresponds
essentially to the spring force, while for a highly damped linear system, the viscous
damping term may add considerably to the spring force. The trade-off between
reducing base shear and increasing base displacement as the effective period T
increases is similar for non-linear and linear isolation systems.

Trade-off curves based on the equivalent linearisation of bilinear systems are
shown in Figure 5.2 for motions corresponding to the simplified enhanced El Centro
spectra. These curves give the base shear and base displacement as a function
of the equivalent linear period Ty and the equivalent viscous damping &g. The
displacement X (Tg, {g) curves are simply Cp(¢g)Sy(Tg. 0.05), where Cp(&g) is
obtained from Figure 5.1(b) and Sj,(7g. 0.05) from Figure 5.1(a). The S,/ W curve
corresponds to K Xy(7s, &g)/ W. As the damping enters into the S, expression only
through Xy, (Tg, &p), both Sy and X, decrease with increasing damping, both for
low and high dampings.

The axes indicate how the parameters and responses are scaled when the design
motion is scaled from the smoothed El Centro spectrum by an amplitude factor P,
and a period factor P,. The correction factor Cg, corresponding to Figure 4.8, is
also included; for most cases C is close to unity. ¢

For the particular displacement spectrum shown in Figure 5.1(a)

Sp(Ts,0.05) = 0.29(Ts/3) (m). (5.3)
Thus the curves of Figure 5.2 correspond to

Xo(Ty, 8) = CpPaP} 0.29(Ts/3P,)Cp(¢s)  (m)
= 0.097Cg Py P, Tz Cp(Zp) (m) (5.4a)

and

So(Ts. &8)/ W = wp Xo(Ts, &B) /8
A ().39CFP3P,,CD(CB),! Tx (5.4b)

where wy = 27/ Ty is the effective frequency, given by /(Kpg/W).
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Similar expressions can be derived from other simplified spectra. An example
is the seismic coefficient of the UBC (1989) and AASHTO (1991) design specifi-
cations:

Cs = So(T, )/ W = AS; /(T B(2)) (5.5

where A is a zone-dependent seismic coefficient and §; is a site-dependent coeffi-
cient. The displacement is

Xo(Ts, Z8) = Csg/wp
= 0.25A8;Tg/B(&p) (m). (5.6)

For A=04and §; =1,
Xv(Tg, &) = 0.107Ts/B(ZB).- (5.7)

For 5% damping, for which Cp = B = 1, this value agrees well with that
derived from our simplified El Centro spectrum.

Using linear spectra to obtain X; and S, for a bilinear isolation system is an
iterative process. The equivalent linear period Ty and damping ¢ are dependent
on Xy and S, and on the parameters of the isolation system. Therefore, in using
the curves of Figure 5.2 or the above equations, it is necessary to check that the
(Xp. Sp) combination obtained is consistent with the (Tg, £g) values used to enter
the spectra.

5.1.5 Higher-mode effects

Displacement and base shear are related mainly to first-mode responses, and can
therefore be predicted well by the response of single-degree-of-freedom systems.
However, the distribution of shears in the structure is also dependent on the higher-
mode responses.

In Chapter 4, it was shown that the ratio of higher-mode to first-mode responses
was strongly correlated with the elastic-phase isolation factor /(Kyy) = Ty, / T1(U)
and the non-linearity factor NL. The results given in Figure 4.12 for 63 of the
bilinear isolation systems given in Table 4.1 are generalised to an N-mass struc-
ture and simplified in Figure 5.3(a). This figure shows the ratio of the nth-mode
acceleration response at the top of the structure (mass N) to the corresponding
first-mode acceleration, for modes n = 2 (solid lines) and n = 3 (dashed lines), as
a function of NL for various ranges of elastic-phase isolation factors. As discussed
in Chapter 4, the results were derived for uniform 5-mass isolated shear-structures
subjected to the N-S component of El Centro 1940. However, they should apply
reasonably well for nearly uniform shear-structures with any number of masses

(storeys) with N> 4. Figure 5.3(a) does not represent the responses of systems
with nearly elasto-plastic charneteristics, 1.e, very large values of 7y, such as the
cases of Table 4.1 with 1, = 6 &
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Figure 5.3 Features of higher-mode responses of a standard uniform 5-mass shear struc-
ture with bilinear isolation, subject to El Centro NS 1940. (a) Trend lines
derived from Figure 4.12, showing ratios of peak modal accelerations at
the top of the structure, for 63 of the bilinear isolation systems given in
Table 4.1. Parameters for the trend lines are the non-linearity factor NL and
the elastic-phase isolation factor Ty, /T(U). (b) Variation of the total seis-
mic shear (solid line) and the first-mode shear (dashed line), illustrated for
a case with substantial higher-mode accelerations. The value of the ratio
8:/8:,1 halfway up the structure is defined as the ‘mid-height shear bulge
factor” BE

Figure 5.3(a) demonstrates that bilinear isolators give strong higher-mode ac-
celeration and load responses when the non-linearity NL is high, and when the
elastic-phase isolation factor is low. If such higher-mode responses are undesirable
then these two parameters should be chosen suitably, as discussed in Chapters 2
and 4.

Figure 5.3(b) illustrates typical ratios of total (solid line) and mode-1 (dashed
line) seismic shear forces using a uniform shear-beam structure mounted on a
bilinear isolator. The ratio of these shears at any height z, is defined as the shear
bulge factor BE, = §,/S, . The mid-height shear bulge factor BF is shown in
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Figure 5.3 (continued)
Figure 4.13 and the associated text to be given approximately by

BE~ (1 +a(XN.2/XN.I)2)”2 (5.8)

where a ~ 0.85 for T;(U) = 0.25 s, 0.75 s, and a ~ 0.6 for T;(U) = 0.5 s. The
shear at positions other than mid-height can be estimated by adding a half-sine-
wave variation to the triangular first-mode distribution.

Strong higher-mode responses also produce strong floor-response spectra in the
range of higher-mode frequencies, as shown in the examples of Figure 2.7. Higher-
mode responses can generally be reduced by increasing 7 (Ky;), which has little
effect on first-mode responses, or by reducing NL, which generally increases base
shears and displacements. Typically, reduced higher-mode responses are obtained
at the expense of increased base displacement.

5.1.6 The locus of yield-points for a given NL and K, for a bilinear
isolator

Geometrical construction

A method of determining combinations of Ky, Ky and @, which will produce a
bilinear isolator with a given non-linearity factor NL and effective stiffness Kg, is
illustrated in Figure 5.4(a).

The non-linearity factor NL was defined in Figure 2.3(c) to be equal to the
ratio between two perpendiculars standing on the common diagonal of the shear-
force/displacement hysteresis loop and the circumscribed axis-parallel rectangle
with vertices (-+ Xy, -Sy) and (— Xy, —Si,). For the bilinear case, the non-linearity
factor NL is also the ratio between the area of the hysteresis loop and that of the
rectangle,
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Figure 5.4 (a) Detail of part of the bilinear hysteresis loop shown in Figure 2.3, showing
the initial and yielded stiffnesses Ky, and Ky, the effective (secant) stiffness
Ky = Sp/ Xy, the yield-point J, and a line PR of gradient Ky through J
which is the locus of yield-points which give the same non-linearity factor
NL=0P/S;. (b) Extension of Figure 5.4(a), in which the primed variables
show how doubling the cyclic displacement X, of a bilinear isolator affects
its ‘effective’ stiffness K and non-linearity NL, and hence the effective
period T and damping factor &,

Simple geometry, using similar triangles, results in the formula NL = Q,/S;, —
Xy/ Xy. Further geometrical construction results in another useful result, namely
NL = OP/Sy, where the point P is obtained by drawing a line of slope Kg = S,/ Xy,
through the yield-point, i.e. parallel to the diagonal linking the origin and the point
(Xb, Sp). This line is shown dashed in Figure 5.4(a). The yield-point is indicated J
on the diagram.

The dashed line PR is thus the locus of yield-points J which give the same
non-linearity. By moving J along the line, systems with different Ky, Ky and
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Oy/ W can be obtained. As long as the viscous component of the damping is small
compared with the hysteretic contribution to the damping, the equivalent linear
approach (i.e. the use of ‘effective’ parameters) predicts that all such systems with
the same Ky and NL have the same maximum seismic responses X, and S.
However, the approximation tends to break down when Ky, is very large or Ky,
is near zero. Despite this limitation, the approach can be used as a framework for
design.

From the diagram alone, it would seem that the point J could be moved with
considerable freedom along the dashed line, but the values which are obtained may
be unsuitable because restrictions are imposed by the properties of real isolators,
which have only certain ranges and values for the stiffnesses Ky, Ky, the yield-
point Qy, and the ratio Ky;/Kp,. In addition, if the value of Ky, in combination
with the non-linearity NL, is too high, i.e. /(Ky) is too low, then undesirable
higher-mode effects may be produced. In some situations, there may be ways of
designing the isolation system so that desired values of K}, and Ky; can be ob-
tained. For instance, a combination of laminated-rubber bearings and lead-rubber
bearings has been used in some buildings (see Chapter 6) which gives more free-
dom in the achievable combination of parameters Ky, Ky, and Q, than is given
by lead-rubber bearings alone.

A numerical example

A numerical example is given here which illustrates the ‘yield-point-locus’ concept.
It is assumed that 7,(U) is less than 1 s, so that seismic isolation, by means of
period shifting, is appropriate. A typical value chosen is 7;(U) = 0.6 s. A value
chosen for the effective period is then Ty = 1.5 s, with high effective damping i.e.
&g ~ 0.25. The target peak base displacement is X}, = 0.071 m and the base shear
Sp = 0.127W, where W is the total weight above the isolator interface. Reference
to Figure 5.2 shows that these values are consistent with each other.

Appropriate isolator parameter values are now selected by using Figure 5.4(a).
At this stage a value for the viscous damping &, must be chosen, for example
choose &, = 0.05. Then &, = 0.2 is required to give the total effective damping
¢g = 0.25. Since the non-linearity and effective damping factor are related by
NL = (7 /2)&p, this gives NL = 0.31. Hence OP in Figure 5.4(a) is given by:

OP = NL S, = §,/3.

Fixing P locates the line PJR in Figure 5.4(a), since it is parallel to OB. If the
bilinear parameters could be chosen freely to satisfy Ty = 1.5 and &, = 0.2, then
the point J could lie at any position along PR. This is satisfied, for example, when
J is near the mid-point of PR. Let PJ=JR, giving

Oy = 0.645 S, = 0.083W.

Also
Ky o= LR2Ky and Ky = 0.52K5.
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Also, since Kg, with the rigid-structure mass, gives Tz = 1.5 s, it follows that

Ty = 1.08 s Tvp =2.1s.

These parameters now give an elastic-phase isolation factor T,/ T} (U) = 1.8 while
the non-linearity NL = 0.31. .

This situation can now be compared with that shown in case (iv) in Figure 2.7,
and discussed in the associated text, in order to assess the higher-mode responses.
The non-linearity factors are the same but the present example has an elastic-
phase isolation factor only slightly more than half that of case (iv), because of the
different unisolated periods. As a result, case (iv) has reasonably low higher-mode
responses and acceptably low floor spectra, but the case being studied here still
has significant higher-mode effects. This can be seen by estimating the mode-2
to mode-1 acceleration ratio from Figure 5.3(a). It is seen that this ratio has a
value of approximately 1.4 which can be substituted in equation (5.8) to give a
mid-height shear-bulge factor BF of 1.5, a value considerably more than for case
(iv). If this degree of higher-mode response is unsuitable, or if the real parameters
of the isolators under consideration are unable to satisfy the values of Ky, Ky
and/or O/ W required by the analysis above, then iteration must be performed to
achieve more useful parameters.

If it is assumed that the bilinear parameters Ky, Ky, and Qy remain unaltered
when the base displacement is increased from Xy, to 2X,, then revised values of
the effective isolator period and damping, Ty and &, can be found readily, as
illustrated by Figure 5.4(b), which is an extension of Figure 5.4(a).

It is assumed above that the bilinear parameters remain unaltered when the peak
displacement increases from Xy, to 2Xy,. This may not be strictly true. As indicated
by Figure 3.24 in Chapter 3, there tends to be some change in Kp; and Ky, with
increasing Xy, giving a small increase in 7. There is probably a small increase in
&y also.

5.2 DESIGN PROCEDURES
5.2.1 Selection of linear or non-linear isolation system

An early decision in the design of a seismically isolated structure is to determine
whether a linear or non-linear isolation system is required. The selection will be
governed partly by the nature of the design criteria. As discussed in the summary of
Chapter 4, non-linear isolation systems can usually produce lower values of first-
mode-dominated response quantities, such as base shears and displacements, while
linear systems are particularly effective at suppressing higher-frequency responses.
This is an important factor when the protection of contents or subsystems of the
structure is a critical design criterion.

When the protection of high-frequency subsystems is a major concern, linear
isolation systems, or non-linear systems with high elastic-phase isolation factors
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and moderate non-linearity factors, are likely to provide effective solutions. Some
systems with high non-linearity factors but also with high elastic-phase isolation
may also provide acceptably low high-frequency response. Systems with rigid-
sliding type characteristics are generally unsuitable for these types of applications.
Figure 5.3(a) provides guidance to the relative strength of higher-mode response
as a function of the elastic-phase isolation factor and the non-linearity factor.

Where high-frequency responses do not pose a major design problem, there
is likely to be a much wider range of acceptable non-linear isolation systems.
The main performance criteria are then usually related to base shear and base
displacement, for which the trade-off curves of Figure 5.2 are relevant. Increased
effective period usually reduces base shear, but increases displacements, as shown
by the trade-off curves. Increased effective damping, or non-linearity factor, usually
reduces both base shear and displacement, at the expense of stronger higher-mode
responses. Systems with nearly elasto-plastic characteristics may appear attractive,
but usually some centring force is a desirable isolator characteristic.

These characteristics provide initial guidance to the type of isolation system
required. In some cases, it may be necessary to perform trial calculations for both
linear and non-linear systems. In many cases other factors, such as the range of
isolation systems for which local suppliers or design expertise are available, may
determine the selection.

5.2.2 Design equations for linear isolation systems

Standard modal analysis procedures can be used to estimate the design responses of
linear isolation systems. Initial estimates of displacements and base shears can be
obtained from a simplified one-mass model because of the low participation factors
of higher modes. Linear isolation systems with high damping in the isolator have
non-classical modes, but usually the classical-mode approximation gives conserva-
tive estimates of the response of the structure itself. The non-classical nature of the
modes may need to be taken into account when considering the response of nearly
tuned subsystems, as the classical mode approach can considerably underestimate
the response of subsystems.

A summary of the major equations relevant to the design of structures with
linear isolators is given below.

(1) As a first approximation, the fundamental mode period and damping of
a system with a high degree of linear isolation can be obtained by treating the
structure as rigid. Then

T\(I) ~ Ty = 2m(M/Kp)'/? (5.92)
&) & &y = Cp/ (M Ky)'/?). (5.9b)
The isolator has stiffness Ky, and damping coefficient Cy,, and supports a total

mass M.
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The maximum base displacement X} and base shear Sy, can be approximated

from
Xy &= Sp(Ty, &b) (5.10a)
Sy = MX,
= MSA(Ty, &p). (5.10b)

(2) More accurate modal responses can be obtained by obtaining the actual
modal frequencies and dampings, together with the participation factors. These can
be obtained by solving the standard eigenvalue problem

(Kl = o] (Mg (.11)
where [K] and [M] are the stiffness and mass matrices of the isolated system, and
w; and ¢; are the modal frequency and mode shape for mode i.

Chapter 4 provides perturbation expressions for the frequencies and dampings in

terms of the free-free modal expressions (equations (4.90) and (4.91)). The modal
dampings can be obtained from

24w = ¢ [Clei/¢] M. (5.12)
In general, damping produces coupling between the modes unless
¢ [Clp; =0 i+ ). (5.13)

These coupling terms are ignored in the classical mode approach.
The participation factor of mode i at position r is given by

¢/ M]1
iissme—s Ori. (5.14)
¢! Mg
The maximum modal displacement and acceleration of mode i at position r are
given by
Xyi = I'iSp(T, &) (5.15a)
Xri = TriSa(Ti, &i)- (5.15b)

Again, perturbation expressions for I'y; are available from Chapter 4. As a first
approximation I',; & 1.0 and T'y; = 0, i # 1.

(3) The maximum responses of subsystems can be estimated using a modal
response spectrum approach, For single-degree-of-freedom subsystems, the relevant
modal combination rules are given by Equation (4.225) when the subsystem mode

5.2 DESIGN PROCEDURES 257
is detuned from all the modes of the isolated structure:

2 24 1/2

N+1 N+1
s T‘n- roi rrf’¢'rci'
Xe = Z ¢' 2 SA(C!J,—;, Cn'} + 2 : 2 SA(mc’ C{“)
| Wy =1 We
We Wi
(5.16)

This equation applies to a system with N + 2 degrees of freedom comprising an
N-mass structure mounted on an isolator represented by a base mass and spring,
with another degree of freedom contributed by the appendage.

The more complicated expression of Equation (4.226) is required when the
subsystem is tuned to mode £ of the isolated structure:

2

N+1
. Tsidrei
Xe 2 Z —”iﬂ_zsek(wrh Cr:')

| (“’)
We

3/2
Fri{ ¢]‘Ck we'f

5y 172

Sﬁ(wea te) . (517}

3/2

0\ [8Eatall + B/ (422) + yi/ (B2etn)]

The tuned expression accounts for interaction between the structure and subsystem,
and also takes into account the generally non-classical nature of the mode shapes
of the combined isolated structure and subsystem.

For multi-mass subsystems, the general form of expression is given by Equation
(4.224), where the participation factors Iy, ; for the detuned isolated modes have
similar forms to the expressions given in (4.225). When there is multiple tuning of a
subsystem mode to several modes of the isolated structure, or of several subsystem
modes to an isolated structure mode, a more complicated approach is required, as
indicated by Igusa and Der Kiureghian (1985b).

(4) It is usually advisable to perform response-history analysis for a variety
of accelerograms relevant to the specified earthquake ground motions in order to
check the detailed design of the isolated structure.

5.2.3 Design procedure for bilinear isolation systems

It is assumed that design-carthquake motions are available in terms of displacement
response spectra, ¢, BERL Reports (1972-5), Often design motions are specified
in terms ol 5% damped nceelerntion response speetra, These may be converted (o
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the required form by using

TZ
Sp(T,¢) = TH'CD{C)SA(T,O‘OS)‘ (5.18)

The damping-dependent coefficients Cp($) may be obtained from Section 5.1.3,
or may be available as part of the specification of the earthquake ground motion.

Design criteria will usually involve acceptable base shears and displacements,
and perhaps allowable shears at other levels of the structure and acceptable floor
response spectra. The estimation of the seismic response for a structure with bilinear
hysteretic isolation may proceed as follows.

Step 1 Select a trial isolation system. For design to a scaled El Centro type
motion, the curves of Figure 4.5, which give base shear and base displacement as
a function of Qy/W for various Ty and Ty, provide guidance as to the possible
combinations of parameters which produce responses meeting the design criteria.

Some types of isolators have restrictions on the achievable ratios of strength
to stiffness, Qy/Ky and Qy/Kp, or ratios of pre-yield to post-yield stiffnesses
Kbp1/Kyv2, which may limit the possible combinations of parameters Q,/W, Ty,
and Tb'),.

The responses tend to be more sensitive to variations in Qy/W and Ty, than to
variations of T, so it is usually sensible to select Q,/W and Ty, ahead of T,.

It is often advisable to select Qy/W as, or greater than, the value (Qy/W)op
which gives minimum base shear for the design-level earthquake motions. This
lessens the chances of Q,/P,W falling in the range of rapidly increasing displace-
ments and shears as P, increases above that for the design-level motion.

Step 2 Take a trial value of the base displacement Xy, for the specified earthquake
motion. Figures 4.5(a)-(c) provide guidance to likely displacement responses for
El Centro type motions. Calculate Sy, T and &g from the hysteresis loop which is
drawn for the chosen values of Ky, Ko, Qy/W and Xj.

Obtain the isolator force Sy from the hysteresis loop, the period Ty from the
secant stiffness, and the equivalent damping &g from the area of the hysteresis loop
and the contribution from the actual viscous damping.

The relationships between Xy, Sy, Tp and &g are as follows. For an assumed
Xy, the bilinear loop gives the base shear §, as

Sp = Qy + Kpo(Xp — Xy)

K
Ligs (1 - K—:f) + KXo (5.19)

S (Q) (| i Lg,_) |4y
4 T, g1

and hence
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The effective stiffness is the secant stiffness

Kp = Sh/Xb. (5.20)
The equivalent linear period based on this stiffness is

Ty = 270//Kn/ M
=2m/y/ (Sp/W)g/ Xy

—1/2
8Ty —T3) Oy
=Tp|l+—"" = 5.21
bz( * %y W (5.21)
The equivalent viscous damping corresponding to the hysteretic damping is &,
where
_2(9 X),)
T
T Sh Xh
W =
o A (1 - ﬂ). (5.22)
T Sp/W 15

To obtain the total damping &g, the viscous damping &, must be added. Sometimes
&y 1s added as a fraction of critical damping which is assumed not to change as Tg
changes. More correctly, £, should be associated with a particular viscous damper
coefficient Cy,, which gives a fraction &, of critical viscous damping at period Ti;.
The corresponding fraction of critical viscous damping at period Ty is (Tg/Th2)n2-
This definition gives

T;
s =L+ T—szz. (5.23)
b2

For the bilinear hysteretic system, the non-linearity factor NL, which is an
important parameter governing higher-mode response is simply related to &,:

NL = 2. (5.24)

Step 3 Use the earthquake displacement spectrum to find Sp(7s, &g), which is
assumed to correspond to Xy, and hence estimate Sy, from the hysteresis loop. Note
that this approximation assumes that the structural flexibility and damping has little
effect on the first-mode period and damping, as the structure is regarded as rigid
to obtain Ty and &g. Andriono and Carr (1991b) include the effect of structural
flexibility in their procedure which is otherwise similar to that given here.

If the simplified enhanced El Centro spectrum is used, these responses may be
read from the trade-ofl” curves of Figure 5.2, or taken from Equations (5.4a) and
(5.4b). For other spectra, the equivalent expressions developed as indicated at the
end of Section 5,14 can be used,
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Step 4 Check whether the base displacement and base shear of step 3 agree with
the assumed displacement and corresponding base shear of step 2. If satisfactory
convergence has not occurred, further iteration is required. New values of T and
&g can be calculated using the latest values of X}, and Sy. Faster convergence may
be obtained by taking a new Xy, with double the change from the previous iteration,
and returning to step 2 with this value.

Step 5 Check the final estimates of X}, and S, with the design criteria. If the
values are not acceptable, or it is felt that improved values may be possible, select
a new trial isolation system. Generally, lengthening the periods, particularly Tjs,
reduces shears but increases displacements. Increased equivalent damping, which
results from loops closer to rigid-plastic and yield levels closer to (Qy/W )op,
usually reduces base shears and displacements. Re-enter the procedure at step 2.

Step 6 An isolation system has now been found for which the isolator displace-
ment and base shear, predicted by the equivalent linearisation procedure and the
earthquake spectra, are acceptable. Now check that the higher-mode responses are
also acceptable, using the procedure discussed in Section 5.1.5.

Calculate the elastic-phase isolation factor

1(Ky1) = Ty / T1(U) (5.25)

where T(U) is the first-mode period of the unisolated structure.
Also obtain the non-linearity factor,

NL = (7/2) & (5.26)

where &, is as given in step 2.

Use these parameters and the curves of Figure 5.3(a) to estimate the ratios
between the second- and third-mode top-mass accelerations and the first-mode top-
mass acceleration.

From the second-mode to first-mode ratio X v.2/Xn.1, estimate the mid-height
shear bulge factor BF, as in Equation (5.8) above.

The shear at mid-height is obtained from the bulge-factor

$(0.5h) ~ BF §,(0.5h)

1

~ BF = . (5.27)

B |

An approximate overall shear profile can be sketched by adding a sinusoidal
variation to the first-mode triangular profile, from zero at the top to S}, at the base,
which passes through S(0.5k) at mid-height.

If the higher-mode effects are unacceptably large, they can usually be reduced
by increasing the elastic-phase isolation factor T, / Ty (U). This can be achieved by
stiffening the structure to obtain a shorter unisolated period 7(U), or by reducing
the isolator elastic-phase stiffness K,
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The equivalent linear system approach suggests that if the yield force Qy and
the stiffnesses Ky and Ky, can be varied in such a way that the yield-point still
lies on the same ¢, locus, then the maximum base shear and base displacement
should be unaltered, as discussed in Section 5.1.6. Thus, in theory, the higher-mode
responses can be modified without affecting the first-mode response, by adjusting
the yield-point along a constant &, locus, and adjusting Kp; to retain the same
secant stiffness Kg.

As discussed in step 1, there may be physical limitations on the achievable
combination of parameters for a particular type of isolation system, so it may
not be possible to use this approach to adjust the higher-mode responses without
affecting the first-mode response. Also, the equivalent linearisation approach is an
approximation, so some changes may occur in the first-mode response on moving
along the constant &, locus. If it is necessary for physical reasons to move off the
&n locus to achieve acceptable higher-mode responses, the iteration will need to be
re-entered at step 2.

Step 7 Repeat the calculations for any other required earthquake motions. Often
two levels of earthquake spectra are specified, such as ‘design-level” and ‘extreme-
level’, or ‘operating-basis’ and ‘maximum credible’ motions. It is necessary to
check the relevant design criteria for the various levels of specified motions.

Step 8 Perform response-history analysis for a number of appropriate accelero-
grams to confirm the results obtained with the spectral approach for the equivalent
linear system. For non-linear isolation systems, such analysis is required to obtain
reliable estimates of floor spectra. The results may indicate that further adjustments
to the isolation system are required.

5.3 TWO EXAMPLES OF THE APPLICATION OF THE
DESIGN PROCEDURE

3.3.1 Isolation of capacitor banks

This example of a seismic isolation design procedure is based on the retrofitted
isolation of capacitor banks at the Haywards substation described in Chapter 6. The
isolation system was designed to withstand very strong earthquake motions, more
than twice El Centro amplitudes. The choice of isolator and damping components
for one of the several types of capacitor bank is described here.

The example illustrates the selection of a trial isolation system, the iteration
procedure required to estimate the base shear and displacement corresponding to
the specified earthquake spectrum, modifications of the trial isolation system to
obtain responses within the design specification, and an illustration of the varia-
tion of effective period and damping with amplitude, performed by estimating the
responses for a less severe spectrum,

The design motions were specified in terms of a 5% damped acceleration spec-
trum given by O84g/7 Tor periods greater than | s, This is a scaling of the
simplified smoothed EI Centro spectrom of Figure 5,1(a) by multiplication by a
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factor of 2.15. The variation of response with damping was assumed to be given
by the curves of Figure 5.1(b).

Several types of capacitor banks were involved, with masses between 20x 10° kg
and 34 x 10° kg when the retrofitted support frames were included. The light
vertical loads were insufficient for the lead-rubber bearings available at the time,
so a combination was selected of segmented rubber-steel-laminated bearings, to
provide horizontal flexibility, with steel conical taper-beam dampers.

Allowable base shears for the filter banks considered in this example were (.32
W, with the rubber bearings able to accommodate 200 mm displacement. Bearing
periods of approximately 1.5-2 s could be achieved readily.

Previous work and the base-shear versus yield-force diagram of Figure 4.5(d)
suggested that the optimum yield ratio Qy/W for minimum base shear in earth-
quake motions corresponding approximately to the El Centro accelerogram is
around 0.04-0.05, for Ty; ~ 1.5-2.0 s. For the scaling factor of 2.15 associated
with the specified earthquake spectrum, the optimum value of Q,/W increased to
about 0.08-0.12. Taking a target value of Qy/W of 0.10, the required total yield
forces for the dampers for the various filter banks were approximately 16-40 kN. It
was decided to consider the option of two or three taper-beam dampers with yield
forces of approximately 10 kN.

Experience showed that conical tapered-beam dampers with a taper along 2/3
of their length were reliable. The design equations are (Tyler, 1978)

L = 5.270v/Dx
Q4 = 11.067/D5/x

where x (mm) is the design displacement corresponding to a strain of +0.03 which
gives a full-displacement plastic fatigue life of 80-100 cycles, D (mm) is the base
diameter, and L (mm) is the total length. The force Q4 (kN) corresponds to the
zero-displacement point on the bounding hysteresis loop, which is somewhat less
than the yield force of the bilinear loop.

With x taken as 200 mm and Q4 as 10 kN, these equations produced damper
dimensions of D = 44 mm and L = 494 mm. These values were rounded to
D = 45 mm and L = 500 mm, which gave x = 200 mm and Q4 = 10.6 kN.
Tests of these dampers produced elastic and post-yield stiffness K. = 560 kN/m
and K, = 14 kN/m, rather lower values than predicted by the expressions in Tyler’s
paper (Tyler, 1978).

The filter banks considered in this example had a mass M of 34 x 10° kg.
The elastic- and yielded-phase periods from the combination of two or three
steel dampers was denoted T, and T,,. Rubber bearings with combined peri-

ods T, = 1.5 s or 2 s were considered in parallel with the dampers. The period
of the unisolated capacitor banks was T)(U) = 0.11 s, so the capacitor bank flex-
ibilities could be ignored in the caleulations. The elastic-phase and yielded-phase
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periods Ty, and Ty, of the overall system are given by

1 1 1

= — 4+ —
TI:?I Tr2 Te%

and
| e £ 1
L T IR
The yield-force ratio Q,/W of the combined rubber-bearing and steel-beam
isolation system is given by

Te.  n0j
Q},}.(Wz_.b};__
Tp—Ty W

where Qy, Ty1, Tz and W = Mg correspond to the overall system, Qg is the force
for an individual damper, and #» is the number of dampers.

Various periods and yield-force ratios relevant to this example are summarised
below.

T=1.5'8 I,=20s

n=2 =3 n=2 n=73
Tes (8) 1.09 0.89 1.09 0.89
Tys (s) 6.91 5.64 6.91 5.64
Ti (s) 0.88 0.77 0.96 0.82
T (s) 1.47 1.45 192 1.89
Qy/W 0.0995 0.1330 0.0851 0.1178

The iterative calculation of the responses of the various systems can now begin.
As given previously
0.84
SA(T, 0.05) = (T) g

The corresponding displacement spectra are

0.84gT Cp ()
42

= 209TCp(Z) (mm).

Sp(T, %) =

(mm)

Consider first 1.5 s benrings with two steel dampers. Take a trial displacement
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X, = 200 mm. From Equation (5.19),

So/W =22 (1

T2\  4nX,
W

Thzz gszz
= 0.414.

Xb
T = 2 _
BT o/ e

=1.395s.

From (5.21)

Ignore any viscous damping, which for this example is very low (~ 0.01) because
of the inherently light damping of the capacitor banks and the segmented rubber
bearings. Then from Equation (5.22)

¢ :EM(;_E)
5T 7 (So/ W) T2

= 0.0922.
From Figure 5.1(b), Cp(0.0922) = 0.79, so that
Sp(1.395 s, 0.0922) = 209 x 0.79 x 1.395 mm
= 230 mm
and
AXy = Sp(Ts, &) — X
= 30 mm.

For the second iteration, double this value of AX, to obtain the estimate of Xj,.
The iteration procedure produces

X, =260 mm, S,/ W = 0.548, Tz = 1.382 s,
&g = 0.069, Cp(0.069) = 0.9, Sp = 259.6 mm.

Thus convergence has been obtained.
Both the base shear and isolator displacement are too large with this isolation
system. Increased damping can reduce both responses, so consider three dampers

rather than two. Again, take X}, = 200 mm for the first trial. The iteration sequence
produces
Xy = 200 mm, Sy/W = 0.452, Ty = 1.335, fp=10.125;

Cplep) = 0.7, Sp1A3 5, 0.125) =194 mm AXy = —6 mm.
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Try a new iteration beginning with double this displacement discrepancy. Then

Xp = 188 mm, Sp/ W = 0.429, Ty = 1.33 s, &g = 0132,
Cp(0.132) = 0.675, Sp(1.33 s, 0.132)=187 mm.

For practical purposes, this iteration has converged. The displacement is acceptable,
but the base shear is too large.

Consider another trial isolation system with longer-period bearings, 7, = 2.0 s,
which will reduce shears but increase displacements. Again, assume X, = 200 mm.
The iteration sequence produces

Xp = 200 mm, Se/W = 0.322, Ty = 1.58 s, oy = QU7
Cp(0.171) = 0.605, Sp(1.58 s, 0.171) =199 mm Sv/ W = 0.320.

Convergence has occurred in one iteration, with the base shear and isolator
displacement just within their allowable limits. The elastic-phase isolation factor
Ty /T (U) = 7.5, which is very high, and the non-linearity factor NL = 0.27 is
low, so higher-mode effects should be small. It can be seen that in this example,
Ty remains unchanged between iterations for the same isolation system. This is not
a general feature of the iteration procedure, but rather of the particular parameter
values of this example.

Finally, to illustrate the dependence of the effective period and effective damp-
ing on earthquake size, we calculate the response to the simplified El Centro spec-
trum with P, = 1, i.e. the spectral displacement is given by Sp(7Tg,¢g) = 97
Cp(¢p)Tg (mm).

Take X = 100 mm for the first iteration, as the strength of the earthquake has
been approximately halved. Working through the iteration produces

Xy = 100 mm, Sp/ W = 0.2083, Tg = 1.390 s, Zp = 0.2348,
Cp(0.2348) = 0.51,

while
Sp(1.390 s, 0.2348) = 97 x 0.51 x 1.390 mm = 68.8 mm.

Doubling the change in X appears likely to give a new estimate far too low, so
continue with X, = 68.8 mm.

Continuing the iterations, working down a column and then across for the next
iteration:

Xp (mm) 68.8 60.1 57.8 57.2

Su/ W 0.1732  0.1634  0.1608  0.1601

Tg (s) 1.265 1.217 1.203 1.199

gy 0.251 0.251 0.250 0.250

Cp(gs) 0.49 0.49 0.49 0.49

Sp(Tg. ¢g) (mm)  60.1 57.8 o2 57.0
The result has converged o an estimated displacement of 57 mm for the smoothed
El Centro spectrum, with o base shear S,/W = 0.16. The effective period is
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Tg = 1.20 s, with an effective damping of 25% of critical. The effective period is
shorter for the reduced design motion, but the damping has increased from the value
of 17% for the larger motion. The effective period must reduce as the amplitude
of motion decreases, but the effective damping may increase or decrease.

Approximately halving the design motion has halved the base shear, but the
displacement has reduced to less than 30% that for the stronger excitation. Often
it is the displacement rather than the base shear that scales approximately linearly
with earthquake size. Note that in this example the value of the effective damping
converged quickly, while the effective period changed between iterations, unlike
the calculations for the response of the same system to the stronger excitation,
where the effective period converged immediately and the damping varied between
iterations.

5.3.2 Design of seismic isolation for a hypothetical eight-storey shear
building

Design brief for hypothetical building

A hypothetical building of the type which might benefit from seismic isolation is
proposed for illustrative purposes. The building is supposed to have eight storeys
and a variety of intended uses, which impose architectural and structural design
constraints. The intended occupancy for storeys 2 to 7 is professional, including
medical, legal and specialist consultants, with the main emphasis on medical and
related services; speciality shops are to be provided in the first storey and dining
facilities in the eighth storey. To enhance these facilities, large display windows
are proposed on two sides of storey 1 and large picture windows on three sides
of storey 8. Extensive double-glazing for storeys 2 to 7 will take advantage of the
excellent views from two sides of the building, above storey 3. Verandahs on the
two public-access sides of storey 1 will enhance displays, provide rain shelter, and
protect those using exits.

Required building facilities include a sprinkler system with a large supply of
drinkable emergency water, and a stand-by diesel-electric plant for extensive emer-
gency lighting, a sprinkler pump, and low-speed operation of one lift. Essential
natural ventilation must be available in the event of failure of the air conditioning
system. A tank buried below an adjoining car park will provide emergency storage
for building wastes in the event of earthquake damage to nearby sewers.

The functional requirements, including potential changes in occupier needs and
the architectural need for maximum access to exterior windows, call for a relatively
flexible structural form, namely a reinforced-concrete space frame. The building
design adopted is therefore a regular eight-storey reinforced-concrete frame with
28 columns, namely six bays by three bays with bay lengths of 6 m and storey
heights of 3.5 m, with a set of lifts and a stairway in the second and fifth bays
along the building length.

A check on equipment items for the intended occupiers indicates that they can
be given some protection from earthquakes by simple devices, for example by
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suitable fixing or the use of resilient stops for equipment on anti-vibration mounts.
Similarly, local detailing can to some extent protect building plant, including lift
counterweight operation, the stand-by power plant, the emergency water supply
and other essential facilities. However, without isolation of the structure, direct
seismic loads do pose some threat to this equipment and it would be difficult to
avoid excessive damage to glazing, and interior damage which would also pose
some threat to the high-cost facilities and equipment.

The diversity of use gives an uncertain level of fire risk during earthquakes and
at other times. The costs of the non-structural features are comparatively high, as
would be the cost of an interruption to availability of services. Moreover, the loss
of the medical facilities would remove a valuable contribution to Civil Defence
activities during the immediate post-earthquake period.

A value for the unisolated first period using an appropriate empirical rule is
calculated as T1(U) =~ 0.08 x number of storeys = 0.64 s, which is in the range
of periods associated with the strongest acceleration responses in typical accelero-
grams of the El Centro type.

The option of seismic isolation of the building is therefore investigated as a
means of limiting the structural deformations to the low values required. Moreover,
the resulting low loads and ductility demands would reduce structural costs. Seismic
isolation has also been shown (Section 4.5) 1o reduce seismic responses due to
torsional unbalance.

Design earthguake

The hypothetical building is supposed to be situated in an area where it is appro-
priate to select a design-level earthquake, for a return period of 150 years, with
the severity and character of the 1940 El Centro NS earthquake motion without
scaling; hence P, = P, = 1. For the extreme earthquake, with a return period
of 500 years, acceleration amplitudes are doubled but frequencies are not altered,
giving the scaling factors P, = 2.0 and P, = 1.0.

It is further assumed that a major active fault passes within 1 km of the building
site, with an estimated return period for rupture of about 500 years. To provide
for increased demand on isolator displacement due to movement of such a fault,
allowance is made for a maximum displacement 50% greater than that given by the
extreme earthquake with P, = 2.0. This agrees with the provisions of the Uniform
Building Code (1991) (see Section 5.5).

Hence, if X, is the isolator displacement for the design-level earthquake, the
extreme earthquake displacement is approximately 2Xy,. A displacement allowance
of 3Xy, includes possible effects of movement on the nearby fault.

Preliminary design calculations

The choice of isolation system is based on considerations such as discussed in
Tables 2.1 and 2.2, in Figure 2.7 and in the associated text, A bilinear isolation
system such as presented in case (iv) of Figure 2.7 is chosen, with lead-rubber
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bearings, or a combination of these with laminated rubber bearings, in mind as a
possible isolation system. This kind of isolation system has been shown to give
a good combination of seismic responses, together with the advantage that the
structure is locked in place during wind and small earthquakes.

Approximate loads for interior, side and corner columns are estimated as 300,
250 and 200 t. For standardisation, and as additional provision for vertical seismic
loads, bearings under corner columns are given the same load capacity as those
under side columns, giving a minimum bearing load of 250 t.

Preliminary design calculations are carried out according to the design proce-
dures described above (Section 5.2), choosing realistic initial parameters from the
known properties of the intended isolation system and the known acceptable seis-
mic displacement. Iteration procedures such as described in the example above are
carried out until convergence is obtained. If the ‘trade-off” between base displace-
ment and the resulting base shear is unsatisfactory then the isolator parameters are
adjusted and the iteration procedure is repeated until a satisfactory ‘trade-off’ is
obtained. This gives tentative values for the isolator parameters.

These parameters may now be used to estimate the general effects of higher
modes on the distribution of shears over the height of the building, in accordance
with Section 5.2. Hence the shear distribution is indicated by combining the values
in Figure 5.3(a) with Equation (5.8). The general level of floor spectra may be
obtained by interpolation between cases given in Figure 2.7 and Table 2.1. This
interpolation can be either on the basis of isolator parameters or on the basis of
modal acceleration ratios as given by Figure 5.3(a).

Since none of the contents of the building are particularly vulnerable to seis-
mic attack, a certain degree of higher-mode response is tolerable. If the floor-
acceleration spectra for a given set of isolation parameters are too high, iteration
can be repeated with different values of the elastic-phase isolation factor I (Ky;)
and/or non-linearity factor NL; the ‘yield-point locus” method described above
(Section 5.1.6) may be useful in choosing new values for these parameters.

Once preliminary isolator parameters have been obtained, a time-history analysis
should be performed for the detailed design. A nine-mass one-dimensional model
of the type shown in Figure 2.4 is adequate for dynamic analysis. Floor masses and
inter-storey stiffnesses are estimated as for the dynamic analysis of non-isolated
structures. A time-history dynamic analysis based on the average of five statistical
approximations to the design earthquake gives peak accelerations and peak shears
at each floor level. Also, floor accelerations at four mass levels, say 0, 3, 6, 9,
should be adequate for checking floor spectral values.

Stops and resilient buffers

The greatest uncertainty in the major responses of most isolated structures is the
maximum low-probability seismic displacement which will be demanded of the
isolators. As a result isolators are usually given considerable reserve capacity for
displacements beyond even extreme design values, and structures usually have
a considerable reserve capacity for resisting increased seismic loads. Some al-
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—_—— —

5.3 TWO EXAMPLES OF THE APPLICATION OF THE DESIGN PROCEDURE 269

lowance is therefore made for the possibility that unusually large displacements
may occur. ‘

Maximum use of reserve displacement and load capacities will usually call
for the use of resilient buffers to limit base-level displacements. These should be
provided where it is economically practical. Increased buffer resilience will usually
increase the effectiveness, but also the costs of these buffers. As a very approximate
guide to limiting impulsive loads on a building, the effective flexibility of the buffer
should not be less than that of the first two storeys of the building. For dynamic
analysis of structural responses the buffer may be modelled as a third elastic slope
K3 which extends from the vertices of the bilinear displacement loops.

Stops or resilient buffers have been provided for seismically isolated New
Zealand buildings. The William Clayton Building in Wellington has been pro-
vided with stops at £0.15 m. The Police Station building, also in Wellington, has
been provided with resilient buffers for displacements of about +0.35 m.

Other considerations

A number of other considerations need to be taken into account when detailing a
seismically isolated building:

e The seismic gap.
It is necessary to make provision for clearances around the structure.
Drainage and exclusion of water and rubbish from the isolator region are
also necessary. Water exclusion barriers and other cover-plates should not
provide stiff or strong bridges across the seismic gap.

e Services.
It is necessary to detail connections for external services such as water,
gas, sewerage, power, signal lines and pedestrian and equipment access, to
accommodate the seismic motions and to ensure that the services and their
connections do not interfere with the operation of the isolation system.
Flexible couplings may be appropriate in some cases.

e Anchors.
Floor-acceleration spectra can be used when designing anchors for equip-
ment and facilities within the structure, and buffers for equipment which
is flexibly mounted. Baffles or subdivisions may need to be included in
the emergency water supply tank, to prevent excessive wave action under
mode-1 accelerations.

e Inspection procedures.
Construction groups and inspectors should be clearly instructed on the in-
tended purpose of all structural features which have been introduced because
seismic isolation has been used, Appropriate long-term inspection, mainte-

nance and emergency procedures for the building are also recommended.
e Recording instrumentation,
I is recommended that the installation of seismic-acceleration and isolator-

displacement recorders shoald be considered so that the community ol seis
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mic isolation engineers can build up good records of the performance of
isolation systems during actual earthquakes.

o Fire protection.
Further detailing related to the isolation system includes provision of fire
resistance for the mounts. Under suitable conditions flexible fire-resistant
blankets may be adequate.

e Inspection.
There should be reasonable access for inspection of the isolation system,
and if necessary for the replacement of isolation components. In practice
there may be a need for very occasional replacement of a component of the
isolation system for testing.

e Variations on the original design.
Particular attention should be paid to the possibility that minor design
changes or later modifications of the structure, or its surroundings, may
prevent the full intended operation of the isolation system. In particular the
‘seismic gap’ must remain secure. Some protection can be given by appro-
priate detailing of the interface of the exterior of the structure with adjoining
unisolated features. This is an educational issue which should become less
severe as seismic isolation becomes more common.

5.4 ASEISMIC DESIGN OF BRIDGES WITH SUPERSTRUC-
TURE ISOLATION

5.4.1 Seismic features with superstructure isolation

The seismic design of a bridge structure must satisfy many conditions, including
some which are particular to its site. This section concentrates on factors common
to the design of many bridges. For many simple bridges, it has been found that
seismic isolation of the superstructure gives improved seismic resistance, often
at a reduced cost, while also providing effectively for thermal expansion of the
superstructure.

The aim when seismically isolating bridge superstructures is usually to protect
the piers and their foundations, and sometimes to protect the abutments also. There
is less frequent need for isolation to protect the superstructure because bridge
superstructures are inherently strong as a result of being designed for vehicle loads.

The superstructure isolation systems are designed to reduce the overall seismic
loads, and to distribute them better in relation to the strengths of the piers and
abutments and their foundations. Longitudinal seismic displacements are held to
moderate values to reduce the problems of supporting traffic across seismic gaps in
the deck, and also to reduce isolator-component problems, and structural problems
arising from large displacements.

Superstructure isolation systems are designed, as far as is practical, to provide
moderate flexibility and high damping, torsional balance and an appropriate dis-
tribution of seismic loads between the superstructure supports. In cases where a
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long superstructure has high transverse flexibility, an attempt should be made to
equalise the transverse stiffnesses of the superstructure supports.

With superstructure isolation, the piers and abutments are not isolated from the
ground motions. Piers then tend to respond to seismic excitation as independent
structures with some top constraint. When a pier is relatively tall and heavy these
responses may make a substantial contribution to the seismic loads on the pier and
its foundations.

Attention is given here to commonly occurring simple bridge structures, with
moderate span lengths and pier heights. Discussions assume that the superstructures
are straight and level. The number of bridge spans is typically between 3 and 5.
Such bridge structures, with rather short piers, are shown in Figures 6.22 and
6.31(a), while a wider range of simple bridge structures is illustrated by Blakeley
(1979). Much of the following discussion would also apply when a superstructure,
continuous over about 5-7 spans, is a separate section of a longer bridge structure.

The overall form of bridges may be complicated to provide for sloping or curved
decks, as shown in Figures 6.3 and 6.1. For longer-span bridges, intermediate girder
support is often provided by steep arches, while for very long spans intermediate
support is provided by tower-supported cable stays or catenary cables. Emi ef al.
(1987) and Katayama er al. (1987) show that cable stays and catenary cables allow
a high degree of longitudinal flexibility for superstructure motions. Moreover, the
intersections of cable support towers and the carriage-way girder provide conve-
nient locations for longitudinal dampers.

When bridge piers are quite high it may sometimes be appropriate to adopt
overall isolation of the bridge structure, by allowing a moment-limiting stepping
action near the pier bases. Such isolation was adopted for the South Rangitikei
viaduct described in Chapter 6.

When soil stiffnesses, and hence also seismic motions, differ across a building
site the consequences are reduced by tying the tops of the foundations together.
However, for long bridges, where soil stiffness variations may well be more ex-
treme, such foundation interconnections are not practical.

The cost of providing seismic isolation is often relatively low for bridges be-
cause little structural modification is required. In unisolated bridges many of the
interfaces between the superstructure and the supports must be designed for the
installation of horizontally flexible bearings, to accommodate longitudinal move-
ments between the superstructure and most of the supports, caused mainly by ther-
mal expansion. Indeed, since many unisolated bridges are compatible with flexible
superstructure bearings, it is often practical and relatively inexpensive to retrofit
their superstructures with seismic isolation (Park e al. 1991).

5.4.2 Seismic responses modified by superstructure isolation

Factors to consider with superstructure isolation

The systems constdered here for bridge superstructure isolation introduce isola-




WWW.BEHSAZPOLRAZAN.COM

272 A BASIS FOR THE DESIGN OF SEISMICALLY ISOLATED STRUCTURES

tor components which provide increased horizontal flexibility and damping at the
interfaces between a continuous superstructure and its supporting piers and abut-
ments. The bridge piers, abutments and, if necessary, the superstructure, are given
protection by designing the isolation system to give reduced seismic loads, and a
better distribution of the reduced loads between the superstructure supports. The
seismic loads are reduced by increasing the overall flexibility and damping of the
superstructure supports. The load distributions are improved by relating support
stiffnesses to substructure strengths.

With isolation for transverse seismic responses, overall seismic loads may also
be reduced by adjusting transverse stiffnesses to give improved torsional balance.
Moreover, high transverse damping suppresses the dynamic magnification of the
torsional unbalance, as discussed in Chapter 4. Finally, when the isolated section of
superstructure is long and slender in plan view, seismic loads may sometimes be re-
duced by adjusting the transverse stiffnesses of supports to be approximately equal.

Seismic gaps in the deck at the ends of a section of superstructure should be kept
as small as is practical in order to simplify the problem of supporting traffic crossing
the gaps. Seismic gap lengths are reduced by designing the longitudinal isolation
system to limit superstructure displacements. When the overall support system
for the superstructure has moderate flexibility and high damping for longitudinal
responses, there may be a large reduction in seismic loads, but only moderate
displacements of the superstructure. Seismic gaps must also provide for any pre-
earthquake reductions in the gaps, which may arise from temperature changes in
the superstructure and from ground creep.

Reduced seismic displacements have additional benefits. Isolator components
with moderate displacements are less expensive, and lower costs are also associated
with their installation. Moreover, moderate superstructure displacements reduce the
structural costs of providing for relative displacements.

The ideal values for the stiffness and damping of various supports, which sat-
isly particular design requirements considered above, will sometimes be in con-
flict. Moreover, further limitations arise from the range of features available from
existing practical isolator components, particularly with regard to simultaneously
satisfying both longitudinal and transverse requirements. However, consideration
of the effects of isolation on various seismic responses should assist in selecting
isolator components which give a reasonable trade-off between various seismic
design requirements.

Superstructure isolation may be used to reduce or eliminate deformations of
substructures beyond their elastic range during design-level earthquakes. It is par-
ticularly important to avoid severe post-elastic deformations at locations which are
difficult to inspect or repair, such as partly submerged piers and their foundations,

Parameters of superstructure isolators

With superstructure isolation, the isolator component parameters combine with the
parameters of the substructures on which they are mounted to give a set of com-
posite isolator parameters at each support, and these sets of support parameters
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combine to give the parameters for the overall superstructure isolation system.
These isolator parameters may be expressed as effective stiffnesses, periods and
dampings for individual superstructure supports, and for the overall support system.

Figure 5.5 shows a pier of stiffness K|, and effective top mass M, which
supports an isolator component of stiffness Ky and an associated superstructure
mass M. For the usual case, when the pier mass is much smaller than the
superstructure mass, the pier mass may be neglected when evaluating approximate
seismic responses of the superstructure. In this case the spring forces of the pier
and isolator component may be combined statically to give the composite spring
force for the support. Moreover, the pier mass makes no significant contribution to
mode 1, as shown in Figure 5.5. Figure 5.5 also shows a second or ‘pier’ mode,
which has little displacement of the superstructure mass, for the usual case when
the superstructure mass is much greater than the effective mass of the pier.

Hence the parameters of linear and bilinear isolator components combine with
the horizontal elastic stiffnesses, at the tops of piers and abutments, to give indi-
vidual and overall support stiffnesses and dampings as described below.

We define the cyclic displacements of a pier (or abutment) and of the superstruc-
ture, at a support location, as X, and X respectively. Corresponding deformations
of the interface isolator components are Xp,. Hence X = X, + Xp.

When a linear, or bilinear, isolator is placed on a non-rigid pier or abutment
support, of horizontal stiffness K, the composite isolator stiffness, say K\, is less
than the isolator component stiffness K, as given by

Ky = Kp/(1 + K/ Kp) (5.28)
with corresponding expressions for the reduced bilinear stiffnesses K|, K{, and

K. Primes are used for the parameters of composite isolators. The bilinear yield
value Qy is not changed by K.
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With bilinear isolation, the relutionships between the cyclic displacements, Xj
and Xy, and the corresponding hysteretic dampings &, and &, may be obtained
by comparing the force-displacement loops, as given by Ky, and Ky, (Equation

(5.28)) and Qy, with the corresponding loop for a rigid support (K, = 00), and the
smialler displacement Xy,
This gives

Xy, = Xo(1 + K2/ Kp) + Qy(1 = Ko/ K1)/ K, (5.29)

and
& = & X/ Xy, (5.30)

For a given value of X|, the isolator component deformation Xy, as given by
Equation (5.29), becomes progressively smaller as K, is reduced. In some cases
the reduction in X}, will cause an increase in Kp and &,. However, in all cases, the
values for the composite isolator, Ky and &, are reduced by reducing K.

When all the superstructure supports have the same longitudinal displacement X 4
(or the same transverse displacements Y;), the effective overall stiffness K’ is ob-
tained by summing all the support stiffnesses K| and Ky, as given by Equa-
tion (5.28). The effective period T’ is then given by substituting K’ in Equa-
tion (5.21).

A comparison between the force-displacement loops for individual supports and
the corresponding loop for the overall support system (all with a displacement X}),
gives the overall hysteretic damping as a weighted sum of the support dampings S
When added to an estimated velocity damping &, this gives the effective overall
damping ¢’ as

&= GiKei/K'+&. (5.31)

Since reductions in K|, at individual supports reduce their stiffnesses and hys-
teretic dampings, the K reductions also increase the effective overall period 7~
and reduce the effective overall damping Z’.

Since a usual aim of transverse isolation is to obtain approximately equal support
displacements, initial estimates of the transverse stiffnesses of supports may usually
be based on equal displacements ¥,.

Responses to design earthquakes

The seismic responses to design earthquakes, for the first longitudinal and trans-
verse modes of an isolated bridge superstructure, may be evaluated by trial and
error in essentially the same way as the base responses are evaluated for an iso-
lated building. A trial superstructure displacement X} (or ¥{) is selected and an
effective period T’ and damping ¢’ is derived, using Equations (5.22), (5.23), and
(5.28)~(5.31). The design-earthquake displacement spectrum value, for this period
and damping, gives the first resultant displacement. Further trial values for the dis-
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placement lead to agreement between trial and resultant displacements and hence to
an approximate value for the design-earthquake displacement of the superstructure.

When a substructure is sufficiently flexible it greatly reduces the hysteretic damp-
ing of the isolator component which it supports, as indicated in Equation (5.30).

For bridges of moderate length, bilinear isolator damping may well be confined
to the usually stiffer and stronger abutments. When bilinear damping is introduced
at pier supports it may be confined to acting in the transverse direction, for which
the pier is usually stiffer and stronger, as in the case of the King Edward Street
Overpass, Dunedin, New Zealand (McKay er al. 1990).

As with building isolation, bilinear isolators at superstructure supports may
provide little damping of higher modes. However, elastic analysis indicates that
velocity-damping at the pier supports may provide effective damping of longitudi-
nal and transverse pier modes, and hence a substantial reduction in their seismic
responses. Again, transverse velocity damping at all superstructure supports may
provide effective damping and reduced seismic responses for higher transverse
modes. In contrast, isolator velocity-damping (viscous damping) is not so effective
in damping higher building modes.

If a superstructure-isolated bridge is very simple, with approximate torsional
balance, little superstructure flexure, and little loading of piers by direct seismic
excitation, then a design procedure based on a spectral approach, as discussed above
in general terms, should give reasonable approximations to seismic responses.

For isolated bridges with less simple features, the final seismic design should
be based on a time-history analysis of the responses to design earthquakes, using
a sufficiently detailed bridge model. Such an analysis should give the effects of
the main features of the bridge model, such as superstructure flexure, irregular
substructure stiffnesses, and non-linear mechanisms which excite higher modes.

5.4.3 Discussion

Some of the isolator components described in Chapter 3 have particular relevance
to isolated bridge superstructures. Typical elastic mounts such as laminated-rubber
bearings, lead-rubber bearings and sliding mounts such as PTFE bearings, have
the same flexibility for any horizontal direction. Again, lead-rubber bearings and
vertical conical-beam steel dampers provide hysteretic damping for any horizon-
tal direction, while lead-extrusion dampers and tapered-slab steel dampers may be
applied separately for either horizontal direction. Similarly, velocity dampers can
be designed for single-axis or biaxial operation. Moreover with elastic or sliding
bearings at a support, sliding constraints can be applied to allow, say, only longi-
tudinal bearing motion, so that the superstructure is isolated only for longitudinal
motions,

Hysteretic dampers based on lead have relatively low creep resistance while
providing high damping forces during rapid seismic movements, This feature is
often important for bridge apphications. For example, lead-based dampers may be
located on both abutments of u bridge so that the abutments share equally in the
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hysteretic damping forces. However, the dampers have relatively low resistance to
slow length changes arising from superstructure temperature changes and ground
creep. Moreover, if the dampers are biaxial, as in the case of lead-rubber bearings,
the transverse damping forces are torsionally balanced, provided the abutments
have comparable or high transverse stiffnesses.

Examples of superstructure isolation systems in New Zealand which include
longitudinal dampers to protect tall slab-wall piers founded in moderate-strength
ground, are the Bannockburn bridge and the Cromwell bridge, in Central Otago
(McKay er al. 1990). These bridges have partly submerged piers about 33 m
high. The Bannockburn bridge has both abutments founded on ground of mod-
erate strength. Each abutment is provided with three longitudinal lead-extrusion
dampers, and hence they share the seismically induced damping forces. Moreover,
inspection of the dampers indicates that the lower-force creep displacements, aris-
ing from slow changes in superstructure length and in abutment spacing, are shared
by the dampers at each abutment. In the case of the Cromwell bridge, one abutment
has moderate strength, while the other abutment is founded on rock and is consid-
erably stronger. For this bridge, a set of 6 Type-U flexural steel-beam dampers, for
longitudinal operation, was provided at the rock-based abutment.

When detailing a bridge with a seismically isolated superstructure, care should be
taken to give as much continuity as possible. Buffers and links should be provided
to limit the maximum relative displacements between the superstructure and its
supports, and between sections of the superstructure if it is not continuous over its
whole length. With such precautions some damage may occur in the event of an
extreme earthquake, but there should be no danger of collapse.

Care must be taken in detailing road surface links across isolation seismic gaps.
These must be designed to minimise the likelihood of the seismic gap becoming
blocked and exerting forces which may seriously degrade the aseismic performance
of the isolation system. As with isolated buildings, bridge builders must be clearly
instructed regarding the aims and requirements of the isolation system, and bridge
controllers must be clearly instructed as to the maintenance which is required to
ensure that the seismic isolation system may operate as intended.

5.5 GUIDELINES AND CODES FOR THE DESIGN OF
SEISMICALLY ISOLATED BUILDINGS AND BRIDGES

Since the early 1970s a number of guidelines and later codes have been written
to assist and control the design of structures utilising seismic isolation. These are
illustrated here by a number of examples from New Zealand and the United States,
first regarding buildings and then bridges.

Seismically isolated public buildings in New Zealand have been designed by
the Ministry of Works and Development (MWD) on the basis of special studies,
consultation with other groups working in this field, and developing in-house guide-
lines. A review of the use of flexible mountings and damping devices, to provide
seismic isolation for a wide range of bridges (Blakeley, 1979), identifies a range
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of factors requiring attention during design. A recent design procedure for isolated
buildings (Andriono and Carr, 1991a) gives distributed shears and the resulting
displacements, with design earthquakes represented by their response spectrum
accelerations Sx. The design approach, described in a companion paper by the
same authors (Andriono and Carr, 1991b), utilises effective periods and dampings,
earthquake spectra and an isolator non-linearity factor, and has a general similar-
ity to the approaches described in Chapter 4, and is simplified and summarised
here.

In 1991 the USA Uniform Building Code (UBC) adopted, as an Appendix-Divi-
sion III, a set of regulations ‘Earthquake Regulations for Seismic-isolated Struc-
tures’. These requirements were developed from earlier versions, e.g. ‘Tentative
Seismic Isolation Design Requirements’, September 1986, which was circulated
by a Base Isolation Sub-committee on behalf of the Structural Engineers Associa-
tion of Northem California.

The UBC regulations for the design of seismically isolated structures are closely
related to their regulations for the seismic design of non-isolated structures. The
requirements particular to isolated structures can be related to material covered in
this book.

General control of the design is related to a simple static design procedure which
is used to find reliable maximum values for the isolator displacements and shear
forces, for a maximum credible earthquake based on the seismic zone and soil
classification. The isolator displacement is increased by a factor of up to 1.5 for
a site near an active fault. The isolator displacements, including torsional effects,
must be accommodated by the seismic gap, and the isolator must remain stable,
but may be somewhat overloaded, at the maximum displacement.

Isolator displacements are made proportional to the effective isolator period
as in Figure 5.2(a). The displacement reduction factor 1/B for effective damp-
ing, as given in the UBC requirements, is proportional to the Cy values given in
Figure 5.1(b), and is therefore more conservative for large damping values than
the linear spectral values given by the reduction factor Cp (Figure 5.1(b)). This
use of relatively higher displacements at higher damping values is equivalent to
increasing our Cg values for large non-linearity factors (which are proportional to
the hysteretic damping &),).

The UBC requirements for the load capacity of the foundations and structure
are somewhat less conservative than those for the isolator. The base shear force is
distributed over the structure in proportion to its masses, as given by a constant
acceleration over the structure, i.e. as given by a well isolated first mode.

When the features of the design carthquake, the structure, and the isolation
system satisfy a rather strict set ol constraints, then the final design may be based
on the above static evaluation of displacements and loads. The constraints may be
interpreted as follows, in termy of factors discussed in this book:

e The design earthguake i El Centro-like, since the constraints require zones of
high seismicity, soils of high strength and stiffness, and no active fault nearby.
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e The mode-1 response is almost rectangular, since the constraints require an
isolation factor greater than 3.0.

e Higher-mode accelerations of bilinear isolation systems are small or moderate,
since the constraints require a damping factor not greater than 0.2, and hence a
non-linearity factor not greater than 0.3, which will lead to small higher-mode
response in conjunction with other constraints which appear to ensure a rela-
tively high elastic-phase isolation factor (see discussion related to Figure 2.7).

These conditions for static design also limit the number of storeys, the overall
height, and the degree of structural irregularity.

The code requires dynamic analysis for seismically isolated structures not com-
plying with the specified strict conditions, and may be used for any structure. The
dynamic responses may be obtained using either response spectra or time-history
analysis. On the basis of the displacements and loads given by dynamic analysis,
the displacements may be reduced by a small amount and the loads reduced by a
somewhat larger amount from the values given by the static design procedure.

The Office of Statewide Health Planning and Development has issued a guide-
line, ‘“An Acceptable Procedure for the Design and Review of California Hospi-
tal Buildings Using Base Isolation” (April 1989). This guideline gives somewhat
stricter procedures for isolated hospital buildings, which are designed in most re-
spects in accordance with the UBC regulations. The current status of design codes
is discussed by Mayes (1992).

The guide specifications for isolated bridge structures generally parallel the cor-
responding provisions for isolated buildings, including related static and dynamic
design procedures. However, there are a number of design requirements particu-
lar to bridges. These include the substantial non-seismic lateral displacements and
loads to which the bridge may be subjected. Particular attention is given to the
stability and the lateral load capacity of commonly used laminated-rubber bearings
which may have large total displacements, due to combined seismic and non-
seismic causes, but limited areas due to moderate unit loads. Features which are
particular to isolated bridges have been discussed above. .

Designs for seismically isolated New Zealand bridges were generally undertaken
or reviewed by the MWD. Research and development work for the seismic design
of New Zealand bridges, non-isolated and isolated, has been strongly supported by
the National Roads Board with important results published in Road Research Unit
(RRU) Bulletins and in various papers and reports. For example, RRU Bulletins
41 to 44 review work undertaken from 1975 to 1978 (RRU, 1979).

An approach to the seismic isolation of the superstructures of simple bridges
was outlined by Blakeley (1979a), supported by charts giving maximum seismic
responses of simple bridge models for a range of earthquake accelerations. The
bridge models had two equal piers and two equal abutments, each remaining elastic
during earthquake. The continuous superstructure was uniform and the middle span
was 40% longer than the end spans. Small pier masses and a small ground flexibility
were included. Superstructure deformations and angular momenta were neglected.
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Horizontally flexible isolators were included between the bridge superstructure
and its four supports. The charts gave-the maximum superstructure displacement
responses and the maximum shear loads on each support for a wide range of
isolator parameters for each of three general isolation systems. The first isolation
system had linear isolators at each support, while the second and third had bilinear
isolators at the abutment tops and at the pier tops respectively.

The responses of the simple bridge model above may also be obtained using
the approaches to isolated structure responses given in our Chapters 4 and 5. With
elastic piers and abutments in the above bridge model, the first isolation system
gives the rigid superstructure a flexible linear support, while the second and third
isolation systems give the superstructure a support system which is bilinear for
horizontal displacements. Combined with the superstructure mass these linear and
bilinear supports give periods corresponding to Ty, and to Ty, and Ty, as defined
in Chapter 2. With estimated viscous damping &, the maximum seismic responses
of the linear bridge systems are given by the linear displacement and acceleration
response spectra of design earthquakes. For the scaled El Centro NS 1940 earth-
quake, the maximum responses of the bridge systems with bilinear isolation are
given by the ‘spectra’ of Figure 4.5, or the approximate spectra of Figure 5.2. The
overall isolation-interface shear forces may then be distributed among the supports
by applying the maximum superstructure displacement to the force-displacement
relationship for each support.

The parameter-study results given by Blakeley have been extended and refined
progressively by a number of researchers in the Department of Civil Engineering,
University of Canterbury, Christchurch, New Zealand. Published results include
Kwai (1986), Moss et al. (1986) and Turkington, er al. (1987). These studies include
more detailed models of a wider range of bridge structures, a wider range of isolator
parameters, and a wider range of design earthquakes, some of which give different
ground motions at the locations of different supports. These studies. and related
studies in other countries which are involved in the seismic isolation of bridge
structures, are leading to more effective and sometimes simpler design procedures
and guidelines.

As shown by Blakeley (1987), isolator components designed to provide high
mode-1 damping must be located on supports which are not more flexible than the
associated isolator components, in order to achieve high damping. Hence the high
axial damping for the Bolton Street and Aurora Terrace overbridges in Wellington
(see Chapter 6) is provided by abutment-mounted lead-extrusion dampers, and for
the Cromwell bridge by abutment-mounted steel-beam dampers, since each of these
bridges has stiff high-strength abutments and axially flexible, relatively low-strength
piers.

In the USA, ‘Guide Specifications for Seismic Design of Highway Bridges’,
which parallel the UBC regulations for the design of isolated building structures,

were adopted by AASHTO in 1991, A commercially developed procedure for the
design of bridges with superstructures seismically isolated by lead-rubber bearings,
is available in the USA (Mayes, 1990-92; Mayes et al, 1992),
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A procedure for the design of Japanese highway bridges with seismically isolated
superstructures, referred to as the Menshin design method, is outlined by Matsuo
and Hara (1991).

Guidelines for the seismic isolation of bridges have also been produced recently
in Ttaly (Parducci, 1992).

6 Applications of Seismic
Isolation

6.1 INTRODUCTION

This chapter presents details of seismically isolated buildings, bridges and other
structures all over the world. We should like to thank our colleagues worldwide for
their help in enabling us to compile this information, for checking relevant material
in draft form, and for supplying photographs and tables.

In this book we have attempted to be objective. This has been aided by the
fact that, up to 30 June 1992 when this manuscript was completed, we and our
organisation, the DSIR, have had no financial involvement in the patents, design,
manufacture and marketing of seismic isolation systems. From this objective point
of view, it has been a challenge to decide which of the many worthy applications
of seismic isolation to include in this chapter.

Since beginning our studies of seismic isolation, some 25 years ago (1967),
we have been in more or less continuous contact with our colleagues in Japan,
the United States of America, and more recently Italy. We are thus well aware
of the situation in New Zealand and in these countries and the emphasis of this
chapter is placed on applications of seismic isolation in these locations. However,
as discussed by Buckle and Mayes (1990), seismic isolation has also been applied
in many other countries, as summarised in Table 6.1.

This table, together with Tables 6.2 to 6.8, gives an indication of the criteria
for choosing the seismic isolation option, namely the likelihood of a seismic event
occurring, multiplied by the intensity of the anticipated event, multiplied by the
value or the hazard of the structure and/or contents. In the text we have discussed
seismic applications under three broad headings, namely, buildings, bridges and
‘delicate’ or *hazardous’ structures.

An issue of prime importance is the performance of seismically isolated struc-
tures in severe earthquakes, but none of the structures discussed below has been
subjected to such a test. Of the buildings and bridges seismically isolated in New
Zealand to date, only one, the Te Teko bridge over the Rangitaiki River, has un-
dergone the effects of a large earthguake. This was the Edgecumbe carthquake in
March 1987, Richter magnitude 6,3, MMY, epicentre 9 km north of the bridge. A
strong=motion aceelerograph located 11 km south of the bridge recorded a peak
horizontal ground acecleration af O 43¢, This bridge “provides an example ol good
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Table 6.1 Applications of Seismic Isolation world-wide
(after Buckle and Mayes, 1990)

Country Constructed facilities
Canada Coal shiploader, Prince Rupert, BC
Chile Ore shiploader, Guacolda
China 2 houses (1975);

weigh station (1980);
4-storey dormitory, Beijing (1981)
England Nuclear fuel processing plant
France 4 houses (1977-82)
3-storey school, Lambesc (1978)
Nuclear waste storage facility (1982)
2 nuclear power plants, Cruas and Le Pelliren

Greece 2 office buildings, Athens

Iceland 5 bridges

Iran/Iraq Nuclear power plant, Karun River
12-storey building (1968)

Italy See text and Table 6.8

Japan See text and Tables 6.4 and 6.5

Mexico 4-storey school (Mexico City)

New Zealand  See text and Tables 6.2 and 6.3

Rumania Apartment

USSR 3 buildings, Sevastopol

3-storey building
South Africa  Nuclear power plant
USA See text and Tables 6.6 and 6.7
Yugoslavia 3-storey school, Skopje (1969)

performance of modern earthquake resistance technology, i.e. base isolation using
lead-rubber bearings’ (Dowrick, 1987). However, one of the standard elastomeric
bearings elsewhere on the bridge was not properly restrained against sliding, and
was thrown out of position, so that it ceased supporting the deck (Skinner and
Chapman, 1987). The behaviour of the bridge was, therefore, not perfect.

In order that seismic isolation be effective, it must be stressed that it is the
responsibility of all the people concerned in the design, manufacture and use of a
seismically isolated structure, to ensure that the system is maintained operative, and
particularly that the seismic gap is protected. As mentioned in Chapter 1. this space
must be uncluttered by waste material, and it must be respected during subsequent
building alterations. The seismic gap must remain free at all times, so that the
structure can move by the required amount during the 15 or so seconds of a major
earthquake, which can occur at any unpredictable time in the life of the structure,
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This is obviously an educational problem, which is currently severe because
seismic isolation is a relatively new technology. New owners/operators are likely,
through ignorance, to abuse the seismic gap and thereby render the seismic isolation
system inoperative. It is suggested that permanent notices or plaques be situated at
or near the gap, that the state and relevance of the seismic isolation be stressed in
the ‘ownership papers’, and that engineers and building inspectors take particular
notice of the need for security of the gap.

6.2 STRUCTURES ISOLATED IN NEW ZEALAND
6.2.1 Introduction

In New Zealand, seismic isolation has been achieved by a variety of means: trans-
verse rocking action with controlled base uplift, horizontally fiexible elastomeric
bearings, and flexible sleeved-pile foundations. Damping has been provided through
hysteretic energy dissipation arising from the plastic deformation of steel or lead
in a variety of devices such as steel bending-beam and torsional-beam dampers,
elastomeric bearings with and without lead plugs, and lead-extrusion dampers (see
Chapter 3).

The New Zealand approach to seismic isolation incorporates energy dissipa-
tion in the isolation system, in order to reduce the displacements required across
the isolating supports, to further reduce seismic loads, and to safeguard against
unexpectedly strong low-frequency content in the earthquake motion. Combined
yield-level forces of the hysteretic energy dissipators range from about 3-15% of
the structure’s weight, with a typical value of about 5%. Displacement demands
across the isolators range from about 100-150 mm for motions of El Centro type
and severity, to about 400 mm for the Pacoima Dam record. Structural response
can often be limited to the elastic range in the design-level earthquake, with limited
ductility requirements during extreme earthquake conditions. Substantial cost sav-
ings of up to 10% of the structure’s cost, together with an expected improvement
in the seismic performance of the structure, have resulted from the adoption of the
isolation approach. Some New Zealand applications are discussed by McKay er al.
(1990).

Bridges and structures which have been built in New Zealand are discussed in
this section. Table 6.2 shows the variety of techniques used in the seismic isolation
of buildings, of which the William Clayton Building in Wellington, started in 1978
and completed in 1981, was the first in the world to incorporate lead-rubber bear-
ings. This and other buildings are discussed in the text. Current work in progress is
the design of a retrofitted seismic isolation system for the New Zealand Parliament
Buildings (Poole and Clendon, 1991),

Table 6.3 shows that lead-rubber bearing isolation is the technique favoured
in bridges. The particular applicability of lead-rubber bearings for bridge isolation
arises from the fact that elastomeric bearings, made of laminated steel and rubber as
described in Chapter 3, are already on accepted technology for the accommaodation
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Table 6.2 Seismically isolated buildings in New Zealand

Building Height/  Total Floor Isolation Date Completed
Storeys Area (m?) System
William Clayton 4 storeys 17000  Lead-rubber 1981
Building, 17 m bearings
Wellington
Union House, 12 7400  Flexible piles 1983
Auckland storeys and steel
49 m dampers
Wellington Central 10 11000  Flexible piles 1990
Police Station storeys and lead
extrusion
dampers
Press Hall, Press 4 levels 950  Lead-rubber 1991
House, Petone 14 m bearings
Parliament House, 5 storeys 26500  Retrofit of Original building
Wellington 195 m elastomeric and 1921;
lead-rubber retrofit proposed
bearings
Parliament 5 storeys 6500  Retrofit of Original
Library, 16 m elastomeric and 1883/1899;
Wellington lead-rubber retrofit proposed
bearings

of thermal expansion in bridges. Isolation can then be added at a small additional
cost by the removal of further constraints, by provision for larger displacements,
and by the incorporation of suitable lead plugs to provide high levels of hysteretic
damping.

6.2.2 Road bridges

Since 1973, forty-eight road bridges and one rail bridge in New Zealand have been
seismically isolated, see Table 6.3. Four examples of seismic upgrading by the
retrofitting of isolation systems are included in this list.

By far the most common form of isolation system for bridges uses lead-rubber
bearings, usually installed between the bridge superstructure and the supporting
piers and abutments. The lead-rubber bearing combines the functions of isolation
and energy dissipation in a single compact unit, while also supporting the weight
of the superstructure and providing an elastic restoring force. The lead plug in the
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Table 6.3 Seismically isolated bridges in New Zealand
Bridge Name Superstructure  Length  Isolation System  Date
Type (m) Built
1 Motu Steel Truss 170  Steel UBs in flexture 1973
2 South Rangitikei PSC Box 315  Steel torsion bar/ 1974
viaduct rocking piers
3  Bolton Street Steel I Beam 71 Lead extrusion 1974
4  Aurora Terrace Steel 1 Beam 61 Lead extrusion 1974
5  Toetoe Steel Truss 72 Lead rubber 1978
6  King Edward Street PSC Box 52 Steel Cantilever 1979
7  Cromwell Steel Truss 272 Steel flexural beam 1979
8 Clyde PSC U-Beam 57 Lead-rubber 1981
9  Waiotukupuna Steel Truss 44 Lead-rubber 1981
10 Ohaaki PSC U-Beam 83 Lead-rubber 1981
11 Maungatapu PSC Slab 46 Lead-rubber 1981
12 Scamperdown Steel Box 85  Lead-rubber 1982
13 Gulliver Steel Truss 36 Lead-rubber 1983
14 Donne Steel Truss 36 Lead-rubber 1983
15 Whangaparoa PSC I-Beam 125  Lead-rubber 1983
16  Karakatuwhero PSC [-Beam 105  Lead-rubber 1983
17  Devils Creek PSC U-Beam 26 Lead-rubber 1983
18  Upper Aorere Steel Truss 64  Lead-rubber 1983
19  Rangitaiki (Te Teko) PSC U-Beam 103  Lead-rubber 1983
20 Ngaparika Steel Truss 76  Lead-rubber 1983
21-24 Hikuwai No. 14 Steel Plate Girder 74-92 Lead-rubber 19834
(retrofit)
25  Oreti PSC I-Beam 220  Lead-rubber 1984
26  Rapids PSC | & U-Beam 68 Lead-rubber 1984
27  Tamaki PSC I-Beam 40 Lead-rubber 1985
28 Deep Gorge Steel Truss 72 Lead-rubber 1984
29  Twin Tunnels PSC I-Beam 90 Lead-rubber 1985
30  Tarawera PSC I-Beam 63 Lead-rubber 1985
31  Moonshine PSC U-Beam 168  Lead-rubber 1985
32 Makarika No. 2 Steel Plate Girder 47 Steel Cantilever 1985
(retrofit)
33 Makatote (retrofit)  Steel Plate Girder 87 Lead-rubber 1986
34,35 Kopuaroa No. | & 4 Steel Plate Girder 25 & 55 Steel Cantilever 1986-7

(retrofit)

continued overleaf
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Table 6.3 (continued)

Bridge Name Superstructure  Length  Isolation System Date
Type (m) Built
36,37 Glen Motorway &  PSC T-Beam 60 Lead-rubber 1987
Railway
38  Grafton No. 4 PSC T-Beam 50  Lead-rubber 1987
39  Grafton No. 5 PSC I-Beam 80  Lead-rubber 1987
40  Northern Wairoa PSC I-Beam 492  Lead-rubber 1987
41  Ruamahanga at PSC U-Beam 116  Lead-rubber 1987
Te Ore Ore
42 Maitai (Nelson) PSC I-Beam 93 Lead-rubber 1987
43 Bannockburn Steel Truss 147 Lead-rubber & 1988
Lead extrusion
44 Hairini PSC Slab 62  Lead-rubber
45  Limeworks Steel Truss 72 Lead-rubber 1989
46  Waingawa PSC U-Beam 135  Lead-rubber 1990
47  Mangaone Steel Truss 52 Lead-rubber 1990
48  Porirua State PSC T-Beam 38 Lead-rubber 1992
Highway
49  Porirua Stream PSC U-Beam 84  Lead-rubber 1992

Key: PSC = prestressed concrete.
UB = U-beam.

centre of the elastomeric bearing is subjected to a shear deformation under horizon-
tal loading, providing considerable energy dissipation when it yields under severe
earthquake loading. The lead-rubber bearing provides an extremely economic so-
lution for seismically isolating bridges.

Many unisolated New Zealand bridges use elastomeric bearings between super-
structures and their supports, to accommodate thermal movements. Little modifica-
tion to standard structural forms has been necessary in order to incorporate the lead
plug to produce seismic isolation bearings, apart from the removal of some con-
straints and provision of a seismic gap to accommodate the increased superstructure
displacements which may occur under seismic loading. As well as providing energy
dissipation during large movements, the lead plug also stiffens the bearing under
slow lateral forces up to its yield point, reducing the displacements under wind and
traffic loading (Robinson, 1982).

Further information on the seismic isolation of road bridges in New Zealand,
including case studies and design procedures, is given by Blakeley (1979), Billings
and Kirkcaldie (1985), and Turkington (1987).

The first bridge to be seismically isolated in New Zealand was the Motu Bridge,
built in 1973. The lightweight replacement superstructure was a 170 m steel truss
supported by the existing reinforced-concrete slab-wall piers. The superstructure
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was isolated using sliding bearings with the damping provided by vertical-cantilever
structural-type steel columns. An example of the use of lead-rubber bearings in
bridges is illustrated in Figures 6.1 and 6.2, which show the Moonshine Bridge, a
168 m prestressed-concrete, curving bridge on a motorway in Upper Hutt.

Figure 6.2 Maoonshine Bridge, Upper Hutt, showing lead-rubber bearing under the
Deamms, wnd restralning stops
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Figure 6.3 shows a bridge over the Wellington Motorway which is fitted with
lead-extrusion dampers at the lower abutment. It is one of a pair of sloping bridges
which were seismically isolated by being mounted on glide bearings, the restoring
force being provided by steel columns. The advantage of the extrusion dampers is
that they lock the bridge in place during the braking of vehicles travelling downhill,
yet at earthquake loads allow the bridge to move. Thermal expansion forces can
be released by the creep of the extrusion dampers. After a large earthquake it is
expected that the bridges will no longer have the seismic gaps ideally positioned.
If necessary the bridges can then be jacked to the ideal position or allowed to creep
back with the flexible columns providing the restoring force.

.r
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Figure 6.3 Aurora Terrace overbridge, Wellington City

6.2.3 South Rangitikei Viaduct with stepping isolation

The South Rangitikei Viaduct, which was opened in 1981, is an example of isolation
through controlled base-uplift in a transverse rocking action. The bridge is 70 m
tall, with six spans of prestressed concrete hollow-box girder, and an overall length
of 315 m (Cormack, 1988).

Figure 6.4 shows the stepping isolation schematically, and Figures 6.5 amd‘ 6.6
are photographs of the bridge under construction, and of the first train to use it.

| —
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Figure 6.4 Schematic of base of stepping pier, South Rangitikei Viaduct

The stresses which can be transmitted into the slender reinforced-concrete H-
shaped piers under earthquake loading are limited by allowing them to rock side-
ways, with uplift at the base alternating between the two legs of each pier. The
extent of stepping, and the associated lateral movement of the bridge deck, are
limited by energy dissipation provided by the hysteretic working of torsionally
yielding steel-beam devices connected between the bottom of the stepping pier
legs and the caps of the high-stiffness supporting piles. (The Type-E steel damper
used is shown in Figure 3.3.)

The stepping action reduces the maximum tension calculated in the tallest piers,
for the 1940 EI Centro NS record, to about one-quarter that experienced when the
legs are fixed at the base; unlike the fixed-base case there is little increase in base-
level loads for stronger seismic excitations. The dampers reduce the displacements
10 about one-half those in the undamped case, and reduce the number of large
displacements to less than one-quarter. The maximum displacement at the deck
level for the damped stepping bridge is about 50% greater than for the fixed-leg
bridge (Beck and Skinner, 1974),

The 24 energy dissipators operate at a nominal force of 450 kN with a design
stroke of 80 mm, The maximum uplift of the legs is limited to 125 mm by stops.
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Figure 6.5 South Rangitikei Viaduct during construction

The weight of the bridge at rest is not carried by the dampers, but is transmitted to
the foundations through thin laminated-rubber bearings whose primary functions are
to allow rotation of each unlifted pier foot, and to distribute loads at the pier-pile-
cap interfaces. .

The stepping action is very effective in reducing seismic loads on this bridge
because its centre of gravity is high, so that the non-isolated design was strongly
dominated by overturning moments at the pier feet. The hysteretic damping d.ur—
ing stepping is quite effective because the estimated self-damping of the stepping
mechanism is quite low, due to the relatively rigid pile caps. A chimney structure
at the Christchurch Airport was also provided with a stepping base. The resultant
cost saving was about 7% (Sharpe and Skinner, 1983).

| — —

|
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Figure 6.6 Inaugural train on South Rangitikei Viaduct

6.2.4 William Clayton Building

The William Clayton Building in Wellington, started in 1978 by the New Zealand
Ministry of Works and Development and completed in 1981, was the first building
in the world to be seismically isolated on lead-rubber bearings. (See Chapter 3)

Details of a lead-rubber bearing for this building are shown in Figure 6.7. The
80 bearings are located under each of the columns of the four-storey reinforced
concrete frame building, which is 13 bays long by 5 bays wide with plan dimen-
sions of 97 m x40 m. Each bearing carries a vertical load of 1 to 2 MN and is
capable of taking a horizontal displacement of £200 mm. Detailed descriptions of
the building have been given by Meggett (1978) and Skinner (1982). It is shown,
during construction and after completion, in Figures 6.8 and 6.9.

The pioneering nature of the building and its proximity to the active Wellington
fault dictated that a conservative design approach be taken. The design earthquake
was taken as 1.5 EI Centro NS 1940, for which the calculated maximum dynamic
base shear was 0.20 times the total building weight W, and this was selected as
the design static base shear force, The artificial Al record, which is intended to
represent near-fault motion i o magnitude-8 earthquake, was considered as the
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‘maximum credible” motion, producing a calculated maximum base shear of 0.26W.
Even though the calculated response of the seismically isglated structure was
essentially elastic for the design-earthquake motions, a capacity design procedure
was used, as required for a design with high ductility. ‘ _

The bearing size and lead diameter were chosen after careful dynarm_c ana'lysm.
Meggett (1978) discussed this design in detail and found thf:l[ accelerations, inter-
storey drifts and maximum base shear forces were approximately halved by the
introduction of the seismically isolated system. He concluded that reasonable values
for the shear stiffness of the elastomeric bearing and lead-yield stiffness were

Ko(r)/W =12m" (6.1)
ivin
i Too =20-14s (6.2)
and
Q,/W = 0.04-0.09 (6.3)

while in fact the bearings were measured with Ky(r)/W = 1.1 m~' and Q, =
0.07W for 1.5 El Centro. :

Horizontal clearances of 150 mm were provided before the base slab impacts on
retaining walls. This corresponds to the maximum bearing displacement calculated
for the Al record, with 105 mm calculated for 1.5 El Centro. Water, gas and
sewerage pipes, external stairways and sliding gratings over the seismic gap were
detailed 1o accommodate the 150 mm isolator displacement.

Thus the lead-rubber bearings lengthened the period of the structure from 0.3 s
for the frame structure alone, to 0.8 s for the isolated structure with the lead plugs
unyielded, and 2.0 s in the fully yielded state (i.e. ca]cglated _from the structural
mass and post-yield stiffness of the bearings). The combined yield force of all th'e
bearings and lead plugs was calculated to be approximately 7% of the structure’s
‘dead plus seismic live’ load.

The maximum base shear for the isolated structure calculated for 1.5 El Centro
was 0.20W, which is half the value of 0.38W for the unisolated structure. Only the
roof beam yielded for the isolated structure with a rotational ductility of les‘? than
2 and no hinge reversal. For both 1.5 El Centro and the Al record, the maximum
inter-storey drifts for the isolated structure were about 10 mm, about 0.00? times
the storey height, and were uniform over the structure’s height. For. the umso_latcd
structure, the inter-storey drifts increased up the height of the building, 1'eac!1lng a
maximum of 52 mm. The markedly reduced inter-storey drifts should minimsst‘: .thc
secondary damage in the isolated structure, and they greatly simplified the detailing
for partitions and glazing, ‘

As a first attempt at seismic isolation of a building with tead~ntbhgr hcurmgfi.
the design of the William Clayton Building was very much a If:ammg experi-
ence. The design was conservative, and if it was repeated now, it is prnh;}hlc [!lill
more advantages would be taken of potential economies offered by the isolation
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approach to seismic design. Nevertheless, the design analysis demonstrated the im-
proved seismic performance which can be achieved through isolation of appropriate
structures. Moreover, in the light of subsequent tests on lead-rubber bearings, the
extreme-earthquake capacity could in principle be extended substantially simply by
increasing the base-slab clearance to 200 or 250 mm.

6.2.5 Union House

The 12-storey Union House (Boardman er al. 1983), completed in 1983, achieves
isolator flexibility by using flexible piles within clearance sleeves. It is situated in
Auckland alongside Waitemata Harbour. Poor near-surface soil conditions, consist-
ing of natural marine silts and land reclaimed by pumping in hydraulic fill, led
to the adoption of long end-bearing piles, sunk about 2.5 m into the underlying
sandstone at a depth of about 10-13 m below street level, to carry the weight of
the structure. Although Auckland is in a region of only moderate seismic activity,
there is concern that it could be affected by large earthquakes, up to magnitude 8.5,
centred 200 km or more away in the Bay of Plenty and East Cape regions near the
subduction-zone boundary between the Pacific and Indo-Australian plates. Such
earthquakes could cause strong shaking in the flexible soils at the site.

Isolation was achieved by making the piles laterally flexible with moment-
resisting pins at each end. The piles were surrounded by clearance steel jack-
ets allowing £150 mm relative movement, thus separating the building from the
potentially troublesome earthquake motions of the upper soil layers and making
provision for the large base displacements necessary for isolation. An effective iso-
lation system was completed by installing steel tapered-cantilever dampers at the
top of the piles at ground level to provide energy dissipation and deflection con-
trol. The structure was stiffened and strengthened using external steel cross-bracing
(see Figure 6.10). The increased stiffness improved the seismic responses, giving
reduced inter-storey displacements, a reduced shear-force bulge at mid-height and
reduced floor spectra. Moreover, the cross-bracing provided the required lateral
strength at low cost. The reduced structure ductility was adequate with the well
damped isolator. The dampers are connected between the top of the piles sup-
porting the superstructure and the otherwise structurally separated basement and
ground-floor structure, which is supported directly by the upper soil layers.

As Auckland is a region where earthquakes of only moderate magnitude are
expected, the seismic design specifications for Union House are less severe than
for many other seismically isolated structures, The maximum dissipator deflections
in the ‘maximum credible’ El Centro motion were 150 mm, with 60 mm in the
design earthquake. The effective period of the isolated structure was about 2 s.
Maximum inter-storey deflections were typically 10 mm for the maximum credible
carthquake and 5 mm for the design earthquake.

Union House is an example of the economical use of seismic isolation in an
area of moderate seismicity, An appropriate structural form was chosen to take
advantage of the reductions of seismic force, ductility demands and structural de-
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6.2.6 Wellington Central Police Station

The new Wellington Central Police Station (Charleson et al., 1987), completed in
1991, is similar in concept to Union House. The 10-storey tower block is supported
on long piles founded 15 m below ground in weathered greywacke rock. The near-
surface soil layer consists of marine sediments and fill of dubious quality.

Again the piles are enclosed in oversize casings, with clearances which al-
low considerable displacements relative to the ground. Energy dissipation is pro-
vided by lead-extrusion dampers (Robinson and Greenbank, 1976), connected be-
tween the top of the piles and a structurally separate embedded basement (see
Figure 6.11). A cross-braced reinforced-concrete frame provides a stiff superstruc-
ture (see Figure 6.12). The flexible piles and lead-extrusion dampers provide an
almost elastic-plastic force-displacement characteristic for the isolation system,
which controls the forces imposed on the main structure.

The seismic design specifications for the Wellington Central Police Station are
considerably more severe than those for Union House in Auckland. The Police
Station has an essential Civil Defence role and is therefore required to be in op-
eration after a major earthquake. The New Zealand Loadings Code requires a risk
factor R = 1.6 for essential facilities. The site is a few hundred metres from the
major active Wellington fault, and less than 20 km from several other major fault
systems.

Functional requirements dictated that the lateral load-resisting structure should
be on the perimeter of the building. Three structural options were considered: a
cross-braced frame, a moment-resisting frame or a seismically isolated cross-braced

Figure 6.10 Union House, Auckland City; note the external diagonal bracing

formations offered by the seismic isolation option. The inherently sliff cmss_-braced
frame is well suited to the needs for a stiff superstructure in the seismically mola‘ufad
approach. Isolation in turn makes the cross-bracing fe:'asibie, because low ductility
demands are placed on the main structure. However, lf'very low floor specu'a are
required, it may be necessary L0 use more linear velocity dampers. An 1m_ponanl
factor in the design of such isolation systems is the need for an appropriate al-
lowance for the displacement of the pile-sleeve tops with respect (o the fixed ends
of the piles. i .

Other structural forms were investigated during the preliminary design stages,
including two-way concrete frames, peripheral concrete frames, and alcanulever
shear core. The cross-braced isolated structure allowed an open al}d hgh} struc-
tural fagade, and a maximum use of precast elements. '_I’he seismically |sola'n3d
option produced an estimated cost saving of nearly 7% in the tf.c:tal E:onstructlon
cost of NZ$6.6 million (in 1983), including a saving in construction time of three

Ak Figure 6.11 Lead-extrusion damper in basement of Wellington Central Police Station
months.
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Figure 6.12 Wellington Central Police Station; note the external diagonal bracing

frame. This last option looked attractive from the outset because the foundation
conditions required piling, but the perimeter moment-resisting frame was also con-
sidered at length.

The structure is required to respond elastically for seismic motions with a 450-
year return period, corresponding to a 1.4 times scaling of the 1940 El Cenlro
accelerogram. The building must remain fully functional and suffer only minor
non-structural damage for these motions. This is assured by the low inter-storey
deflections of approximately 10 mm. Using an isolation system with a nearly
elastic-plastic force-deflection characteristic, and a low yield level of 0.035 c.)f
the building seismic weight, it was found that there was only a modest increase in
maximum frame forces for the 1000-year return period motions, corresponding to
1.7 El Centro NS 1940 or the 1971 Pacoima Dam record. The increase in force
was almost accommodated by the increase from dependable to probable strengths
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appropriate to the design and ultimate load conditions respectively. It is possible
that some yielding will occur under the 1000-year return period motions, but the
ductility demand will be low and specific ductile detailing was considered unnec-
essary. The Pacoima Dam record poses a severe test for a seismic isolation system
because it contains a strong long-period pulse, thought to be a “fault-fling” compo-
nent, as well as high maximum accelerations. The Pacoima record imposes severe
ductility demands on many conventional structures.

The degree of isolation required to obtain elastic structural response with these
very severe earthquake motions requires provision for a large relative displacement
between the top of the piles and the ground. A clearance of 375 mm was pro-
vided between the 800 mm diameter piles and their casings, to give a reasonable
margin above the maximum calculated displacements; 355 mm was calculated for
one of the 450-year return period accelerograms. Consideration was also given to
even larger motions, when moderately deformable column stops might contact the
basement structure which has been designed to absorb excess seismic energy in a
controlled manner in this situation.

The large displacement demands on the isolation system and the almost
elastic-plastic response required from the energy dissipators led to the choice of
lead-extrusion dampers rather than steel devices as used in Union House. In total, 24
lead-extrusion dampers each with a yield force of 250 kN and stroke of +400 mm
were required. This was a considerable scaling-up of previous versions of this type
of damper used in several New Zealand bridges: the bridge dampers had a yield
level of 150 kN and a stroke of +200 mm. The new model damper was tested
extensively to ensure the required performance.

The seismically isolated option was estimated to produce a saving of 10% in
structural cost over the moment-resisting frame option. In addition, the seismi-
cally isolated structure will have a considerably enhanced earthquake resistance.
Moreover, the repair costs after a major earthquake should be low. Importantly,
the seismically isolated structure should be fully operational after a major earth-
quake.

6.3 STRUCTURES ISOLATED IN JAPAN
6.3.1 Introduction

The first seismically isolated structure to be completed in Japan was the Yachiyodai
Residential Dwelling, a two-storey building, completed in 1982. This building is
mounted on six laminated-rubber bearings and relies on the friction of a precast
concrete panel for the damping. Since 1985, more than 50 buildings have been
authorised, of 1 to 14 storeys in height. They range from dwellings to tower blocks,
with floor areas from 114 m? to 38 000 m?. Details of buildings scismically isolated
in Japan are given in Table 6.4 (Shimoda 1989-1992; Saruta, 1991, 1992; Seki,
1991, 1992). Various seismic isolation and damping systems have been used, often
in hybrid combinations, as indicated in Table 6.4 and its footnote, The most popular




WWW.BEHSAZPOLRAZAN.COM

Joo APPLICATIONS OF SEISMIC ISOLATION
Table 6.4 Seismically isolated buildings in Japan
Type Building Name Storey Total Isolation  Licence

Floor System Date

Area

(m?)
Dwelling Yachiyodai 2 114 EB+F 1982
Institute Research Lab < 1330 EB+S 1985
Institute High-Tech Research Lab 5 1623 EB+S 1986
Laboratory  Oiles Tech. Centre 5 4765 LRB+E 1986
Dormitory  Tikuyu-Ryo 3 1530 EB+V 1986
Institute Acoustic Lab 2 656 EB+S 1986
Museum Elizabeth Sanders 2 293 EB+S 1986

(re-design)

Test Model  Tohoku University 3 208 EB 1986
Apartment  Apt. Hukumiya 4 681 EB+S 1986
Office Sibuya Simizu Building 5+B1 3385 EB+S 1987
Institute Research Lab No. 6 3 306 LRB 1987
Institute Tsukuba Muki-Zaiken 1 616 EB+S 1987
Office Tsuchiura branch 4 636 LRB 1987
Institute Lab. J building - 1173 SL+R 1987
Apartment  Kousinzuka 3 476 EB+S 1987
Office Toranomon Building 8 3373 EB+S 1987
Apartment  Itoh Mansion 10 3583 LRB 1988
Dormitory  Itinoe Dormitory 3 770 EB+S 1988
Institute Clean Room Lab 2 405 EB+V 1988
Rest house  Atagawa Hoyojo 1 140 SL+S 1988
Apartment  Ogawa Mansion 4 1186 HDR 1988
Office Asano Building 7 3255 LRB 1988
Store Kusuda Building 4+B1 1047 HDR 1988
Dwelling Ichikawa residence 2 297 EB 1988
Computer  Computer Centre 6 10032 HDR 1988
Office Sagamihara Centre 3 255 HDR 1988
Clinic Gerontology Res. Lab. 2+B1 1615 EB+S 1988
Dwelling M-300 Hoyosyo 2 309 LRB 1989
Apartment  Harvest Hills 6 2065 EB+S 1989
Institute Acoustic Lab 2 656 EB+S 1989
Office Toshin Building 9+B1 7573 EB+S 1989
Laboratory  Dwell. Test Lab 3 680 EB+S 1989
Office MSB-21 Ooluka 124+B 5962 LRB 1989
Institute Wind Laboratory 3 555 HDR 1089
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Table 6.4 (continued)
Type Building Name Storey Total Isolation Licence

Floor System Date

Area

(m?)
Office CP Fukuzumi 5 4406 EB+F 1989
Apartment  Employees Buildings -4 652 LRB+HDR 1989
Office Toho-Gas Centre 3 1799 SL+RS 1989
Dormitory  Tudanuma Dormitory 2 202 EB+S 1989
Dwelling M-300 Yamada’s 2 214 LRB 1989
Apartment  Koganei-Apartment 3 714 LRB+EB 1989
Computer  Operation Centre 2 10463 LRB 1989
Factory Urawa-Kogyo 5 1525 HDR 1989
Office Kanritou 3 955 EB+V 1990
Computer  Noukyou Centre 3 5423 LRB 1990
Office C-1 Building 7+B1 37846 LRB 1990
Office Keisan Kenkyusyo 3 627 EB+V 1990
Office Kasiwa Kojyo R} 2186 HDR 1990
Institute Acoustic Laboratory 2 908 EB+F 1990
Dormitory  Yamato-ryo 8 1921 EB+S 1990
Dormitory ~ Kawaguchi-ryo + 659 LRB 1990
Computer  Dounen Computer Centre 4 3310 EB+LD 1991
Laboratory  Andou Tech. Centre 3 545 LRB 1991
Dormitory ~ Toyo Rubber Shibamata-ryo 7 3520 EB+S+oil 1991
Office Aoki Tech. Centre 4+B1 4400 LRB 1991
Dormitory ~ Dai Nippon Daboku 4 1186 EB+LD 1991

Ichigaya-ryo

Apartment  Domani-Musashino 3 742 EB+S 1991
Key:
EB = elastomeric bearing

LRB = lead-rubber bearing
HDR = high damping rubber bearing

SL = sliding system (PTFE)
5 = steel damper

v = viscous damper

I = [riction damper

RS = rubber spring

LD = lead damper

BI1,B2 = basements
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Table 6.5 Seismically isolated bridges in Japan isolation systems for buildings are laminated-rubber for the isolation, with either
- - : - - steel or lead providing the damping.
Bridge name Site Supet- E:dgﬁ I;olauon %oﬁféell“:j" The first seismically isolated bridge in Japan was completed in 1990 and is
str;;ph;re (nmg)l i geehede® mounted on lead-rubber bearings. Details of some bridges seismically isolated in
x Japan are given in Table 6.5 (Shimoda 1989-1992; Seki, 1991, 1992; Saruta, 1991,
On-netoh Hokkaido 4-span 102 RB(12) 1991 1992). Except for one mounted on a high-damping rubber bearing, all of these use
Oh-hashi continuous LRB(18) lead-rubber bearings.
Bridge steel girder
Nagaki-gawa  Akita 3-span 99  LRB(20) 1991
Bridge Continuous 6.3.2 The C-1 Building, Fuchu City, Tokyo
steel girder
Maruki Bridge  Iwate 3-span 122 LRB@®) 1991 This, currently (1992) the largest seismically isolated building in the world, has a
Continuous total area of more than 45 000 m?, of which the isolated parts (higher building)
; ! PC Girder have an area of 37 846 m?, a height of 41 m and a weight of 62 800 t. It will be
Miyagawa Shizuoka 3-span 104 LRB(10) 1991 S : A
Bridge Conias used as a computer centre: seismic isolation was chosen to protect the equipment.
steel girder The building will consist of a seven-floor superstructure, a penthouse and a
Metropolitan Tokyo 6-span 138 LRB(10) 1991 one-floor basement, with the composite structure being formed of steel and steel-
Highway Continuous reinforced concrete. It is mounted on 68 lead-rubber bearings for seismic isolation.
Bridge No. 12 PC slab The bearings are between 1.1 and 1.5 m in diameter, with lead plugs from 180 to
Hokuso Line Chiba 2-span 80  LRB(8) 1990 200 mm in diameter (Nakagawa and Kawamura, 1991). Each bearing is surrounded
Viaduct Continuous by 10 mm of rubber to protect it from attack by ozone and fire damage.
(Railway) steel girder At small displacements the natural period for the isolated building is expected
Kanko Bridge Tochigi 6‘5P"f“ 296 LRB(10) 1991 to be about 1.4 s, while at large displacements, about 300 mm, the period is about
sg";::::s 3 s. This should give an adequate frequency shift for an earthquake of the kind
expected at the site. The maximum base shear force at the isolators due to wind is
;&I:ljsgu:o-hama S ::npr;uous i 1% not expected to exceed 45% of the yield shear force of the bearings, so the building
steel girder should not move appreciably during strong winds.
Uehara Bridge  Aichi 2-span 65  LRB(I8) 1991
Continuous " i .
steel girder 6.3.3 The High-Tech R&D Centre, Obayashi Corporation
Erl:;;a:;?: Chiba é :ﬁuous 76 Esj(;ﬂt) (ls?::iduled) This reinforced-concrete structure, five storeys lfigh: was ct)'mplelcd in Augt'lsl‘ 1986
(Railway) steel girder (Teramura et al., 1988). It is equipped with a seismic isolation system consisting of
Trans-Tokyo Tokyo Bay 10-span 800 LRB(I8) 1994 14 laminated-rubber bearings, with an axial dead load of 200 t, as well as 96 steel
Bay Highway Continuous (scheduled) bar dampers, of diameter 32 mm. It also has friction dampers as subdampers for
Bridge steel girder experimental purposes. The laminated-rubber bearings give the seismically isolated
Karasu-yama Tochigi 6-span 245  High- 1992 structure a horizontal natural period of 3 s (see Figures 6.13 and 6.14).
No. I Bridge Continuous damping (scheduled) Seismic isolation has allowed a reduction of design strength and permits a large
PC girder rubber (14) span structure with smaller columns and beams, which in turn provides open space.
Key: Key equipment, including a supercomputer, is installed on the top floor. During
EB = clastomeric bearing V= viscous damper the 1989 Ibaraki carthquake, the building clearly demonstrated the effectiveness of
%ﬁ = m:ﬂ:‘:ﬂn& bag is :2;;":';;::?' seismic isolation, with a ten-fold reduction in roof acceleration.
SL = sliding system (PTFE) LD = lead damper

S = steel damper B1.B2 = basements
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Superstructure side

-1

Figure 6.13 Isolation system used in the Obayashi High-tech R & D Centre, Tokyo
(photograph courtesy Obayashi Corporation)

Figure 6.14 Obavashi High«tech B & D Centre (photoeranph courtesy Obavashi Corno-
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6.3.4 Comparison of three buildings with different seismic isolation
systems :

A comparative study has been carried out (Kaneko ef al., 1990) on the effective-
ness and dynamic characteristics of four types of base isolation system, namely:
laminated-rubber bearing with oil damper system; high-damping rubber bearing
system; lead-rubber bearings; and laminated-rubber bearings with a steel damper
system. The study was carried out by earthquake response observations of full-
sized structures, as well as by numerical analyses. The three buildings studied
were the test building at Tohoku University in Sendai, northern Japan, Tsuchiura
Office building northeast of Tokyo and the Toranomon building in Tokyo.

The test building at Tohoku University was seismically isolated in order to
be used experimentally in studies of performance; for comparison, an identical
building on the same campus was ‘conventional’, i.e. it had not been isolated. Both
buildings are 3-storey reinforced concrete structures 6 m x 10 m in plan. In the first
stage of the investigation, the isolated building was fitted with 6 laminated-rubber
bearings and 12 viscous dampers (oil) (see Figures 6.15 and 6.16), and earthquake
observation was conducted for a year. After that, the devices were changed to
high-damping rubber bearings, and observations continued. The natural frequencies
and damping ratios of each building were obtained by forced vibration tests. The
damping ratios of the isolated building with viscous dampers were about 15% and
those with high-damping rubber about 12%, which are respectively about 10 times
and 8 times larger than those of the unisolated building.

The Tsuchiura office building of Shimizu Corporation is a four-storey reinforced-
concrete structure 12.5 m x12.5 m in plan. It is isolated by lead-rubber bearings
and the damping ratios were found to be anisotropic, being 9.9% and 12.7% along
two orthogonal directions.

The Toranomon building is eight-storey steel-framed reinforced concrete with an
irregular shape and large eccentricity. The isolation devices have been arranged to
reduce the eccentricity for earthquake loading. The building is supported by bearing
piles on the Tokyo gravel layer, about 22 m below the surface. The isolation devices
consist of 12 laminated-rubber bearings and 25 steel dampers, each consisting of
24 steel bars (see Figure 6.17). Eight oil dampers (four for each direction) are also
installed for small vibration amplitudes.

Accelerograms of the largest earthquake motions in the records of each building
can be summarised as follows. In the two systems studied on the test building at
Tohoku University, the maximum accelerations at the roof of the isolated build-
ing were about one-third of those on the unisolated building. For the lead-rubber
bearing system at Tsuchiura, the maximum acceleration at the roof was about 0.6
times that at the base. The response of the Toranomon building could not be clearly
evaluated because only small-amplitude carthquakes occurred and the steel damper
system was still in the elustic region. Torsional responses were small in all four
isolated structures.
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Figure 6.15 Oil dampers and laminated-rubber bearings in Test Building at Tohoku
University, Sendai (photograph courtesy Shimizu Corporation)

ur-:\‘iﬂu}ﬁfsé?t.

Figure 6.16 Test Buildings at Tohoku University. On the left is the conventional build-
ing, and on the right is the seismically isolated building (photograph cour-
tesy Shimizu Corporation)
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Figure 6.17 High-damping rubber bearing, steel dampers and oil damper in basement
of Bridgestone Toranomon Building, Tokyo (photograph courtesy Shimizu
Corporation)

6.3.5 Oiles Technical Centre Building

The Technical Centre Building of the Oiles Corporation (Shimoda et al. 1991)
received special authorisation from the Ministry of Construction, based on the
provisions under Article 38 of the Building Standards Law of Japan, since it was
the first building in Japan to be equipped with lead-rubber bearings for seismic
isolation, and it was completed in February 1987. It is a 5-storey structure of
reinforced concrete, with a total floor area of approximately 4800 m* and a total
weight of 7500 t (see Figures 6.18 and 6.19).

Tests were carried out to verify the reliability of the base-isolated building under
an earthquake. The tests consisted of free vibration tests, forced vibration tests and
microtremor observations. The appropriateness and accuracy of the method were
also verified.

The results of dynamic analysis showed that the response acceleration of each
floor of the building was reduced to about 0.2¢ even during strong earthquakes
(0.3-0.5g) at an input of 50 cm s~'. The maximum response acceleration was
reduced to between 0.2 and 0.3g even under a velocity of 0.75 m s~!. The building
remained elastic since the shearing force for cach storey was shown to be less than
the yielding force, while the maximum response displacement was 370 mm.
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Oiles Technical Center
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Figure 6.18 Diagram of Oiles Technical Centre showing seismic accelerations as mea-
sured on 18/03/88 (courtesy Oiles Corporation)

Figure 6.19  Oiles Technical Centre, Tokyo (photograph courtesy Oiles Corpdmtion)

7
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6.3.6 Miyagawa Bridge

The Miyagawa Bridge, across the Keta River in Shizuoka prefecture, is the first
seismically isolated bridge constructed in Japan (Matsuo and Hara, 1991). The
three-span continuous bridge with steel plate girders of length 110 m, is in an area
where the ground is stiff, and it is mounted on lead-rubber bearings (see Figures
6.20-6.22).

In the traverse direction the bridge superstructure is restrained, allowing move-
ments in the longitudinal direction of 4150 mm before restraints at the abutments
stop further displacement. The lead-rubber bearings were chosen and distributed
so that 38% and 12% of the total inertia force was allocated to each pier and
each abutment, respectively. The fundamental period of the unisolated bridge was
computed as 0.3 s, while the isolated design has a natural period of 0.8 s for small
amplitude vibrations, and 1.2 s for larger.

The system used for the design for seismic isolation is known in Japan as the
‘Menshin design method’ (Matsuo and Hara, 1991).

Figure 6.20 Miyagawa Bridge, Shizuoka Prefecture, showing bridge deck, isolation sys-

tem and piers (photograph couriesy Oiles Corporation)
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Figure 6.21

Figure 6.22

Lead-rubber bearing in Miyagawa Bridge showing transverse restraints
(photograph courtesy Oiles Corporation)

Miyagawa Bridge, Shizuoka
Corporation)

Prefecture, Japan (photograph courtesy Oiles
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6.4 STRUCTURES ISOLATED IN THE USA
6.4.1 Introduction

The first use of seismic isolation in the USA occurred during 1979, when circuit
breakers were mounted on 7% damped elastomeric bearings. Since that time a
number of bridges and buildings have been built or retrofitted with seismic isolation.
The Foothill Communities Law and Justice Centre, on elastomeric bearings, was
the first new building in the USA to be mounted on seismic isolation. Tables 6.6
and 6.7 show buildings and bridges which have been seismically isolated in the
USA (Mayes, 1990-1992).

Table 6.6 Seismically isolated buildings in the United States

Building Height/ Floor Area Isolation System Date
Storeys (m?)
Foothill Communities Law 4 17000  10% damped elastomeric  1985/6
and Justice Centre bearings
Salt Lake City and County 3 16 000  Rubber and Lead-rubber 1987/8
Building (Retrofit) bearings
Salt Lake City Manufacturing -+ 9 300 Lead-rubber bearings 1987/88

Facility (Evans and Suther-
land Building)

USC University Hospital 8 33 000 Rubber and Lead-rubber 1989
bearings

Fire Command and Control 2 3 000 10% damped elastomeric 1989

Facility bearings

Rockwell Building (Retrofit) 8 28 000  Lead-rubber bearings 1989

Kaiser Computer Center 2 10900  Lead-rubber bearings 1991

Mackay School of Mines 3 4 700 10% damped elastomeric 1991

(Retrofit) bearings plus PTFE

Hawley Apartments (Retrofit) 4 1 900 Friction-pendulum/slider 1991

Channing House Retirement 11 19 600 Lead-rubber bearings 1991

Home (Retrofit)

Long Beach VA Hospital 12 11000 Lead-rubber bearings 1991
(Retrofit)
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Table 6.7 Seismically isolated bridges in the United States

Bridge Superstructure Bridge Isolation Comple-
type Length System tion
(m) Date
¢ Sicrra Point Bridge, Califomia  Longitudinal steel 190 LRB 1984/5
(US101) (Retrofit) plate girders
e Santa Ana River Bridge, Steel trusses 310 LRB 1986/7
California (Retrofit)
¢ Main Yard Vehicle Access Steel plate girders 80 LRB 1987
Bridge, California (Retrofit)
e Eel River Bridge, California Steel through truss 185 LRB 1987
(US101) (Retrofit) simple spans
e All American Canal Bridge, Continuous steel 125 LRB 1988
California (Retrofit) plate girders
e Sexton Creek Bridge, Illinois Continuous steel 120 LRB 1990
plate girders
e Toll Plaza Road Bridge, Simple span steel 55 LRB 1990
Pennsylvania plate girder
e Lacey V. Murrow Bridge West ~ Continuous concrete 340 LRB 1991
Approach, Washington (Retrofit) box girders
e Cache River Bridge, Illinois Continuous steel 85 LRB 1991
(Retrofit) plate girders
e Route 161 Over Dutch Hollow  Steel plate girder 110 LRB 1991
Road, Illinois
e West Street Overpass, New York Steel beam 50 LRB 1991
(Retrofit)
e US 40 Wabash River Bridge, Continuous steel 270 LRB 1991
Indiana plate girders
e Metrolink Light Rail. St Louis, Concrete box girder 65-280 LRB 1991
(7 dual bridges)
e Pequannock River Bridge, New  Steel plate girders 260 LRB 1991
Jersey
e Blackstone River Bridge, Rhode Steel plate girders 305 LRB 1992
Island
e Bridges, B764 E & W, Nevada  Steel plate girders 135 LRB 1992
(Retrofit)
e Squamscott River Bridge, New  Steel plate girders 270 LRB 1992
Hampshire
e Olympic Blvd Separation, Steel plate girders 210 LRB 1992
California
Carlson Blvd Bridge, California  Concrete box girder 45 LRB 1992
e Clackamas Connector, Oregon  Concrete box girder 305 LRB 1992
Cedar River Bridge, Washington Steel plate girders 160 LRB 1992

Key

LRB = Lead-rubber bearings
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6.4.2 Foothill Communities Law and Justice Centre, San Bernardino,
California

This building, the first in the USA to be seismically isolated, in 1986, is mainly of
steel-frame construction with the basement level consisting of concrete shear walls.
It is a four-storey building with a total floor area of about 17 000 m? mounted on 96
‘high damping” rubber bearings (see Figures 6.23 and 6.24) (Way, 1992). The “high
damping” of 10-15% is obtained by increasing the amount of carbon black in the
rubber. Before the plans were finalised, estimates were made of the accelerations
and displacements of the structure when isolated and unisolated. For an unisolated
building with a structural damping of 5%, it was estimated that the resonant period
would be 1.1 s, the base shear 0.8¢ and the rooftop would undergo accelerations
and displacements of 1.6g and 300 mm respectively.

For the isolated case with a conservative value of 8% for the damping, the
acceleration above the bearings was estimated to be 0.35g, while at the rooftop the
acceleration was estimated at 0.4g with a displacement of 380 mm. The resonant
period had a value of 2 s.

Foothill Communities Law and Justice Centre (photograph courtesy Base
Isolation Consultants, Incorporated)

Figure 6.23
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Communities Law and Justice Centre, San Bernardino, California (courtesy Base Isolation Consultants,

End elevation of Foothill

Incorporated)

Figure 6.24
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6.4.3 Salt Lake City and County Building: retrofit

The Salt Lake City and County Building is a historic building, a massive five-storey
unreinforced masonry and stone structure with a 76 m high central clocktower,
which was completed in 1894. It is highly susceptible to earthquake damage, being
3 km from the Wasatch fault. It was retrofitted with seismic isolation, using a
combination of lead-rubber bearings and elastomeric bearings (Bailey and Allen,
1989)

Figure 6.25 shows the fagade of the building.

The retrofitting project began with an analysis of possible seismic isolation
systems, each of these to be carried out in conjunction with other structural changes
such as a steel space truss within the clocktower, various plywood diaphragms, and
anchorage of seismic hazards, such as chimneys, statues, gargoyles and balustrades,
around the exterior of the building.

The option of seismic isolation by means of a combination of elastomeric bear-
ings and lead-rubber bearings at the base of the building was chosen because it
would be least disruptive to the interior of the building; other options required
considerable demolition. Calculations indicated that this system would be adequate
to withstand the design earthquake.

The task of retrofitting was complex, and was made more difficult by inac-
curate detailing of the foundations on the original building plans, by variations in
the level of the building foundation, and by the requirement that the building be
damaged as little as possible, so that impact tools could not be used for cutting
through the stone. The original plan had placed 500 isolators below existing foun-
dations, but it was found that a massive concrete mat extended underneath the
four main tower piers. Isolators were therefore installed on top of the existing
footings, but the new first floor had to be raised 36 cm, and hundreds of slots
had to be cut through existing walls above the footings in order to install the
isolators.

A major concern of the construction engineers was that an earthquake might
occur during retrofit, when part of the building was isolated and part not, and
when some walls had been removed. It was suggested (Bailey and Allen, 1989)
that, in future, isolator locking mechanisms be employed during isolator installation
in areas of high seismicity.

A total of 443 isolators was used. All isolators were of the same size, approxi-
mately 43 cm square by 38 cm tall, to cut down on fabrication costs and to simplify
installation. Not all the isolators had lead plugs, since computer analyses had indi-
cated unacceptably high tower shear for certain earthquake records. The isolators
with lead plugs, approximately half of the total, were located around the perimeter

of the building to give high damping for rotational vibrations, and hence cut down
on torsional response,
A retaining wall was constructed round the building’s exterior to ensure a

400 mm- seismic gap, this including o large safety Factor as computer analysis
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Figure 6.25 Salt Lake City and County Building, Utah: an historic builing retrofitted

with seismic isolation (photograph courtesy Dynamic Isolation Systems,
Incorporated)

had predicted only 12 cm lateral displacement of the building during the design
earthquake. A bumper restraint system was also installed as a back-up safety device.

The project clearly demonstrated the feasibility of retrofitted isolation for a
building of this kind, where:

short periods result in high seismic forces

the ratic of horizontal strength to weight is low

ductility is low

the risk of seismic collapse or cost of seismic repairs is unacceptable

preservation has high cultural value

the need to preserve exteriors and interiors limits scope for increasing strength

and ductility

it is practical to modify for inclusion of isolators

e the structural form and proportions do not give uplift for isolator-attenuated
seismic forces

e adequate clearances for isolator and structure may be provided

e a practical isolation system gives an adequate reduction in seismic loads and

deformations.
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6.4.4 USC University Hospital, Los Angeles

This is an eight-storey, 35 000 m?, steel-braced frame structure, with an asymmetric
floor plan, scheduled for occupation in 1991 (Asher er al. 1990). It is a 275-
bed teaching hospital, and is the first seismically isolated hospital in the world.
The owner had been made aware of the potential benefits of seismic isolation
and requested that it be considered as an alternative during the schematic design
phase.

As no consensus document for isolation design procedures existed, the structural
engineer submitted proposed criteria for approval by the California Office of the
State Architect. Issues addressed by the criteria were: seismic input; design force
levels and essentially elastic behaviour; design displacement limits; and specific
analysis requirements. The scope of the analysis was set by the approved criteria
and extensive computation followed.

The seismic isolation solution arrived at is shown schematically in Figure 6.26,
namely a combination of lead-rubber bearings at the exterior braced-frame columns,
and elastomeric bearings at the interior vertical load-bearing columns. The com-
pleted hospital is seen in Figure 6.27.

The design displacement arrived at was about 260 mm, a value in good accor-
dance with those obtained by seismic isolation engineers in similar projects. All
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Figure 6.26 Plan ol USC Hospital, Los Angeles, showing positions of lead-rubber bear-
ings and elastomenie bearings (courtesy Dynamic Isolation Systems, Incor-

porated)
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joints were detailed to allow a seismic gap 75 mm larger than the design displace-
ment.

Provision was made for inspection and replacement of the bearings if necessary.
This is currently common practice throughout the world, although in the future, as
experience with elastomeric bearings is gained, it will probably be found that these
bearings do not need replacement during the life of a building.

It was concluded (Asher er al. 1990) that, although the analysis procedures for a
seismically isolated structure are more complex than for a conventional fixed-base
structure, the actual design problems are no more complex than for an ordinary
building.

Completed USC Hospital, Los Angeles, California (photograph courtesy
Dynamic Isolation Systems, Incorporated)

Figure 6.27
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6.4.5 Sierra Point Overhead Bridge, San Francisco

The Sierra Point Bridge was the first bridge in North America to be retrofitted using
seismic isolation (Mayes, 1992). Originally built in 1956, it is 200 m long and 40 m
wide on slight horizontal curvature (see Figure 6.28). Dynamic analysis indicated
the bridge would sustain damage during a large design earthquake with horizontal
acceleration of 0.6g. The solution was to seismically isolate the bridge by replacmg
the existing steel spherical pin type bearings with lead-rubber bearings.

It was calculated that, in an earthquake of magnitude Richter 8.3 on the San
Andreas Fault, 7 km from the site, these bearings would lengthen the natural period
of vibration of the structure so as to produce a six-fold reduction in real elastic
forces to a level within the elastic capacity of the columns. Restrainer bars were
added to prevent the stringers from falling off their connections to the transverse
girders. All work was done with no interruption of traffic on or under the bridge.

The bridge is expected to remain in service during and immediately after the
design event. (It did not receive a good test in the 1989 Loma Prieta earthquake,
since the maximum ground acceleration was 0.09g.)

Sierra Point Overhead Bridge, San Francisco, seismically isolated by
retrofitting  with  lead-rubber bearings (photograph courtesy Dynamic
Isolation Systems, Incorporated)

Figure 6.28
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6.4.6 Sexton Creek Bridge, Illinois

?I'his structure, carrying Illinois Route 3 over Sexton Creek near the town of Gale
in Alexander County, is the first new bridge in North America to be seismically
isolated (1988). It was designed by the Illinois Department of Transportation Office
of Bridges and Structures. It is a three-span continuous composite steel plate girder
superstructure on slightly curved alignment, supported on wall piers and seat-type
abutments. There are five 1.4 m deep girders in the 13 m wide cross-section, and
the spans are 40-50-40 m. The piers and abutments are founded on piled footings
(see Figure 6.29) (Mayes, 1990-92).

Feasibility studies were conducted, leading to alternative solutions. The solution
selec@ achieved the objective of reducing the seismic and non-seismic loads on
tht.: piers as much as possible, because of the poor foundation conditions. Seismic
criteria for Sexton Creek included an acceleration coefficient of 0.2g and a Soil
Proﬁle Type I11, in accordance with the AASHTO Guide Specifications for Seismic
Design of Highway Bridges. The scheme chosen distributed the seismic load de-
mands to the abutments using twenty lead-rubber bearings, with twenty elastomeric
bearings at the piers (‘Force Control Bearings’).

Seismic and wind forces at the piers were minimised through adjustments in

bearing stiffness at the piers and abutments. The real elastic base shear was reduced
to 0.13W.

Figure 6.29 Sexton Creek Bridge, lllinois, fitted with lead-rubber bearings (photograph
courtesy Dynamic Isolation Systems, Incorporated)
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6.5 STRUCTURES ISOLATED IN ITALY

6.5.1 Introduction

The concept of seismic isolation, with an emphasis on energy absorption, has been
enthusiastically applied to bridges in Italy, but there are far fewer examples of
seismically isolated buildings.

The earliest records of bridges built in Italy go back two thousand years or
more. A wooden bridge is described in Caesar’s Gallic Wars, Book 4, but bridges
spanning powerful rivers were usually built with stone piers and wooden super-
structures, such as the Flavian Rhine bridge at Moguntiacum, or Trajan’s Danube
bridge, some 1120 m long (Cary, 1949). The modern technology of seismic isola-
tion has been incorporated into the Italian bridge-building tradition since 1974, as
shown in Table 6.8 (Parducci, 1992), in which details are given of over 150 bridges
seismically isolated in Italy. A wide variety of isolating systems has been used, as
seen in Table 6.8, although the earliest applications were designed without mod-
em isolation criteria and certainly without official guidelines. A preliminary design
guideline was published by Autostrade Company in 1991. Generally, elastic-plastic
systems based on flexural deformations of steel elements of various shapes (*EP’
in Table 6.8) were chosen. One such device is seen in Figure 6.30, while a de-
vice used in the Mortaiolo Bridge is described in detail below. Table 6.8 shows
that, even when two-way bridges are regarded as single structures, over 100 km of
bridge in Italy has been seismically isolated in some way.

Figure 6,30 An elastic-plastic device used in the seismic isolation of bridges in ltaly
(photograph courtesy A Parducci)
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Table 6.8 Bridges seismically isolated in Italy

(44

NOLLVTOSI DINSIAS 10 SNOLLYOI'TddY

No. of Name/Location Range of Total Superstructure Type Isolating System Date
Bridges Lengths (m) Length (m) Completed
1 Somplago, Udine-Tarvisio 1240 Precast segments EL (neoprene disc) 1974
3 Tiberina E45 1700 OL 1974
16 Udine-Tarvisio 240-900 7900 Box girder Long: elastom. sleeves 1981-1986

Transv: elastom. discs
3 Udine-Tarvisio 400-830 1600 Box girder Long: EP dampers 1983
Transv: elastom. discs
1 Cellino, Road S§S5251 580 Concrete beams EL (neoprene) 1983
3 Udine-Tarvisio 480-900 2100 Steel girder OL 1983-1986
1 Sesia, Trafori Highway 2100 oL 1984
I Bruscata, Greco 70 Steel truss EL 1984
i Pontebba, Udine-Tarvisio 960 Box girder EL (elastomer) 1984
2 Milano-Napoli 350-780 1100 Box girder EP (steel) 1985
12 *Napoli-Bari 70-720 5700 PCB boxed, piers or Long: EP devices on abutments 1985-1988
framed RC columns or on each span. Transv: EP on
pier
1 Slizza 3, Udine-Travisio 160 Steel girders EL 1985
1 Vallone, railway 240 Steel girders El 1985
1 Rivoli Bianchi, Udine-Tarvisio 1000 Concrete beams Pneumatic dampers 1985
2 Salerno-Reggio 600 1400 Concrete beams OL 1988
3 Fiano-San Cesareo 300-1200 1850 Concrete beams RB + metal-shock 1986-1987
5 Fiano-San Cesareo 120-700 1400 Box girders RB + metal-shock 1986-1987
6 . Fiano-San Cesareo 100-650 1600 Box girders/concrete EL (rubber discs) 1986-1987
beams
continued overleaf
O ——— i — e J——
Table 6.8 (continued)
No. of Name/Location Range of Total Superstructure Type Isolating System Date
Bridges Lengths (m) Length (m) Completed
2 Fiano-San Cesareo 300-700 1000 PCB Visco-elastic shock absorber 1986-1987
3 *Napoli-Bari 130-200 500 PCB LRB (long and transv) 1986
2 Milano-Napoli 170 Concrete beams LRB 1986
2 Salemo-Reggio 350-900 1200 PCB OL 1987
i Sizzine, Trafori Highway 1800 PCB OL 1987
i Agua Marcia, Milano-Napoli 325 Box girders Long: EP 1987
Transv: EL dampers
< Monte Vesuvio 6000 PCB EL dampers with mechanical 1987-1990
dissipators
2 Roma-Firenze railway 200-2700 12400 Box girders OL 1987-1989
Lontrano. Salemo-Reggio 550 Box girders OL 1988
Tagliamento. Pontebbana 1000 PCB Visco-elastic 1988
6 Roma-L Aquila-Teramo 128-450 1800 Box girders EL (rubber + metal shock) 1988
Calore. Caserta (railway) 100 PCB EL dampers + mechanical 1988
dissipators
| Granola, railway overpass 120 Concrete slab Bearings + EL buffers 1988
2 Viaducts, San Mango 600, 640 1200 Steel girders OL 1988-1990
I Morignano, Al4 highway 450 PCB EP dampers 1989
1 “Lenze-Pezze, Napoli-Bari 300 PCB EP dampers 1989
2 Vittorio Veneto —Pian di Vedoia  210-2100 2300 PCB Long: Visco-elastic Trans: EP 1989
i Pont Suaz, Aosta 240 PCB EP shock absorber 1989
1 Flumicello, Bologna-Firenze 300 PCB OL 1989
I Temperino, Roma-L’Aquila 830 - PCB EP dampers 1989
1 S.Onofrio, Salerno-Reggio 450 PCB OL 1989

ATVLI NI dH.LVTOSI SHANLONYLS €9

€€
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3 Roma-L'Aquila 230-1300 1800  Box girders OL + RB 1989 §
1 “D’Antico, Napoli-Bari 250 Composite deck EP 1989
1 Viadotto, Targia-Siracusa 23 Concrete beams EP 1989
3 Napoli-Bari (retrofitted) 160-390 720 PCB EP 1989-1990
1 *3rd Line, Roma-Napoli 580 Concrete beams LRB 1990
7 *Milano-Napoli 100-200 1000 PCB EP 1990-1991
1 Santa Barbara, railway overpass 120 Concrete slab EP 1990
1 Tora, Firenze-Pisa-Livorno 5000 Steel girders EP multidirectional 1990
3 Roma-L'Aquila 230-500 1200 Box girders Pneudynamic + RB 1990-1991
2 Salerno-Reggio 190, 390 600 Concrete beams OL 1990
1 Railway Rocca Avellino 400 Concrete beams oL 1990
1 SS 206, Firenze-Pisa-Livorno 2500 Steel girders EP 1990
| Tiasca, Trafori highway 1610 PCB Elastic buffers 1990
l Vesuvio, SS 269 1860 PCB Elastic buffers 1990
3 Messina-Palermo 900 900 Prestressed concrete box  EP (long) 1990
girder
1 Mortaiolo, Livorno- 9600 Prestressed concrete slabs  EP with shock absorbers 1990-1992 g
Civitavecchio Q
| S Antonio, Bretella 700 Prestressed concrete EP with shock absorbers 1991 g
- Salerno-Reggio 350, 500 850 PCB EP 1991 Z
2 PN-Conigliano 500, 800 1300 Prestressed concrete EP 1991 =}
1 Minuto, Fondo Valle Sele 1000 PCB OL 1991 E
3 Roma-L’Aquila-Teramo 200-300 700 Box girders oL 1991-1992 E
1 Poggio Iberna, Livorno- 2500 PCB OL 1991-1992 ()
Civitavecchia g
3 Livorno-Cecina 600-1800 2800  PCB EP, EP + RB 1991-1992 &
continued overleaf §

Table 6.8 Continued o
No. of Name/Location Range of Total Superstructure Type Isolating System Date é
Bridges Lengths (m) Length (m) Completed
1 *Rumeano, Via Salaria 340 PCB EP Retrofit
designed g
1 Viadotto No 2, Tangenziale 240 PCB EP 1990 vy
Potenza a
1 Angusta, Siracusa 450 Boxed RC beams EL 1990 5
7 *Salerno-R Calabria 100-500 1800 PCB with connecting EP Retrofit o]
slabs designed E
1 Fragneto 870 Steel box girder with RC EP devices on piers, with ST Designed
slabs long. Highest piers connected
1 Ponte Nelle Alpi, Via Veneto- 310 Steel box girder with RC Long: EP with ST Designed
Pian di Vedoia slabs Transv: EP on all piers
Key:
EP = Elastic-plastic behaviour RB = Rubber bearings
EL = Elastic LLRB = Lead-rubber bearings
OL = Oleodynamic system (EP equivalent) RC = Reinforced concrete
SL = Sliding support PCB = Prestressed concrete beams
ST = Shock transmitter system associated with SL
Notes:

Where bridges are two-way, they have been regarded as a single bridge in estimating the length,
The total length of isolated bridges is thus greater than 100 km.
Of the more recent bridges (1985-1992), typical design values of the parameters are:
» Yield/weight ratio: 5-28%, with a representative value of 10%.
» Maximum seismic displacement: £30 to £ 150 mm, with a representative value of £60 mm,
e Peak ground acceleration: 0.15-0.40 g, with a representative value of 0.25 g.

Known retrofits are indicated with an asterisk (*)

‘&' :
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6.5.2 Seismically isolated buildings

To date, only a few seismically isolated housing constructions have been designed
or built in Italy (Parducci, 1992). These are detailed below. Vulcanised rubber-steel
multi-layer pads are the seismic isolation system used.

(i) SIP Regional Administration Centre, Ancona.

Five 7-storey seismically isolated buildings.

Elastomeric bearings had diameter 600 mm, height 190 mm.
=7.0 x 10° kg, 61 isolators
=3.7 x 10° kg, 36 isolators
Horizontal stiffness =114, 65 MN m!
Natural periods =15,16s
= 0.06 (experimental = 0.12)
Maximum response spectrum acceleration = 0.5g

Type “A’: Isolated mass
Type ‘B’: Isolated mass

Design viscous damping

Maximum design displacement = 145 mm

A full scale test was carried out on a Type-‘A’ building; imposed displace-
ments were up to 107 mm, before instant release.
(ii) Nuovo Nucleo Arruolamento Volontari, Ancona.

Isolated mass =0.5 x 10° kg
Natural period =16s.
Equivalent damping = 10%

Maximum ground acceleration = 0.5¢ (‘single shock’ quake)
Maximum design displacement = 85 mm

(iii) Centro Medico Legale Della Marina Militare, Augusta (designed).

Isolated mass =0.2 x 10° kg
Natural period =20s
Equivalent damping = 10%
Maximum ground acceleration =0.25g
Maximum design displacement = 180 mm

(iv) Buildings Della Marina Militare, Augusta (designed).

Isolated mass = 0.4 x 10° kg
Natural period =2.0s
Equivalent damping = 13%
Maximum ground acceleration = 0.25g

Maximum design displacement = 180 mm
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6.5.3 The Mortaiolo Bridge

The Mortaiolo Bridge, a major two-way bridge in the Livorno-Cecina section of
the Livorno-Civitavecchia highway, was completed in 1992. The bridge crosses
the large plain composed of deep soft clay stratifications lying near Livorno, in a
region of seismic risk.

The bridge is 9.6 km long, with typical spans of 45 m (see Figure 6.31(a)),
made of prestressed reinforced-concrete slab, with elastic-plastic devices on all
the piers, shock-transmitter systems in the longitudinal direction, and a designed
peak ground acceleration of 0.25¢. The elastic stiffness of the isolating device, in
a typical section, is 135 MN m™', the yield/weight ratio is 0.11 and the maximum
seismic displacement of the isolating system is +80 mm (Parducci and Mezzi,
1991; Parducci, 1992).

B=1225m
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Figure 6.31 (2) A schematic diagram ol Mortaiolo Bridge. (b) A schematic diagram
of one of the isolation devices used in the Mortaiolo Bridge (courtesy A
Parducet)
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Two equivalent isolating systems, manufactured by Italian firms, have been ing behaviour is based on the hysteretic flexural deformations of steel elements.
utilised in the bridge. Although they are based on different mechanical systems, Figure 6.31(b) illustrates the principle of operation of one of these devices. Pro-
they respond in the same elastic-plastic way. In both the devices the dissipat- vision for relative tilting between the piers and superstructure is provided by a
spherical bearing. Damping is provided elasto-plastically by the deflection of nu-

merous steel cantilevers arranged in a ring. A shock transmitter, a highly viscous
device based on an oil-piston system, is in series with the isolator. The device is
shown under test in Figure 6.32.

Figure 6.33 shows the Mortaiolo Bridge when nearly completed; further details
are given by Parducci and Mezzi (1991), who also show that the real incremental
cost of the isolating systems was only 4.8% of the bridge cost.

6.6 ISOLATION OF DELICATE OR POTENTIALLY
HAZARDOUS STRUCTURES OR SUBSTRUCTURES

6.6.1 Introduction

Seismic problems arise with lightweight, delicate or potentially hazardous structures
and substructures, such as life-support equipment in hospitals; important works of
artistic or religious significance, e.g. the big statue of Buddha at Kamakura, Japan;
equipment sensitive to vibration; and the radioactive components and associated
support systems of nuclear reactors.
Figure 6.32  One of the isolation devices used in the Mortaiolo Bridge, under test (pho- An example of such a structure, where seismic isolation was installed because the
tograph courtesy A Parducci) cost of the contents far exceeds that of the building, is the Evans and Sutherland
Building in Utah, which manufactures computerised flight simulator equipment
(Mayes, 1992). Another example is the Mark Il detector for the Stanford Linear
collider at Stanford University, Palo Alto, California, which was provided with
seismic isolation in 1987 (Mayes, 1992). Four lead-rubber bearings were installed
under the detector, also supporting the 1500 t mass of the collider. The isolation
system was designed to reduce seismic forces by a factor of 10 and provide seismic
protection of this sensitive and expensive equipment at less than 0.4% of its cost.
The detector was not damaged during the 1989 Loma Prieta earthquake (Richter
magnitude 7.1).

Approximately bilinear isolators, which usually provide most of the mode-]
damping, have been found to be practical and convenient for the large-scale iso-
lation of buildings and bridges as such. However, when an aseismic design is
critically controlled by the responses of relatively lightweight substructures it is
often appropriate to restrict the isolators to moderate or low levels of non-linearity.
For such isolators it will sometimes be appropriate to provide a substantial part of
the mode-1 damping by approximately lincar velocity dampers.

These restrictions would not preclude the use of moderate levels of bilinear
damping by means of metal yielding or by low sliding-friction forces. For ex-
. ample, the weight of an isolated structure might be carried on lubricated PTFE
Figure 633 Mortaiolo Bridge near completion (photograph courtesy A Parducei) bearings. However, (0 minimise resonant-appendage effects during relatively fre-
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quent moderate earthquakes, such PTFE bearings should be supported by flexible
mounts, as in the laminated-rubber/lead-bronze bearings pioneered by Jolivet and
Richli (1977). Further isolator components should include flexible elastic compo-
nents 1o provide centring forces, and sometimes substantial velocity damping. Both
the latter components reduce the maximum extreme-earthquake base movements
for which provision must be made.

Nuclear power plants contain critical lightweight substructures essential for their
safe operation and shut-down, including control rods, fuel rods and essential pip-
ing. These can be given a high level of protection by appropriate seismic isolation
systems, designed to give low levels of seismic response for higher vibrational
modes of major parts of the power plants. Further serious seismic problems arise
with fast-breeder reactors in which critical components are given low strength by
measures designed to give high rates of heat transfer. For some breeder-reactor de-
signs it may be desirable to attenuate vertical as well as horizontal seismic forces.
In this case it may be practical to provide horizontal attenuation for the overall
plant and vertical attenuation for the reaction vessel only. Since the dominant ver-
tical earthquake accelerations have considerably shorter periods than the associated
horizontal accelerations, displacements associated with vertical attenuation should
be much smaller than those for horizontal attenuation.

Early papers on nuclear power plant isolation, (Skinner et al. 1976a, 1976b),
concentrated on the protection of the overall power plant structure but did not treat
the problems with lightweight substructures, which arise from the seismic responses
of higher modes of structural vibration. Structural protection may now be achieved
with simpler alternative isolator components; for example the use of lead-rubber
bearings may remove the need for installing steel-beam dampers.

6.6.2 Seismically isolated nuclear power stations

Seismic isolation of nuclear structures is seen as a way to simplify design, to
facilitate standardisation, to enhance safety margins and possibly to reduce cost
(Tajirian er al., 1990). For example, it has been demonstrated that the weight of
a pool-type fast-breeder reactor can be reduced by half if horizontal isolation is
used. An exhibition at a recent conference (SMiRT-11, 1991) had an emphasis on
seismic isolation for nuclear structures.

By 1990 it was reported (Tajirian er al., 1990) that six large pressurised water
reactor units had been installed, with seismic isolation, in France and South Africa
and that several advanced nuclear concepts in the USA, Japan and Europe had also
incorporated this approach.

The design concepts for seismic isolation of two liquid-metal reactors, with the
acronyms PRISM and SAFR, have been carried out in the USA. For the PRISM
design, horizontal protection, for the reactor module only, is provided by 20 high-
damping elastomeric bearings, while the SAFR design is unique in providing ver-
tical as well as horizontal isolation, by using bearings which are flexible, both hor-
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izontally and vertically. The entire SAFR building is supported on 100 isolators.
The seismic design basis for both plants is expected to cover over 80% of potential
nuclear sites in the USA, and options for higher seismic zones have also been
investigated.

6.6.3 Protection of capacitor banks, Haywards, New Zealand

The AC Filter Capacitor Banks at the Haywards HVDC Converter Station in the
Hutt Valley, New Zealand were built in 1965. Their earthquake resistance was
increased in 1988 to the current seismic design requirement using a base-isolation
method employing rubber bearings and hysteretic steel dampers (Pham, 1991) (see
Figures 6.34 and 6.35). Design considerations for one of the structures have been
discussed in Chapter 5.

Owing to the light mass involved, lead-rubber bearings were found to be in-
appropriate and specially designed segmented rubber bearings were used. These
bearings have rubber layers bonded alternatively with steel plates in the conven-
tional manner. However the rubber layers are not continuous but divided into four
discs of 110 mm diameter each, as shown in Figure 3.14. This is to reduce the
rubber shear area, while maintaining stability, and hence reduce the shear stiffness
sufficiently to shift the natural periods of the relatively light AC Filter Capacitor
Banks from 0.2-0.5 s to 1.8 s.

Dynamic shaking tests were done on 1 t bearings and static shear tests were
done on 5 t bearings of this design. Test results have indicated that the bearings met
the design specifications. To limit the displacements during large earthquakes and
provide lateral restraints during minor earthquakes and for wind loads, hysteretic
steel dampers were provided (see Figure 3.3(b)).

Even with the base isolation, it was found that the insulators supporting the
capacitor stack would not have adequate seismic strength. To reduce the bend-
ing moment at the support insulators, the stacks are split into two halves, thus
effectively reducing the bending moment at the support insulators by a factor of
two.

The specifications are as follows.

AC Filter Capacitor Banks: a total of 18 banks of three different types with
individual masses varying from 20 000 kg to 32 000 kg. The heights of the banks
vary from 6.6 m to 9.6 m,

Rubber Bearings: each bank has four to six bearings rated at 5000 kg each. Each
bearing has 19 layers with a total height of 254 mm and a plan dimension of
400 x 400 mm. The shear stiffness is rated at 0.06 kN mm~'.

Dampers: each bank is provided with two circular tapered-steel dampers with a
base diameter of 45 mm, a height of 500 mm and was designed for a yield force Qy
of 10.6 kN,
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6.6.4 Seismic isolation of a printing press in Wellington, New Zealand

In 1988 Wellington Newspapers Ltd approached the DSIR seeking advice on earth-
quake protection for a proposed new printing press establishment to be built in the
Wellington region at Petone (Dowrick et al., 1991). The need for special protec-
tion of brittle cast-iron press machines had been demonstrated by the vulnerability
of paper-printing machines in the 1987 Edgecumbe earthquake. The site for this
project was chosen because of its ready access to rail and road transport, but turned
out to be traversed by the Wellington fault.

To give the printing presses maximum protection from earthquakes, the building
required a seismic isolation system, and in addition the building had to be as stiff
as possible up to the top of the presses to limit the horizontal deflections of the “

— e e —

presses in all directions. The originally proposed concrete walls were therefore
extended in height and length around the ends of the press hall, and the mezzanine
floor was stiffened. Creating enough horizontal stiffness in the direction lateral to
the presses at the top platform level proved to be particularly difficult because
visibility required for operations necessitated the use of a horizontal steel truss
at this level (rather than using an opaque concrete slab). It was not practicable
to create a truss with the optimum desired stiffness, but a workable solution was

S = : St found (see Figure 6.36).
Figure 6,34  Capacitor banks at Haywards HVDC converter station in the Hutt Valley, The dynamic analyses were carried out using a computer program for analysing
New Zealand, seismically isolated by retrofitting with segmented rubber seismically isolated structures incorporating the non-linear behaviour of the special
bearings and steel dampers (photograph courtesy of R.T. Hefford) isolating and damping system introduced below the ground floor. From the results

of the first trial analysis, it was found that the horizontal accelerations applied to
the isolated structure, due to the very strong shaking caused by a rupture on the
Wellington fault, would be in the range approximately 0.4-0.6g. It would have
been both expensive and physically very difficult to give a high level of protection
to the press against damaging deflections under such accelerations, particularly at
the upper platform level. An additional disadvantage arose from the fact that it
was not feasible operationally to apply any lateral restraint to the press at a level
midway between the top platform and the mezzanine floor.

It was found practicable to provide protection against earthquake-generated ac-
celerations, transmitted through the structure, of about 0.3g at the top of the press
and 0.25g at the lower levels. The specially designed building housing the press
was mounted on lead-rubber bearings 460 mm thick. This reduced the estimated
loads and deflections on the press by a factor of 8-10 compared with the non-
isolated case (see Figures 6.37 and 6.38). As a result, the press should suffer only
modest damage in earthquake shaking somewhat stronger than that required by the
New Zealand earthquake code for the design of buildings.

Figure 6.35 Detail of retrofitted seismic isolation system for Haywards, as seen on the
left of Figure 6.30. Note the low-stiffness elastomeric bearing, the steel
cantilever damper and the original concrete support
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Figure 6.36 End elevation of Press Hall for Wellington Newspapers, Petone

Figure 6.37  Lead-rubber bearings for Press Hall under test
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Figure 6.38 Lead-rubber bearings in place in Press Hall

6.7 NOTE ADDED IN PROOF (JANUARY 1993)

During the six months since the manuscript of this book was submitted, applications
of seismic isolation in New Zealand, Japan, the USA and Italy have continued to
progress at a significant rate.

e New Zealand Parliament House in Wellington, a building of importance for
New Zealand, built in 1921, is at present being retrofitted with seismic isolation
using a lead-rubber bearing system. The new New Zealand National Museum,
to be built on the waterfront in Wellington, will be seismically isolated, probably
using a similar system.

e Japan In addition to the bridges listed in Table 6.5, at least ten further new
bridges in Japan are to be seismically isolated, most of these using a lead-rubber
bearing system. The new Post Office Building in Tokyo is to be seismically
isolated using a lead-rubber system and will be twice the area of the C-1
Building, currently the largest seismically isolated building in the world.

e USA A large number of bridges are being retrofitted with the lead-rubber
bearings while many buildings, including hospitals, are scheduled for seismic
isolation.

e Italy A number of new buildings with seismic isolation are ‘on the drawing-
board’, with many of these being hospitals or other buildings needed in civil
emergency. New bridges continue o be constructed with seismic isolation.

An emerging trend in the development of seismic isolation is the use of systems
which incorporate the benefits of muany different isolator components, for instance
lead-rubber bearings together with (high-damping) rubber bearings and/or together
with steel or viscous dampers, Such combinations confer the maximum benefit of
cach component 1o the system s o whole,
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Active isolation see Seismic isolation
Appendage responses see¢ Secondary system
responses

Base displacement see Horizontal seismic
displacement
Base isolation see Seismic isolation
Base shear 6(F), 7, 26, 37, 138, 160, 163,
194, 235, 262, 266
in 7 case studies and 7 classes of isolator
40-54, 42(F), 44(T)
ratio to weight 42(F), 44(T), 162, 163(F),
294
see also Shear distribution
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57. 57(T), 85-96, 86(F), B8(F),
88(F), 92(F), 94(F), 220, 220(F),
221, 221(F), 225, 253, 262, 268,
275, 278, 283, 284(T), 290, 299,
300(T), 302(T), 303, 304(F), 305,
311,311(T), 313, 314(F), 317, 317(F),
320, 322(T), 326, 331
and modification to form lead-rubber
bearing 58, 97, 98(F), 101(F), 284
high-damping 57, 57(T), 110, 300(T),
302(T), 303, 305, 313, 314(F)
with lead bronze 330
lead-rubber (LRB) 57(T), 58, 96-108,
98(F), 101(F), 102(F), 103(F), 105(F),
106(F), 107(F), 109(F), 160, 225, 253,
268, 275, 279, 283, 284, 284(T),
285(T), 286, 287(F), 300(T), 302(T),
303, 305, 307, 308(F), 309(1), 310(F),
311(T), 312T), 315, 316(F), 317,
317(F), 319, 319(F), 320, 320(),
PTFE sliding 111, 112, 275, 330
Buffers and stops 55, 570T), 115, 116, 268,
269, 276, 299, 316

Case studies
7 linear-chain structures with different
isolation 12, 40-48, 44(T)
and generalisation to 7 classes of
isolation system 48-54
81 linear-chain structures with bilinear
isolation 12, 26, 186-199, 188(T),
192(F), 198(F)
secondary responses of various isolation
systems 217-225, 220(F), 222(F)
Choice of isolation system see Guidelines
Classical see Mode
Combination rules 212-213, 256
CQC 37, 231
SRSS 37, 196-199, 204, 212
Contents see Secondary system responses
199, 329
Correction factor 26, 44(T). 165-169,
168(F). 247(F), 248
Costs 2, 3, 21, 55, 116, 241, 242, 270, 271,
272, 283, 294, 299, 315, 329, 330
Coupling parameter see Secondary system
responses 207

Damper

Coulomb 9, 9(F), 24(F), 81, 84, 160, 173,
174(F)

friction 57(T), 58, 160, 300(T)

hydraulic 110

lead extrusion (LED) 57(T), 58, 79(F),
B0-85, 82(F), 160, 275, 283, 284(T),
285(T), 288, 288(F), 297, 297(F), 299,
300(T)

steel (steel beam) 57(T), 58, 63-76,
GO, 691, T3, T5(F), 160,
262, 275, 283, 284(T), 285(T), 295,
20601, 3000T), 303, 304(F), 305, 321,
32 1(1), 32201, 327(F), 328(F), 329,
430, 331

viscous (velocity dwmper) 9, 91H), 23(1),
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Damper (cont.)
57, 57(T). 110, 124, 275, 300(T), 305,
306(F), 322(T)
see also Bearings 3-4
Damping 4, 5(F), 15, 19(F)
and energy dissipation 59, 121, 122, 236,
283, 284, 289, 297, 329
base 120, 140-145, 149-151, 236
coefficient 16, 22, 23(F), 24(F), 124, 127,
174(F), 255, 273(F)
classical see Mode
hysteretic 25, 44(T), 58, 128, 165, 236,
259, 274, 275, 290
mass-proportional 127, 201
non-classical see Mode
of isolator components 55-58, 57(T)
stiffness-proportional 127, 220
viscous 25, 120, 128, 236, 259, 326, 329
Damping factor (fraction of critical viscous
damping) 16, 17, 22, 36, 44(T), 126, 136,
147, 259
‘effective’ or ‘equivalent” see Equivalent
linearisation
hysteretic 25, 44(T), 165, 259
Damping matrix 29
free-free 145, 173
Degree of isolation see Isolation factor
Degree of non-linearity see Non-linearity
factor
Design detailing 7, 55, 64, 65, 67(F), 74, 96,
242, 266, 269, 294, 330, 333
Design displacement see Seismic gap
Design earthquake 4, 20, 164, 242-246,
244(F), 257, 261, 267, 274, 277, 283,
291, 295, 319, 333
Design guidelines see Guidelines
Devices see Bearings; Buffers; Dampers;
Gravity devices; Isolators and isolating
systems; Piles; Springs
DSIR xi, xiii, 160, 281, 333
Physical Sciences xiii, 10
Physics and Engineering Laboratory xi,
xiii, 10, 63, 77
Duhamel integral 17, 153

Earthquakes
artificial 4, 246, 291
Edgecumbe 281, 333
El Centro 1934 19(F)
El Centro NS 1940 4, 12, 18, 19(F),
40-48, 42F), 44(T), 160, 186199,

INDEX

220, 222, 234, 249, 283, 289
scaled El Centro 160, 162, 163(F),
164, 165, 166(F). 167(F),
168(F), 225, 242-246, 244(F),
247(F), 250(F), 261, 298
Loma Prieta 319, 329
Mexico City 4, 221
Olympia 19(F)
Pacoima Dam 4, 221, 225, 283, 298, 299
Parkfield 160, 225
Taft 19(F), 225
Earthquake spectrum see Response spectrum
Effective period; Effective stiffness; Effec-
tive damping factor see Equivalent lin-
earisation
Equation of motion 16, 29, 56, 124, 136,
145, 152-155, 170, 173, 175, 183-185
Equivalent linearisation 23(F), 24-26, 24(F),
44(T), 48, 121, 160, 165-169, 166(F),
167(F), 168(F), 236, 247(F), 248,
251-254, 252(F), 259, 261-266
Energy dissipation see Damping
Extreme earthquake event see Design
earthquake
Extrusion 77-84, 77(F), 79(F), 82(F), 83(F)

see also Damper, lead-extrusion

Fatigue 64, 74-76, 75(F), 80, 85, 106
Flexibility (inverse of stiffness) 4, 5(F), 10
in 7 structures 40-48, 42(F), 44(T)
in 7 classes of isolating system 48-54,
50(T)

in 81 structures on bilinear isolators
186-199, 188(T)

of common isolator components 55-58,
57(T)

Floor (response) spectra 12, 18, 27, 34(F),
158, 161, 181, 200, 218-225, 235, 236,
238, 240, 254, 268, 295
of 7 structures 40-48, 42(F), 44(T)
of various isolation systems 218-225,

220(F)
see also Secondary system responses

Force-displacement loop (load versus deflec-
tion hysteresis loop) 22-25, 40-54, 44(F),
50(T), 237
for bridge 274
for small displacements 108, 109(F)
of bilinear isolator 9, 9(F), 24(F). 25, 56,

160, 251-254, 252(F)
of exirusion damper 81, 82(F)

INDEX

of lead-rubber bearing 101, 101(F), 102,
103(F)
of linear isolator 9, 9(F), 22, 23(F)
of PTFE bearings 111, 112
of rocking structure 113
of rubber bearing 94(F), 101, 101(F)
of typical metal 59
of steel damper 68-72, 69(F), 73(F)
Foss’s method 123, 151-159
Frequency (inverse of period) see Period
complex 126-160, 205
Frequency equation 126, 127, 131, 145
Fundamental (first) mode 20, 32(F), 40-48,
42(F), 119, 121, 138, 149-151, 178(F),
182(F), 186, 188(T), 192(F), 198(F), 235,
249, 250(F), 255, 278

Gravity devices

stepping and rocking 57(T), 58, 63, 112,
113, 283, 285(T), 288, 289(F), 290(F),
291(F)

rollers, balls and rockers 57, 57(T), 114

hanging links and cables 114, 271

Guidelines 239-280

and design codes 276-280

and iterative procedures for design
257-261

for design of an isolated structure 13,
192(F), 239, 244(F), 247(F), 249,
250(F), 251-254, 252(F)

for linear isolation systems 255-257

for bilinear isolation systems 257-261

for selection of isolation system compo-
nents 55-58

for selection of isolation systems 50(T),
48-54

for torsionally unbalanced structures 226

Higher modes 12, 20-21, 23(F), 27-28,
40-54, 122-124, 128, 138, 148, 150,
161, 163, 165, 176-184, 178(F), 182(F),
186-199, 188(T), 192(), 198(F), 235,
236, 237, 239, 249, 250(F), 251, 253,
260, 265, 268, 275, 278

Higher-mode attenuator 23, 23(F), 158

Holzer technique 124, 149-151

Horizontal seismic displacement 4, 19(F),

21, 37. 55, 90-92, 125(F), 134(F),
144(F), 163, 236, 247(F), 2506, 258, 202,

266, 283, 291
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of 7 cases and 7 classes of isolators and
isolating systems 40-54, 42(F), 44(T),
50(T)

see also Mode-shape; Seismic gap; Peak
values of ......

Hysteresis loop

and damping and energy dissipation see
Damping

(shear) force versus displacement see
Force-displacement loop

(stress versus strain) and (torque versus
shear) 59-62, 60(F), 68-72

Interaction parameter (interaction coeffi-
cient) see Secondary system responses
203, 207
Isolation factor (degree of isolation) (iso-
lation ratio) 4, 12, 28, 40-54, 44(T),
128-199, 134(F), 192(F), 219, 236, 237,
249, 250(F), 254, 260, 265, 268
Isolator force 173, 174
Isolators and isolation systems 8, 9, 10,
40-54, 42(F), 44(T), 50(T), 55-58, 57(T)
Alexisismon 160
bilinear (simple case of non-linear) 9,
9(F), 23-26, 24(F), 40-48, 42(F),
44(T), 55-58, 57(T), 160-199, 163(F),
166(F), 167(F), 168(F), 174(F),
178(F), 182(F), 192(F), 198(F),
251-254, 252(F), 257-261

damped linear 9, HF), 22, 23(F), 4048,
42(F). 44(T), 55-58, 57(T), 123-160,
125(F), 131(F), 134(F), 144(F), 235,
254-257

elastoplastic 219, 220(F), 221, 222(F)

Electricité de France 160, 220(F), 221,
222(F)

friction 122, 160, 220, 220(F), 222(F),
237

for seismic protection of capacitor banks
261-266, 331, 332(F), 334(F)

for a hypothetical building 266-270

guide to selection see Guidelines

non-linear, in general 22, 55-58, 57(T),
121, 160

parameters 22226,  161-169, 163(F),
166(F), 167(F), 168(F), 187, I188(T),
239, 251-254, 258, 268, 272-274

resilient-friction 160, 2200F), 221, 222(F),
224

sand-layer 160
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sliding resilient friction 2-42, 160,
220(F), 221, 222(F)

see also Bearings; Dampers; Piles;
Gravity devices; Springs

Italy

seismic isolation in this country 65, 280,
281, 282(T), 322(T)

structures seismically isolated 321
buildings 326
bridges 321(F), 322(T), 327, 327(F),

328(F)

Japan
seismic isolation in this country 1, 65, 85,
96, 280, 281, 282(T), 300(T), 302(T).
307, 309, 330
structures seismically isolated 329
buildings 299, 300(T), 303-308,
304(F). 306(F). 307(F), 308(F)
bridges 299, 302(T), 309-310, 309(F).
310(F)

Lead extrusion damper (LED) see Damper
Lead-rubber bearing (LRB) see Bearing
Lifetime

of isolation system 9, 57, 276

of steel damper 75, 75(F)

of extrusion damper 84, 85

Maintenance, inspection, repair 3, 9, 55, 57,
58, 64, 269, 272, 282, 299, 318
Mass ratio see Interaction parameter
Maximum values of displacement, velocity,
acceleration see Peak values
Modal coupling 169-186, 178(F)
Modal decomposition 39, 136
see also Modal filtering
Modal filtering (mode sweeping) 12, 40,
122, 161, 171-186, 178(F), 182(F), 187,
219, 240
Mode
classical (in phase) 31, 35, 120, 127,
128-139, 149, 150, 156, 255
free-free 119, 129, 131(F), 134(F), 135,
177, 185, 187, 236, 256
perturbation to free-free mode 119,
145-148
fixed-base 127, 128, 132
perturbation to fixed-base mode 159
fundamental  see Fundamental — (first)
maode

higher see Higher modes

mode shape (mode profile) 30-33, 32(F),
133, 134(F), 144(F), 149-151, 178(F),
256

non-classical 120, 127, 140-145, 144(F),
151-160, 200, 236, 240, 255

of bridge 273, 273(F), 274

of elastic and yielded phases of bilinear
isolator 177-184, 178(F), 237

of linear structures with bilinear isolation
169-186, 178(F)

primary-secondary, tuned and detuned
202-214, 204(T)

secondary systems in structures with
linear isolation 214-217

secondary systems in structures with
bilinear isolation 217-225

torsional 226-235, 228(F)

Models of structures

bilinearly isolated system, treated as
‘equivalently linear’ 165-169

isolated bridge 273, 273(F), 279

non-uniform linear structure on linear
isolator 145-148

secondary structure mounted on primary
structure 199-226, 201(F)

single mass on Coulomb damper 160-169

torsionally unbalanced structure 226-235,
228(F)

uniform continuous shear beam or linear
chain on bilinear isolator 169-199,
174(F)

uniform continuous shear beam or linear
chain on linear isolator 28, 29(F), 31,
119, 123-160, 125(F)

New Zealand (NZ)
Ministry of Works and Development
(MWD) xii, 10, 97
seismic isolation in this country 2, 63, 85,
97, 113, 269, 275, 276, 278, 279, 281,
297,333
structures seismically isolated 282(T),
284(T), 285(T), 287(F), 288(F),
289(F), 290(F), 291(F), 292(F).
293(F), 296(F), 297(F), 298(F). 331,
332(F). 333, 334(F), 335(F)
buildings 284(T), 291-299, 292(F),
293(F), 296(F), 297(F), 298(F),
333

INDEX

bridges 284-290, 285(T), 287(F),
288(F), 289(F), 290(F), 291(F),
299
delicate and hazardous structures
331-335, 332(F), 334(F), 335(F)
Non-classical see Mode
Non-classical damping parameter see Sec-
ondary system responses 203, 207
Non-linearity 27, 121, 122, 181
factor 12, 24(F), 25, 27, 40-54, 42(F),
44T), 161, 165, 181, 186, 187,
188(T), 192(F), 195, 220, 237, 249,
250(F), 251-254, 252(F), 259, 260,
265, 268
Non-uniform structure see Models of
structures

Overturning moments 37, 134(F), 138
Orthogonality conditions 34, 136, 152, 171,
176

Participation factor 36, 38, 119, 120, 134(F),
136, 156-159, 171, 176, 183, 185,
204(T), 206, 209, 213, 228(F), 230, 232,
256

Peak values of displacement, velocity and
acceleration 26, 36, 40-54, 42(F), 44(T),
137, 162-169, 163(F), 181, 186-199,
188(T), 192(F), 198(F), 236, 237, 247(F),
252, 256

Performance and/or testing of isolators or
systems 5, 10, 64, 66(F), 71, 75(F), 81,
82(F), 83(F), 94(F), 98(F), 101, 101(F),
102(F), 103(F), 105(F), 106(F), 107(F),
109(F), 281, 303, 305, 306(F). 307,
328(F), 329, 331, 334(F)
shaking-table tests 10, 216, 225

Period (inverse of frequency)

‘effective” or ‘equivalent” see Equiva-
lent linearisation

elastic 161, 177, 187, 188(T), 263

post-yield 161, 177, 187, 188(T), 263

natural (fundamental) 4, 16, 28-33, 89,
119, 126, 147, 161, 305, 309, 313, 326

Period shift 4, 5(F), 7, 15. 55, 236, 294, 205,
303, 309, 313, 319, 331

Piles (or columns) 57, S7T(T), 63, 114, 283,
284(T), 295, 296(F), 297, 297(F), 298(1%),
305

Plasticity 59-62, 60(F), 611, /9
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and dislocations 61-62, 61(F), 79, 81
of steel 64
of lead 79-81, 97, 104, 105(F)

Response history analysis (time history
analysis) 160, 161-164, 170, 182(F), 183,
186, 240, 257, 261, 268, 275, 278

Response spectrum 11, 15, 16-20, 19(F),
26, 161-169, 236, 243, 244(F), 256, 275,
278, 326

Retrofit 2, 271, 283, 284(F), 285(F), 311,
315, 316(F), 319, 319(F)

Scaling procedures
for steel-beam dampers 64, 68-74, 69(F),
70(T)
for earthquakes see Earthquakes, scaled
El Centro
Secondary system responses 12, 18, 27,
34(F), 120, 122, 158, 161, 181, 199-226,
235, 238, 239, 240, 254, 268, 295
of 7 structures 40-48, 42(F), 44(T)
of various isolation systems 219-225,
220(F), 222(F)
Seismic displacement see Horizontal seismic
displacement
Seismic force 37, 137
Seismic gap (closely related to design
displacement) 2, 4, 55, 115, 243, 269,
270, 272, 276, 277, 282, 286, 288, 295,
299, 309, 318, 322(T), 326
Seismic isolation
active vis-a-vis passive 2, 116, 117
rationale, criteria and features 1, 3, 6(F),
4-8, 16, 19(F), 21, 55, 240-242, 281,
316, 317, 329
reviews |
Seismic responses 33-40, 40-54, 161, 239,
271-278, 305
of isolated bridge 274, 275
of 7 cases and 7 classes ol isolation
systems 40-54, 42(1), 44(T), 50(T)
of 81 lincar-chain structures on bilinear
isolators 186-199, 192(F), 198(F)
of  torsionally  unbalanced  structures
226-235, 228(F)
see alyo Base shear; Shear  distribu
tion; Horizontal seismic displacement;
Pouk values of ..., L Secondary sys
e responses; Torsion
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Site conditions 3, 241, 243, 249, 270, 277,
291, 295, 297, 305, 309, 315, 319, 320,
327, 333
Shear
bulge factor 194-199, 198(F), 250,
251(F), 254

distribution 37, 4048, 42(F), 44(T), 93,
133, 138, 143(F), 144(F), 194-199,
198(F), 235, 238, 247(F), 250(F), 254,
256, 260, 268

see also Base shear

modulus 59, 73, 74(F)
Spectral responses (spectral velocity, dis-
placement, acceleration) see Response
spectrum
Spring 16, 57, 57(T)
Stiffness
between masses of multimass structure
29(F), 149

‘effective’ or ‘secant’ (diagonal slope of
force-displacement loop) see Equiv-
alent linearisation 9(F), 22, 23(F),
24(F), 25, 33, 166(F), 251-254, 252,
252(F), 259

‘effective’ as defined in three alternate
ways 170-186

‘effective’ for bridge 273, 273(F)

of base 140, 148-151

of each phase of bilinear isolator 23,
24(F), 237, 262

of lead-extrusion damper 82(F)

of lead-rubber bearing 101, 101(F), 108

of linear isolator 22, 23(F), 255

of real isolated structures 294, 326, 327,
331

of rubber bearing 88-90, 101(F)

of plastically deformed metals see
Plasticity

INDEX

of steel dampers 72-74, 74(T)
Stiffness matrix 29

free-free 145, 173, 185

elastic-phase 174

yielding-phase 174, 184
Stroke 66(F), 75, 75(F), 84, 85, 101, 106

Torsion 7, 13, 15, 123, 226-235, 228(F), 238,
272, 275, 277, 305

‘Trade-off” between base shear and displace-
ment 8, 161, 246-249, 247(F), 259, 268,
272

Tuning parameter see Secondary system
responses 203, 207

United States of America (USA)
seismic isolation in this country 1, 243,
276, 277, 281, 282(T), 311(T), 312(T)
structures seismically isolated 330
buildings 311(T), 313-318, 313(F),
314(F), 316(F), 317(F), 318(F)
bridges 312(T), 319, 319(F), 320,
320(F)

Wave number 126-160, 131(F)

Wind and traffic loads 8, 22, 50(T), 56, 58,
65, 85, 268, 270, 272, 286, 303, 320, 331

Worldwide use of seismic isolation xi, 1, 13,
281, 282(T), 330, 335

Yield

displacement 24, 24(F), 72, 73(F)

force 24, 24(F), 72, 73(F), 161, 262, 283,
331

point 24, 24(F), 59-62, 60(F), 72, 73(F),
251-254, 252(F), 261, 268

ratio 24, 24(F), 121, 161, 163, 187, 237,
262, 294, 298
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