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Preface

OUl' interest in the field of seismic isolation began over 25 years ago in 1967,
Wh<.'H a group al lhe (then) DSIR Physics and Engineering Laboratory, working
III Ihe field of earthquake engineering research, became involved in design studies
til••• '''lcpping bridge' over the Rangilikei River. The system adopted included
,I\Tl hC:l1ll dampers and laminated-rubber components. The utilisation of similar
• 1I1llponcniS was then considered as a means of providing seismic isolation for a
PWI)o;I'><."<! building in WcllinglOn, namely the William Clayton Building.

"arly in lhe seismic isolation programme, a fruitful interaction developed with
,1 ",1I1t1p cng:lgcd in malerials science research al the same laboratory whose ex­
I""nl'\.' mdudcd the behaviour of plastically defanning metals. They developed a
I!llll-!l' of isolator components based on the plastic deformation of lead, including
tnul c,~lnl.~ion daml>crs first used in the isolated Aurora Terrace and BollOn Slreel
llYt'Ihlidgcs in Wellinglon and lead-rubber isolators which were the final choice
11'1 I~ollllioll of the William Clayton building.

Illh':l';lclion Ix:tweell members of the two groups consolidaled over the years and
1.1I1tl Ihe furlhcr deyelopment, proying and application of isolation syslems, At the
·'lIlt' tUIlC, lheoretic:!1 approaches nceessmy for the description and understanding

nl tilt' ""mic T"C.-;ponscs :!nd perfonnance of isolated structures were deYeloped.
t hi"~ the yean-the level of sophistication has increased but the general approach has
IH'1 1II,IIl~ed. 'llli-; book is the product of our extensive involvement and experience
III Ihl' \.CI,mic i-.ollltion field.

Iht, hook includcs lIlathematical analysis of the .seismic responses of isolated
11'1\ 1\11\'';, which is oricmcd to giye a clear understanding of the processes inYolved;

.II .11\"1111 III yurious isolation systems, p.\rticularly those which haye been devel­
lip' d III {Ill! lahoratory: guidelines 10 provide initial isolator parameter yalues for
'1I"III{'{'r~ Ill' arcllilects wishing 10 incorporalc seismic isolation into their designs;
III III nllt"criplioll of the applicalioll of lhe conccpt of seismic isolation worldwide.

MnllY ,If our <Icyiccs hayc bcCll inslalled in real structures, both in New Zealand
,md llVl'I'C:", Thc remarkably rapid lechnology transfer has been in large pan due
tit tIl{' dll'>C wOlking relationships which haye deYeloped over the years between
"III II'W.IU.:hcI-' :llId de~ign engineers in this field worldwide, We should like 10
III 11I1. Ilww l:ollc:lgllc, for their contribution to lhis book, roth indireclly. Ihrough
• ,,11.,tkll,111011 (lYe" the ye"f'., :md directly. by supplying us wilh infomlalion and
1,llllhlJ'I"I'II';, p..,nMllly lor Chapter 6,
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Frequently used Symbols and
Abbreviations

luning parameter for combined primary-secondary system, namely
(w, - Wo)ff»,·

analogue to p. for rnultimode primary-secondary systems.

elaslic~phase participation factor at position r in mode n.

mode-n participation factor at position z.

mode-n participation factor al lop noar of structure (position N).

weighting faclor for the nth mode of vibration.

participation faclOr vCClOr.

isolated mode weight faclor.

unisolated mode weight faclor.

participation faclor for response to ground excitation for a mass at level r

of a structure vibraling in the nth mode.

yielding-phase participation factor at position r in mode n.

shear strain of rubber disc.

interaction parameter of combined primary-secondary system. given by
1Il,/lIIp •

'engineering' shear slmin.

illlcnlClion par-unCler, lmaloguc to y, for multimode primary-secondary
.~yslcrns.

= W'IIIC number of mode II, possibly complex.

= shc:lr-strain coordinate of yield point.

\,' = difTcrellce bClwecn 11th rOOI of equation (4.17) and (n - 1»)'1".

,II '" non-c1assie~i1damping paramcter in combined primary-secondary syslcm.

,I'J '" analugue 10 8,1, for Illullimode prilll<lry-sceondary systems.

, = (lil'/(U!'1I1 = r:llio uf fl'CII\lCncic,s of rigid-mass isolated structure and first-
modc lI"isolalell .Sh'uCllll'e, lISC(t for cxpressing orders of perturbation.

C Sll'llin '" (increment in IClIglh)/(original Icngth).

'.. III:lxillll1ll1 ;lIlIlllil\I\Ie \,1 cyclic siraill.

stl':1in eOOl'diU1IIl' 1)1 yld,l Ik'nll,

" V1IIIlllIUli ot 'p,1111l1 1111,,,.:: ot 11l1l\1e /I d"plllecment down shear \.lcam.
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xvi FREQUENTLY USED SYMBOLS AND ABBREVIATIONS FREQUENTLY USED SYMBOLS AND ABBREVIATIONS xvii

~.(t)

P
ij

o

0,

i

,
"
[.. [

q,,,,q,,,,.,"

'" damping of secondary strocture.

'" damping of primary strocture.

'" average damping of combined primary-secondary system. given by
~. = ({p + ~.)/2.

'" damping difference of combined primary-secondary syStem, given by

~d =~p-~•.

'" fraction of critical viscous damping of (unisolaled) fixed-base mode n.

'" velocity. (viscous-) 'damping factor' or 'fraction of critical damping' for
single-mass oscillator.

'" velocity-damping factor for isolator.

'" 'effective' damping factor of bilinear isolator. given by sum of velocity.
and hysteretic-damping factors.

'" velocity-damping factor in 'elastic' region of bilinear isolator.

'" velocity-damping factor in 'plastic' or 'yielded-phase' region of bilinear
isolator.

'" hysteretic damping factor of bilinear isolator.

fraction of critical viscous damping of mode n: also called mode-n damping
factor.
modal mass of free-free mode j.

'" uJolMluJo.

'" jth modal mass of secondary system '" ;'~j[M.I;"i'

modal (relative displacement) coordinate for mode n at time 1.

'" unifonn density of shear beam representing a uniform shear structure.

'" nominal stress. as used in 'scaled' (U-E) curves for steel dampers in
Chaptcr 3.

'" stress '" force/area.

'" stress coordinate of yield point.

'" nominal shear stress. as used in 'scaled' (O-E') curves for steel dampers in
Chapter 3.

'" shear stress'" (shear force}/area.

'" shear-stress coordinate of yield poim.

(q,I' ... ;.., ... tPN J, the mode shape matrix, a function of space, not timc.

'" mode shape in lhe mh or mth mode of vibrati9n.

'" mode shape at the rth level of the strocture during the 11th mode of
vibration.

'" elastic-phase modal shape at position r in mode It.

'" yielding-phase 1llQ(I;ll shl1pe HI position r in mode II.

shape of mQ(le II, ll~ed inlerehangcably with Il,,(z.t): norm;11iscd 10 unily
III the lOp level.

'" pha~ angle of Jth C(ll11lllllll'll( ulthe II1h lllQ(le p;lrlicillalioll f;lctor vector " •.

.. (citeul:U'1 ftCliIiCIll.:Y lit ,r~"llll,lty ~lllltlurc.

w,

w".

w,,,

A

A

A.
a..(t)

A'
b

c(r, s)

C.

c,

c,

c.

rCl

(cin.;ular) frequency of primary StroctUTe.

.. llvc'~lge frequency of combihed primary-secondary system, given by

{oJ. = (w,. +Wo)/2.
analogue to alp, for multimode primary-secondary systems.

z an;llogue to w.o, for multimode primary-secondary systems.

uni~1:l1cd undamped first-mode natural (circular) frequency, the same as

W!RI .
.. mode-II nalural (circular) frequency with 'free-free' boundary conditioos.

"" 1\Qlmor ft\.--quency = J(Kb/M) for a rigid mass M.

'" n:ltur:.t1 (cireular) frequency of (unisolated) filled-base mode 1, equivalent
to (VI(U),

'" n:llural (circular) frequency of (u"isolated) fixed-base mode n.

'" undamped natural (circular) frequency of mode n. related to frequency f.
by w. = 2Jrf•.
damped nalural (circular) frequency of single-mass oscillator.

'" undamped naturol (cireular) frequency of single-mass oscillator. Of nth­
mode natural frequency of mulli-degree-of-freedom linear oscillator-.

area of rubber bearing in Chapter 3.

cross-seetiooal area of shear beam representing a unifonn shear StroClure.

area of bilinear hysteresis loop.

absolute acceleration of mode n.

overlap area of robber bearing in Chapter 3.

subscript denoting base isolator.

'" relative velocity of base mass wilh respect to ground.

'" subscript deOOl:ing bilinear isolator.

'" 'bulge factor' describing the ratio S,/S,-, of total shear to first·modc shear
at level r in a structure, panicularly at mid.height.

'" ill1erlevel veloeity-damping coefficient. defined only for r ::: $.

'" coefficient of velocily-damping for a base isolalor. with units such as
N m- l S'" kg S-I.

'correction factor' linking displacement of bilinear isolator to equivalent
spectral displacement.

stiffness-proportional damping coefficient of shear beam representing a
unifonn shear structure.
overall stiffness-proportional damping coefficient c.AIL of unifonn shear

structure.
mass-proportional damping coefficicnt of shear beam representing a unifonn

shear structure.
'" overall mass-proportional damping coefficient c",AL of unifonn shear

.~lruclure.

'" c1emenl of damping coefficicnl matrix.

=: dmnping coefficic1ll lmlll'ix. Wilh elemcnlS c" relaled 10 c(r. s) .
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•
•
E

f =

F =

FREQUEJ','ll..Y USED SYMBOLS AND ABBREVIATIONS xix

= length of shear beam representing a uniform shear structure.

mass of single-mass oscillaior.

mass pAL of unifonn shear structure.

= 10181 mass of structure; together with the mass of the isolator this gives M T.

isolator (base) mass.

mass of primary structure.

= mass at rlh level

MIN for a unifonn struclUre wilh N levels.

mass of secondary structure.

= total mass of structure plus isolator.

mass matrix.

'" number of masses in discrele linear system.

= maximum absolute seismic acceleration of mode II at position z.

complex conjugate associated with mode II.

= non-linearity factor.

overtuming moment at height: of mode II.

maximum ovenuming moment at point r, and height h" of mode II of a
structure.

'" subscript used to denote 'primary' in primary-secondary systems.

extrusion pressure in Chapler 3.

subscript used to denote 'prolotype' in 'scaled' (0" -~) or (r - y) curves
for sleel dampers in Chapter 3.

'" peak factor. namely ratio of peak response to RMS response.

amplitude-scaling factor such that U,(l) = p.ua e-(llPp)'

complex frequency of mode n, see equation (4.7).

'" 7.croth-order tenn in the perturbation expression for the complex frequeney.

= jth tcnn in penurbation expression for 11th-mode complex frequency.

frequency-scaling factor such that ii,(t) = p.ua e-o(t1Pp).

'" lleak factor for secondary structure when mounted on primary structure.

: peak factor for secondary structure when mounted on the ground.

force :lCross Coulomb slider at which il yields.

= yield force :It which changeover from clastic to plastic behaviour occurs, at
yichl di'IlI:lccmctl1 X y•

'" shC:lr-forcc coordinate of yield point.

'" yield force-to-wcight ratio of bilincar isolator.

: sh:lpc f:lctor of elastOlllCric bearing = (loaded area)/(force-frce area).

• '1)L'Ctl'lll :lh..ohllC :Iecclcr:uion for pcriod T and damping ~, as seen on
l'C'f'un\C '1K.'Ctrum. FiplI'C 2.1.
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FREQUEf','TLY USED SYMBOLS AND ABBREVIATIONS

subscriJM used to denoI:e 'elastic-phase'.

subscripl used to deoote 'experimental model' in 'scaled' (0";:) or (r-y)
CUNes for steel dampers in OJaJMer 3.

Young's modulus '" 0"1£ in elastic region.

force-sealing factor, as used in 'scaled' (0";:) or (r-y) curves for sleel
dampers in Chapter 3.
force or shear-force, as obtained from 'scaled' (0";:) or (r-y) curves for
steel dampers in Chapter 3.
f1oor-acccl,eration spectrum at rth level of a structure.

isolator force arising from bilinear resistance to displacement.

= residual force in elaslic phase of bilinear isolator.

= SUbscript denoting 'fixed-base' boundary condition corresponding to no
isolation.

= subscriJM dcOO(ing 'free-free' boundary condition corresponding to perfect
isolation.

'" subscriJM dell()(ing mode-II 'free-free' vibration.
maximum seismic force per unit heighl, at height: of mode II.

maximum ioenia load on the mass m, at level r.

'" maximum seismic force of mode II al the rth point of a structure.

'" residual force in yielding phase of bilinear isolator.

shear modulus = r IY in elastic region,

constant shear modulus of shear beam representing a unifonn shear
structure.
white noise power spectrum level.

= height of rth level of a structure.

= 'degree of isolation' or 'isolation ratio' given by WFBI/Wo = Tb/TF81 =
TbIT,(U).

stiffness of single-mass oscillator.

= overall stiffness GAIL of uniform sllear structure,

= interlevel stiffness, such that k(r,r - I) = K N for aN-mass unifonn
structure and t(l. 0) = K b if it is isolated.

= stiffness of linear isolalor.

'effective' or 'secant' stiffness of bilinear isolator.

stiffness of rubber component of lead-robber bearing.

'initial' or 'clastic' stiffness of bilinear isolator..

= 'post-yield' or 'plastic' stiffness of bilinear isolator.

= stiffness of spring introduced to isolalor to reduce higher-mode responscs
(Figure 2.2c).

'" stilTness of 11th 'spring' in di<;crete linC:lr chain system.

c1cment of stiffne~" matrix,

stilTne~s m:llrix, wllh ell-menh t., rcl<ltcd t(l t(r,.f),

: Io.:ngth '>l,;alll1~ (IN.'hl!, 11\ 11\(11 III '~'akd' (/1 <) or (r y) curves for'tlocl
daml1er< 1ll ('h,ll1t('l t
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" FREQUEJ>,'TLY USED SYMBOLS AI\D ABBREVIATIONS COMro.'ONLY USED ABBREVIATIONS
xxi

"~.

lie,,"

UFB.(Z,t) =

UFF.(Z, t)

ii,_ jj.(t)

VIA. UIi" =

U.(:) =

11.(:. /) =

= leroth-order tenn in the pe~urbatjon expression for the mode shape.

displacement of secondary structure mounted on the primary structure.

= acceleration of secondary structure mounted on thc primary Structure.

~,.~.(l) = displacement of mode II at rth level of the struclUre, where .;,.
,s the spatial variation and ~. is the time variation.

displacemem of secondary structure mounted on the ground.

= acceler.l.lioo of secondary structure mounted on the ground.

yielding-phase displacement at position r in nlode II.

= yielding-phase relative acceleration at position r in mode II.

= displacement vector for discrete linear system in nth mode,

vector comprising the relative velocity and relativc displacement Vectors.
= vecfor v for mode fl,

100ai weight of Sltueture.

= displacement. as obtained from 'scaled' (u-£) or (r-y) curves for steel
dampers in Chapter 3.

= maximUlll relative displacement of isolator or of base of isolated sUucture.

= maximum mode-II relative displacement at top floor of Structure (position
N).

= peak response of primary structure when mounted on the ground,

RMS response of primary structure when moumed on the groond.

peak response of secondary Slructu~ when mounted on primary structure.

= maximum relalive displacement with respect to groond at any level r.

peal: value of mode-" relative displacement af the rlh poinl of a struclllre.

= peal: response of secondary slructure when mounted on the ground.

= RMS response of secondary structure when mounted on the ground.

yicld displaccment of bilinear isolator.

= displacement Coordinate of yield point.

peal: value of mode-n absolute acceleration at the rth poinl of a structure,

= peak value of mode-II relative velocilY at !he nh point of a structure.

= vertical coordinate; height of a point in a strucfure,

relative displacement response, of one-degree-of-freedom oscillator of
undamped natural frequency w~ and damping ~"' to ground acceleration
u,(I).

= abbreviation for 'Complelc Quadr:ltic Conlbilmtion', a melhod of adding
responses of S(:verdl modes.

Dcp;u'tmcll1 of Scientific and Imluslrial Rc~carch,
New Zcalllnd.

w
X

".

X.

X".

".

•

X,
Xp(RMS)

X.
X,

X,.

".

X.
X,(RMS)

X,
X,

X,.
X,.
,

COMMONLY USED ABBREVIATIONS
CQC

DSIR

maximum base shear in mode n.

'" sJ)\."'ClrJl relalive displacement for period T and dar.lping S. as secn on
re.\I>Ollsc spectrum, Figure 2.1.

'" lllllXil1llllll shear at any position, in mode II.

lll;lximum seismic shear at height z of mode II.

= maximum shear force al the rth poinl of a structure oscillating in mode n.

= spectral relative velocity for period T and damping (.

lime.

superscript indicating 'transpose',

natural period.

= unisolatcd undamped first-mode period, the same as TF81 •

natural period of linear base isolator = 211'/%.

'effective' period for bilinear isolator.

= period associated with Kbl • in 'clastic' regiOfl of bilinear isolator.

= period associated with Kbl • in 'plastic' region of bilinear isolator.

isolated nth period.

unisolated nth period.

vector containing the displacements Up

= relative displacement, at position z in the struCture, in the horizontal
x direction, with respect to the ground at time I; often written as u, without
arguments, in the differential fonn of the equation of ITl()(ion.

= relative acceleration with respect to ground of position: at time I.

displacement of bilinear isolator.

relative displacement of base mass with respect to ground.

= acceleration of base mass with respect to ground.

= base displaccment in free-free mode j.

= nth-mode relative displacement, with respect to ground, at base of structure
a1time I.

elastic-phase displacement at position r in mode n.

elastic-pltase relative acceleration at position r in mode n.

fixed-base mode-n relative displacement with respect to ground at position:
at time I.

'free-free' mode-/1 relative displacement with 'respect to ground. at

position z and timc I.

ground accelemtion.

amplilUdc of 11th-mode displacement at posilion : = L (top of shear beam)
(possibly comple~); amplitude llliop of di'iCreli~ N-compOllcnl \tmcture.

IIlh mode \h:'llc. u\Cd 1I11crchan~cahly wllh .;.(:); uwally nonllalis:1II0n 1\

nOI (tetmcd.
modc /I rcl!lhvc dl\IlIJ'H·l1ll'U1. wllh "C\Pl'tt W ~roulld. of IX),itlon : :11

time I.

1/(%. t)

svrr.o

"

",
Ub. lIb(t)

Ub, Ub(t)

u(z. t)

s,.

s. ,,",

SII(/,n

T

T

T1(U)

T.

T,

T..

Tw
T~(I)

T"(U)
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xxii

LRB

MOOF

MWD

PEL

PTFE =

SRSS =

lOOF =

200F =

FREQUEI\'TLY USED SYMBOLS AND ABBREVIATIONS

lead-rubber bearing.

abbreviation for mulliple-degree-of-freedom.

Ministry of Works and Development, New Zealand. now Workscorp.

Physics and Engineering Laboratory of the DSIR, later DSIR Physical

Sciences.
polytetrafl uorocthylene.

abbreviation for 'Square Root of the Sum of the Squares', a meLhod of
adding responses of several modes.

abbreviation for one degree of freedom.

abbreviation for two degrees of freedom.

1 Introduction

1.1 SEISMIC ISOLATION IN CONTEXT

A large proportion of the world's population lives in regions of seismic hazard,
III risk from earthquakes of varying severity and varying frequency of occurrence.
1'lll'1hquakes cause significant loss of life and damage to property every year.

MnllY aseismic construction designs and technologies have been developed ovcr
Ih\' YC;lrs in attcmpts to mitigate the effects of earthquakes on buildings, bridges
1111(1 pOlentially vulnerable contents. Seismic isolation is a relatively recent, and
I'VI,lvillg, technology of this kind.

Seismic isolation consists essentially of the installation of mechanisms which
dl'I'otiple the structure, and/or its contents, from potentially damaging earthquake­
lmiliced ground, or support, motions. This decoupling is achieved by increasing the
r1I'xlhility of Ihe system, together with providing appropriate damping. In many, but
Illll lill, .tpplications the seismic isolation system is mounted beneath the structure
!lllll i.. referred to as 'base isolation'.

Allhough il is a relatively recent technology, seismic isolation has been well
t'vulu:tled and reviewed (e.g. Lee and Medland, 1978; Kelly, 1986; Anderson 1990);
hl" hccil the subject of international workshops (e.g. NZ-Japan Workshop, 1987;
liS JI1[);11) Workshop, 1990; Assisi Workshop, 1989; Tokyo Workshop, 1992); is
Illl"ludcd ill the programmes of international, regional and national conferences on
1I1IIhquakc Engineering (e.g. 9th and 10th WCEE World Conferences on Earth­
qlllll.C I~llgillcering, Tokyo, 1988, Madrid, 1992; Pacific Conferences, 1987, 1991;
IOllrlh US Conference, 1990); and has been proposed for specialised applications
tq.L, SMiRT-II, Tokyo, 1991),

Seismic isolation may be used to provide effective solutions for a wide range
til ,dsmk design problems. For example, when a large multistorey structure has
II ldliclil Civil Dcfencc role which calls for it to be operational immediately after
n Vl'ly ~(;vere cartll(IUake, as in 1he case of the Wellington Central Police Station
t~l'l' ChapLer 6), the rcquired low levels of slructural and non-structural damage
illlly he Hchievcd by using.m isolaling systcm which limits structural defonnations
1111<1 duclilily demands 10 low valucs, Again, when a structure or substructure is
11I!lI'l\:r1lly 111111-ductile i\nd has ollly moderaie strength, as in the case of the news­
Pl1[ll'l printing press al PelOlle (sec Chapter 6), isolation may provide a required
Il'vd or carlhqun\..c resistllllcC whicil ClllllIOI be provided practically by earlier ascis­
1111\' Il'c1llliqucs, ('111'(.'1'111 ,.. lll\titS hnve been made or classes of slructure for which
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2 INTRODUCflON I I SI;I$MIC ISOLATION IN CONTEXT 3

seismic isolation may find widespread application. This has been found to include

common (oons of highway bridges.
The increasing acceptance of seismic isolation as a technique is shown by the

number of retrofitted seismic isolation systems which have been installed. Examples
in New Zealand arc the retrofitting of seismic isolation to existing bridges and to
the electrical capacitor banks at Haywards (see Chapter 6), while the rctrofilling of
isolators under the old New Zealand Parliamentary Buildings is being considered at
present (June 1992). Many old monumental structures of high cultural value have
little earthquake resistance. The completed isolation retrofit of the Salt Lake City
and County Building in Utah is described in some detail in Chapter 6.

Isolation may often reduce the cost of providing a given level of earthquake
resistance. The New Zealand approach has been to design for some increase in
earthquake resistance, togethcr with some cost reduction, a typical target being
a reduction by 5% of the structural cost. Reduced costs arise largely from re­
duced seismic loads, from reduced ductility demand and the consequent simplified
load-resisting members, and from lower structural defonnations which can be ac­
commodated with lower-cost detailing of the external cladding and glazing.

Seismic isolation thus has a number of distinctive beneficial features not pro­
vided by other aseismic techniques. We believe that seismic isolation will increas­
ingly become one of the many options routinely considered and utilised by en­
gineers, architects and their clients. The increasing role of seismic isolation will
be reflected, for example, in widespread further ,inclusion of the technique in the
seismic provisions of structural design codes.

When seismic isolation is used, the overall structure is considerably more flex­
ible and provision must be made for substantial horizontal displacement. It is of
interest that, despite the widely varying methods of computation used by differ­
ent designers, a consensus is beginning to emerge that a reasonable design dis­
placement should be of the order of 50-400 mm, and possibly up to twice this
amount if 'extreme' earthquake motions are considered. A 'seismic gap' must be
provided for all seismically isolated structures, to allow this displacement during

earthquakes.
It is imperative that present and future owners and occupiers of seismically

isolated structures are aware of the functional importance of the seismic gap and
the need for this space to be left clear. For example, when a road or approach
to a bridge is resealed or resurfaced, extreme care must be taken to ensure that
sealing material, stones etc. do not fall into the seismic gap. In a similar way, the
seismic gap around buildings must be kept secure from rubbish, and never used as

a convenient storage space.
All the systems presented in this book arc passive, requiring no energy input

or intemction with an outside source. Active seismic isolation is a differelll field,
which confers dillerenc aseismic feal\lres ill the face of 11 different set of prob­
lems. As it devc!op.~, II will occupy II niehe ,Huang aseismic structures whieh will
be different fl'Olll thai occllpic<I h)' .~II'tIl.:tures with passive i.~olrllioll, III ;1 lypie,i1
case, :I mass whieh is II fr:ltllOIl lIt II IWI' cellI of Ilic ~trucltlr;11 mass is driven

with lilrge llccelerations so thai the reaction to its inertia forces tends to cancel
Illu effects of inertia forces arising in'the structure as a result of earthquake ac­
l'duralions. Such a system may be a practical, but expensive, means of reducing
III(; elTeetive seismic loads during moderate, and in some locations frequent, earth­
quakes. Practieallimitations on the size and displacements of the active mass would
lIormally render the system much less effective during major earthquakes. More­
over, it is difficult to ensure the provision of the increasing driving power required
dllrlng earthquakes of increased severity. In principle, such an active isolation sys­
CCIll might be used to complement a passive isolation system in certain special
t'liScs. For example, a structure with passive seismic isolation may be satisfactory
III ,til respects, except that it may contain components which are particularly vul­
nemble 10 high-frequency floor-acceleration spectra. The active-mass power and
Ilisplacement requirements for the substantial cancellation of these short-period
Illw-acccleration floor spectra may be moderate, even when the earthquake is very
sl'vere. Moreover, such moderate power might be supplied by an in-house source,
wilh its dependability increased by the reduced seismic attack resulting from iso­
lillion.

A number of factors need to be considered by an engineer, architect or client
wishing to decide whether a proposed structure should incorporate seismic isolation.
The first of these is the seismic hazard, which depends on local geology (proximity
10 ['aulls, soil substructure), recorded history of earthquakes in the region, and any
""0Wll factors about the probable characteristics of an earthquake (severity, period,
I'te). Various proposed solutions to the design problem can then be put forward,
with a variety of possible structural fonns and materials, and with some designs
lIIeorporating seismic isolation, some not. The probable level of seismic damage
ran Ihen be evaluated for each design, where the degree of seismic damage can be
hro<ldly categorised as:

(I) minor
(2) repairable (up to about 30% of the construction cost)
(\) 1I0t repairable, resulting in the building being condemned.

rhe whole thrust of seismic isolation is to shift the probable damage level from (3)
or (2) towards (I) above, and thereby to reduce the damage costs, and probably also
the insurance costs. Maill1enance costs should be low for passive systems, though
they may be higher for activc seismic isolation. As discussed above, the construc­
tion costs including seismic isolation usually vary by ±5-10% from unisolated
optiolls.

The lot;tl 'eo.~ts· and 'benefits' of the various solutions can then be evaluated,
wllere lhe analysis has 10 inc!u<fc Ihc 'valuc' of having the structure or its contents
ill as ~ood liS possible a condition al'tcr an earthquake, ;ll1d the reduced risk of
tllSIlHllics with rc(lUl.:cd <I:IIlIlll:tC 10 the SlrIlCllln.:. In many cases such additional
hCIICIiI~ lHlly wcll follow the lIdOPliOIi of Ihc sei.~mic isolalion option.
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1.2 FLEXIBILITY, DAMPING AND PERIOD SHIFT

The 'design cnnhquake' is specified on the basis of the seismicity of a region, the
site conditions. and the level of hazard accepted (for cltample, a '400-year return
period' earthquake for a given location would be expected to be less severe than onc
which occurred on average once every 1000 years). Design earthquake motions for
other seismic areas of the world are often similar to that experienced and recorded
at EI Centro. California. in 1940. or to scalings of this malian. such as '1.5 E1
Centro'. The spectrum of the EI Centro accelerogram has large accelerations al
periods of 0.1-1 s. Other earthquake records, such as that at Pacoima Dam in 197\
or 'artificial' earthquakes A I or A2, are also used in specifying the design level.

It must also be recognised that occasionaJly earthquakes give their strongest
cltcitation at long periods. The likelihood of these types of motions occurring at
a particular site can sometimes be foreseen, such as with deep deposits of soft
soil which may amplify low-frequency earthquake motions, the old lake bed zone
of Mexico City being the best known eltample. With this type of motion, fleltible
mountings with moderate damping may increase rather than decrease the structural
response. The provision of high damping as part of the isolation system gives an
important defence against the unexpected occurrence of such motions.

Typical earthquake accelerations have dominant periods of about 0.1-1 s as
shown in Figure 2.1, with maximum sevcrity often in the range 0.2-0.6 s. Struc­
tures whose natural periods of vibration lie within the range 0.1-1 s are therefore
particularly vulnerable to seismic attack because they may resonate. The most im­
portant feature of seismic isolation is that its increased flexibility increases the
natural period of the structure. Because the period is increased beyond that of the
earthquake, resonance and near-resonance are avoided and the seismic acceleration

response is reduced.
This period shift is shown schematically in Figure l.I(a) and in more detail in

Figure 2.1. The 'isolation ratio' ('degree of isolation') I, which governs so many
aspects of seismic response, is a measure of the period shift produced by isolation.

The increased period and consequent increased flexibility also affects the hor­
izontal seismic displacement of the structure, as shown in Figure l.I(b) for the
simplest case of a single-mass rigid structure, and as shown in more detail in
Figure 2.1. Figure 1.1 (b) shows how excessive displacements are counteracted by
the introduction of inCTC<lsed damping. Real values of the maximum undamped
displacement for isolated structures could be as large as I m in typical Strong earth­
quakes; damping typically reduces this to 50-400 mm, and this is the displacement
which haS to be accommodated by the 'seismic gap.' The actual motion of parts
of the structure depends on the mass distribution, the par:unctcrs of the isolating
system, and the 'participalion' of various modes of vibration. This is discllssed in
detail in Chapters 2 and 4.

Seismic isolation is thus an inllovative aseismic design :Ipproach :limed at pro­
tecting structures ngaill,t lhllllllgC II'OIll cafthquakes by 'i1l1ilill~ the earthquakc at·
tack r:,thcl' thull re,i~III'tt II ('\U1VI'11I111lUllllppm:.chc' t(lll,ci~lllic dc'i151l prlwidc [I

Ine'~O$,n9
dompi"9

Period $hOlI

J'l
(0)

Inc'~

J~1
''''''(b)

Effect of increasing lhe flexibility of a SlntelUre: (a) The increased period and
damping lower the seis.mic acceleralion response; (b) 1lte increased period
increases the 1000al displacemenl of the isolaled system, but this is offsct to
a large extent by the damping. (After Buckle and Mayes. 1990.)

~lIuclUre with sufficient strength, defonnability and energy-dissipating capacity to
wllh~tand the forces generated by an earthquake. and the peak acceleration response
01 Ihe structure is often greater than the peak acceleration of the driving ground
lIlolioll. On the other hand, seismic isolation limits the effects of the earthquake
Illtack, since a flexible base largely dccouplcs the structure from the horizontal mo­
Imll of the ground, and the structural response accelerations are usually less than
the ground accelerations. The forces transmilled to the isolated structure are further
lcduced by damping dcvices which dissipate the energy of the earthquake-induced
Ilultions.

f.igurc 1.2(a) illustrates the seismic isolntion concept schematically. The building
nil Ihe left is cOllvention<llly protected against seismic attack and that on the right
lias beell mounted 011 a seismic isolalion system. The perfonnance of a pair of
le"l test buildings of this killd, at Tohoku University, Sendai, Japan, is described
III Chapter 6. Similar schcmatic diagrams can be drawn to illustrate the seismic
i,o]:llioll of bridge.s and of parts of huildings which contain delicate or potentially
IUllardous contents.

In Figure 1.2(:1) il Cllll be seell tlWl large seismic forces act on the unisolated,
UlIlvcntiollnl ~tfuCtlll'C ()llthe Ie/I, CUll sing COllsider:,blc deformation and cmcking in
II Ie ~tructure. In II Ie i,olulCd structulc on the right, the forces arc much reduced, and
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6 INTRODUCfION 1.3 COMPARISON OF CONVEI\'TI0NAL AND SEISMIC ISOLATION APPROACHES 7

most of Ihe displacement occurs (ICrosS the isolation system, wilh little deformation
of Ihe Sll'lIClurc ilsetr, whiclllll\lVC\ nlnl\lst [IS II rigid unit. Energy dissiplllioll in lhe

1.3 COMPARISON OF CONVENTIONAL AND SEISMIC
ISOLATION APPROACHES

isolated system is provided by hysteretic or viscous damping. For Ihe unisolated
system, energy dissipation results mainly from struclUral damage.

Figure 1.2(b) illustrates the reduction of earthquake-induced shear forces which
can be achieved by seismic isolation. The maximum responses of seismically iso­
lated structures, as a function of un isolated fundamental period, are shown by a
solid line and those of the unisolated structures as a dotted line, with results shown
for three scalings of the EI Centro NS 1940 earthquake motion. It is seen that
seismic isolation markedly reduces the base shear in all cases.

It can also be shown, as discussed in Section 4.5, that seismic isolation is very
effective in reducing the effects of earthquake-induced motion on torsionally un­
balanced buildings. The key design consideration in this case is that the centre of
slilTness of the isolator should be placed below the centre of mass of the structure.

Many of the concepts of seismic isolation using hysteretic isolators are similar to
the conventional failure-mooe-control approach ('capacity design') which is used
in New Zealand for providing earthquake resistance in reinforced concrete and
steel structures. In both the seismic isolation and failure-mode-control approaches,
specially selected ductile components are designed to withstand several cycles
well beyond yield under reversed loading, the yield levels being chosen so that
lhe forces transmitted to other components of the structure are limited to their
clastic, or low ductility, range. The yielding lengthens the fundamental period of
the structure, detuning the response away from the energetic period range of most of
the earthquake ground motion. The hysteretic behaviour of the ductile components
provides energy dissipation to damp the response motions. The ductile behaviour
of the selected components ensures sufficient defonnation capacity, over a number
of cycles of motion, for the structure as a whole to ride out the earthquake attack.

However, seismic isolation differs fundamentally from conventional seismic de­
sign approaches in the method by which the period lengthening (detuning) and
hysteretic energy-dissipating mechanisms are provided, as well as in the philoso­
phy of how the earthquake attack is withstood.

In well designed conventional structures, the yielding action is designed to occur
within Ihe structural members at specially selected locations ('plastic hinge zones'),
c.g. mostly in the beams adjacent to beam-eolumn joints in moment-resisting frame
structurcs. Yielding of structural members is an inherently damaging mechanism,
even though appropriatc selcction of the hinge locations and careful detailing can
ensure structural integrity. Large deformations within the structure itself are re­
quired to withstand strong earthquake motions. These defonnations cause problems
for lhe design of components not intcnded to provide seismic resistance, because
il is difficult to ensure thaI unintended loads are not transmitted to them when the
structllfC is deformcd considcrably from tts rest position. Further problems occur
in thc dClailing of such il(;111.~ as Willdows and parlitions. and for thc seismic design

"
• •

ibl

o Q.2 04 0.6 0.8 1.0 t2

Building Period (sec)

(a) Schematic seismic response of two buildings; that on lhe left is conven­
tionally protected against earthquake. and that on Ihe right has been mounted
011 a seismic isolation system. (b) Ma:l:imum base shear for a single-mass
structure, represented as a linear resonator, with and without seismic isola­
lion. The SlruclUrc is subjected [0 p. times the EI Centro NS 1940 aceelero­
gr:un (From Skinner and McVcrry, 1975.)
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(0)

Displocement

/
"/ Displocement

Schclllatic rcprCSClllation of the forcc-displaeelllelll hysteresis loops pro·
duccd by (:I) a lincar cl:unpcd isolator; (b) a bilinear isol,ltor wilh a Coulomb
d:Ull[lcr

(b)

Figure 1.3

Plostic deformotion

I

the practical design of seismic isolating systems. Figure 1.3(a) represents a linear

damped isolator by means of a linear spring and 'viscous damper'. Thc resultant
I'orcc-disptacement loop has an effective slope (dashed line) which is the 'stiffness',

or inverse flexibility, of the isolator. Figure 1.3(b) represents a 'bilinear' isolator
Il~ twO linear springs, one of which has a 'Coulomb damper' in series with it. The

rC~llltanl hysteresis loop is bilinear, characterised by two slopes which are the 'ini­

tial' and 'yielded' stiffnesses respectively, corrcsponding 10 thc elastic and plastic

dcl'ormation of the isolator. This is discussed in more detail in Chapters 2, 3 and 4.
A variety of seismic isolation and energy dissipation devices has been devel­

0llCrl over the years, all over the world. The most successful of these devices also
satisfy an additional criterion, namely they have a simplicity and effectiveness of

design which makes them reliable and economic to produce and install, and which

illcorporates low maintcnance, so that a passively isolated systcm will perfonn sat­
isfactorily, without notice or forewarning, for 5-10 s of earthquake activity at any

stage during the 30- to lOO-year life of a typical structure. In order to ensure that

the system is operative at all times, we suggest that zero or low maintenance be

part of good design. Detailed discussion of the material and design parameters of
.~cismic isolation devices is givcn in Chaptcr 3.

of building services. In the conventional approach, it is accepted that considerable
earthquake forces and energy will be transmitted to the structure from the ground.
The design problem is 10 provide the structure with the capacity to withstand these
substantial forces.

In seismic isolation, the fundamental aim is to reduce substantially the trans­
mission of the earthquake forces and energy into the structure. This is achieved
by mounting the struclUre on an isolating layer (isolator) with considerable hori­
zontal flexibility, so that during an earthquake, when the ground vibrates strongly
under the structure, only moderate motions are induced within the structure itself.
Practical isolation systems must trade off between the extent of force isolation and
acccptable relative displacements across thc isolation system during the earthquake
motion. As the isolator flexibility increases, movements of the structure relative
to the ground may become a problem under other vibrational loads applied above
the level of the isolation system, particularly wind loads. Acceptable displacements
in conjunction with a large degree of force isolation can be obtained by provid­
ing damping, as well as flexibility in the isolator. A seismic isolation system with
hysteretic force-displacement characteristics can provide the desired properties of
isolator flexibility, high damping and force-limitation under horizontal earthquake
loads, together with high stiffness under smaller horizontal loads to limit wind­
induced motions. A further trade-off is involved if it is necessary to provide a
high level of seismic protcction for potentially resonant contents and substructures,
where increased isolator displacements and/or structural loads are incurred when
providing this additional protcction.

The components in a seismic isolation system are specially designed, distinct from
the structural members, and installed generally at or ncar the base of the struc­
ture. However, in bridges. where the aim is to protect relatively low~mass piers
and their foundations, they are more commonly between the top of the piers and
the superstructure. The isolator's viscous damping and hysteretic properties can be
selected to maintain all components of the superstructure within the elastic range,
or at worst so as to require only limited ductile action. The bulk of the over­
all displacement of the structure can be concentrated in the isolator components,
with relatively little defonnation within the structure itself, which- moves largely
as a rigid body mounted on the isolation system. The perfonnance can be further
improved by bracing the structure to achieve high stiffness, which increases the
detuning between the fundamental period of the superstructure and the effective
period of the isolated system and also limits defonnations within the structure itself.
Both the forces transmilted to the structure and the deformation within the structure
are reduced, and this simplifies considerably the seismic design of the superstruc~

ture. its contcnts and ~el"\lice.~, :lpart from the need for the service connections 10

accommodate the large di~plllccll1cnts Ilcross the isolating I:lyer.
Figure 1,3 is II sdn':lIlHtic Il'PI'CSCI\llltloll (II' the two major models encountcred in

1.4 COMPONENTS IN AN ISOLATION SYSTEM
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1.5 PRACTICAL APPLICATION OF THE SEISMIC
ISOLATION CONCEPT

The seismic isolation concept for lhe protection of structures from earthquakes has
been proposed in various ronns al numerous limes this century. Many systems have
been put forward, involving features such as roller or rocker bearings, sliding on
sand or talc. or compliant first-storey columns. but these have generally not been
implemented.

The practical application of seismic isolation is a new development pion(.-ered by
a few organisations around the world in recent years. The efforts of these pioneers
are now blossoming, with seismic isolation becoming increasingly recognised as a
viable design alternative in the major seismic regions of the world.

The authors' group at DSIR Physical Sciences, previously Ihe Physics and
Engineering Laboratory of the Department of Scientific and Industrial Research
(PEL. DSIR) in New Zealand. has pioneered seismic isolation, with research start­
ing in 1967. Several practical techniques for achieving seismic isolalion and a
variety of energy-dissipating devices have been developed and implemented in
over 40 structures in ew Zealand. largely through the innovative approach and
cQ-{)peration of engineers of the Ministry of Works and Developmem (MWD), as
well as private structural engineering consuhants in New Zealand.

All the techniques developed at DSIR Physical Sciences have had a common
element, in that damping has been achieved by the hysteretic working of steel or
lead (sec Chapter 3). Flexibility has been provided by a variety of means: transverse
rocking action with base uplift (South Rangitikei railway bridge, and chimney at
Christchurch airport); horizontally flexible lead-rubber isolators (William Clayton
Building; Wellington Press Building. Petone, and numerous road bridges); and
flexible sleeved-pile foundations (Union House in Auckland and Wellington Central
Police Station). Hysteretic energy dissipation has been provided by various steel
bending-beam and torsional-beam devices (South Rangitikei Viaduct, Christchurch
airport chimney, Union House. Cromwell bridge and Hikuwai retrofitted bridges);
lead plugs in laminated steel and rubber bearings (William Clayton Building and
numerous road bridges); and lead-extrusion dampers (Aurora Terrace and Bollon
Street motorway overpasses in Wellington and Wellington Central Police Station).
More details of these structures are given in Chapter 6.

Before their use in structures. all these types of device had been thoroughly
tested at full scale at DSIR Physical Sciences, in dynamic test machines under
both sinusoidal and earthquake-like loadings. Other tests have been perfonned at
the Universities of Auckland and Canterbury. Shaking·tablc tests of elastomeric
and lead-rubber bearings and stcel dampers have been performed at the Univer­
sity of California, Berkeley. and in Japan on large-scale model structures. Quick­
release tests 011 actual structures containing these types of bearings and damping
devices have been l>crfomled in New Zealand :lIld Japan. Somc seismically isolated
structure, have now (1992) lx:rl(ITlllCd ..ucce,sfully during real, but so far minor,
earth(lu:lke Illotion..,

A number of organisations around the world have developed isolation systems
different from those at DSLR Physical Sciences. Most have used means other than
lhe hysteretic action of ductile metal components to obtain energy dissipation,
force limitation and base flexibility, Various systems have used elastomeric bear­
ings without lead plugs, damping being provided either by the use of high-loss
n1bber or neoprene malerials in the constnlction of the bearings or by auxiliary
viscous dampers. There have been a number of applications of frictional sliding
systems, both with and without provision of elastic centring action. There has been
substantial work recently on devices providing energy dissipation alone, without
isolation, in systems not requiring period shifting. eithcr because of the substantial
force reduction from large damping or because the devices were applied in inher­
cntly long-period struclures, such as suspension bridgcs or tall buildings, where
isolation itself produces little benefit. Thcre has also been work on very expensive
mechanical linkage systems for obtaining three-dimensional isolation.

Seismic isolation has often been considered as a technique only for 'problem'
structures or for equipment which requires a special seismic design approach. This
may arise because of their function (sensitive or high-risk industrial or commercial
facilities such as computer systems. semiconductor manufacturing plant, biotech­
nology facilities and nuclear power plants); their special imponance after an earth­
quake (e.g. hospitals. disaster control centres such as police stations, bridges pro­
viding vital communication links); poor ground conditions; proximity to a major
fault; or other special problems (e.g. increasing the seismic resistance of existing
structures). Seismic isolation docs indeed have particular advantages over other
approaches in these special circumstanccs, usually being able to provide much bet­
tcr protection under extreme eanhquake motions. Howevcr, its economic use is by
no means limited to such cases. In New Zealand, the most common use of seis­
mic isolation has been in ordinary two-lane road bridges of only moderate span.
which are by no means special structures. although adminedly lhe implementa­
tion of seismic isolation required little modification of the standard design which
already used vulcanised laminated-rubber bearings to aecommodate thermal and
other movements.

1.6 TOPICS COVERED IN THIS BOOK

[n this book we seck to present a parallel development of theoretical and practical
aspects of seismic isolation. Thus in Chapter 2 the main concepts are defincd, in
Chapter 3 details of various devices arc given, Chapter 4 explores the thcoretical
concepts in more (letail, Chapter 5 presents guidelines for design and Chapter 6
gives some details of seismically isolated structures worldwide.

In Chapter 2 the principal seismic response features conferred by isolation are
outlined, with descriptions and brief explanations, which often anticipate the more
extcnsivc studic.. :lIld discussions which appear in Chaplcr 4. Seismic response
Spcctr:.1 are intflKluced :... the m:lximum seismic displacemenls and accc1crnlions
of lincar I·ma.... dnmped vihr:.l\or-.. II i\ later shown lhat the<;c spcctrn give good
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npplll\'llllllhlll~ hI the maximum displacements, accelerations and loads of struc­
lUll'" 1I1.'\1I11\,d Oil linear isolation systems, which respond approximately as rigid
1II(lt...\·~ willi lillie defannation and little higher-mode response. The spectra vary
dl'pt'l1ding 011 the :lccelcrogram used 10 excite the scismic response, with El Centro
NS 1940, or appropriately scaled versions of this design earthquake, being used
Illost commonly throughout this book.

When the single mass is mounted on a bilinear isolation system, the maximum
seismic displacement and acceleration responses can be represented in lenns of
'cffcclivc' periods and dampings. This concept is an oversimplification but is valid
for a wide range of bilinear parameters. It is convenient to introduce an 'isolalOr
non-linearity factor' NL, which is defined in temlS of the force-displacemem hys­
teresis loop. However, unlike lhe case with linear isolation, many bilinear isolation
systems resull in large higher-mode effects which may make large or even domi­
nanl contributions 10 the maximum seismic loads throughout the isolated Slructure.
TIley may also result in relalively severe appendage responses. as given by ftoor­
acccler.llion SI)CCtra. for periods below 1.0 s.

llie above and other features of the maximum seismic responses of isolated
structures are illustrated at the end of Chapter 2 by seven case studies. as sum­
1l13riscd in Table 2.1 and Figure 2.7 and further by Table 2.2. Fealures examined
include the maximum seismic responses of a simple unifonn shear structure and
of I-mass top-mounted appendages, when the structure is unisolated and when it
is supported on each of six isolation systems. The responses given for individual
'modes' appropriate to the yielding phase have been evaluated using the mode­
sweeping technique described later in Chapter 4.

Chapter 3 presents details of seismic isolation devices, with particular reference
to those developed in our laboratory over the past 25 years. including steel-beam
dampers, lead extrusion dampers and lead-rubber bearings. The treatment discusses
the material properties on which the devices are based. and outlines the principal
features which influence the design of these devices.

Chapter 4 comprises a more detailed analysis and expansion of ideas put forward
in Chapter 2. It begins with a discussion of the modal features and seismic responses
of linear structures mounted on linear isolators. Studies include the examinatjon
of non-classical higher modes which arise when the isolator damping is high and
the structural damping is low. The concept of the 'degree of isolation' I. which
controls the extent to which isolation changes the modal features, is introduced.
The degree of isolation depends on the relative ftexibilities of the isolalor and the
structure, and is conveniently expressed as the ralio of the isolalor period (as given
with a rigid slructure) to the unisolated structural period (as obtained with a rigid
isolmor). If 1 = 0 then the structure is unisolated and if 1 = 00 then it is completely
isolated. In practice. a value of 1 ~ 2 gives 'well isolated' modal features.

The main thrust of Olapler 4 is to increase our knowledge and understanding of
the consequences of seismic i-.ol:l\ioll. 1\ preliminary database comprising 81 cases
of differenl i~olatol' ;Lnd 'IrtlllufUI plll,uneler, i, lI'cd 10 establish concepts and to
simplify lhe evalualion (II VlliIOll~ Il'llllll~'~ of i'ol:llcd structuTCs which may be

II11POI1:ull for design. Considerable attention is given to the responses of substnlc­
lUlC' for unisolated and variously isola{cd structures. The extent to which isolators
IlI1Iy reduce the seismic responses which torsional unbalance confers on unisolated

~lIl1clllrCS is also examined.
Chapter 5 outlines an approach to the seismic design of isolated structures, using

thl' results developed in previous chapters. The simple guidelines have the primary
1111I1 of enabling a designer 10 arrive at suitable starting paramcteT!l which can then

Ill," r..:fincd by computation.
('hapter 6 presents information on the world-wide use of seismic isolation in

hUlldings. bridges and special structures which are particularly vulnerable to earth­
qUllkc.~. The inronnation has been compiled with the help of colleagues around the
world, who have enabled us 10 build up a picture of the isolation approaches which
huve been adopted in respollse to a wide range of seismic design problems; we
,1I0uld like to thank these colleagues for their contributions.

It is clear that engineers, architects and their clients allover the world are
hliliding up extensive experience in the development, design and potential uses
tit' ,solation systems. In time, these isolaled StruClUres will also provide a steadily
IIlcreasing body of infonnation on the perfonnance of seismically isolated systems
during actual earthquakes. In this way the evolving technology of seismic isolation
mllY contribute 10 the mitigation of earthquake hazard worldwide.
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2 General Features ofStructures
with Seismic Isolation

2.1 INTRODUCTION

IIUI' many structures the severity of an eanhquake attack may be lowered dramat­
Il'idly by introducing a flexible isolator as indicated by Figure 1.1. The isolator
ilH,;rcascs the natural period of the overall structure and hence decreases its accel­

l'llllioll response to earthquake-generated vibrations. A further decrease in response
occurs with the addition of damping. This increase in period, together with damp­
Ilig. c:m markedly reduce the effect of the earthquake. so that less-damaging loads
lIud dcfonnalions arc imposed on the struclUre and its contents.

Th is chapter examines the general changes in vibrational character which
different types of seismic isolation confer on a structure, and the consequent
l'llallges in seismic loads and dcfonnations. The study is greatly assisted by
~'onsidcring structural modes of vibration and earthquake responsc sJXctra, an
upproach which has proved very effective in the study and design of non­
I~olatcd aseismic structures (Newmark and Rosenblueth, 1971; Clough and Pcnzien,
1975).

The seismic responses of linear structures in general are introduced early to
pmvide the concepts used throughout Chapters 2, 4 and S. Attention is also given
to seismic response mechanisms since they assist in understanding the seismic
Icsponscs of isolated structures and how they are related to the responses of similar
~lnlCllires which are nOI isolated. The general consequences of seismic isolation
Ille illustrated using six different isolalion systems.

This chapter provides an introduclion to the more systematic study in Chapters 4
lutd 5. It leads to somc useful ;1I,proaches for the study of seismic isolation, gives
11 greater lInderst;mdillg of the Ilu.:chanisms involved, and indicates some useful de­
~ig'l ;,ppro;lChcs. The disclissions thnJIIghout lhis chapler assume simple torsionally
halanced SlrtlCllIreS in which thc slillcinral masses al rcst arc centred on 11 vertical
lltle. as illuslratc(t ill Fi~lIfcs 2.1 2.7.
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2.2.1 Earthquake response spectra
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(2.5)

(2.4)

c. k ..
ii + -u + -II = -ug

m m

, 2 ..
u+2~wu +W II = -u g •

~ ::: c/cc, =cl [2.j(mk)] =c/2mw ::: cT141Tm.

Ihe C<luation of motion can then be divided by m 10 give

For this (damped, forced) dynamic system, the displacement response to ground
accelerations may be given in closed fonn as a Duhamel integral, obtained by
expressing ii,(r) as a series of impulses and summing the i~pul.se responses. of
lilc system, When the system starts from rest at time t = 0, thiS gIves thc relatIve

dbpl;lcement response as

By successive differentiation. similar expressions may be .?bta.i.ned for the. rela­
live velocity rcsponse Ii and the total acceleration response U + II g. For partIcular
valucs of w and ~, the responses to the ground accelerations of a given earth­
lluake may be obt'lined from l-tcp-by-step evaluation of Equation (2.6) or frqm
nlher evaluation procedures,

Since slmctur.ll dcsign" arc nortlwlly hascO on maximum responses, a conve·
IlIcn, summary of the ~C;Mllic l"l'''IKlIl''CS of l-inglc-mOlss oscillators is o~tained by
rcconling ollly Ihe IlHlx11lll1l1l li'~IH\Il"l'" [01' a SCI of v"lilCS of the OSCIllator pOI­
lilillClCI"S {I) (01' T) 1I111l t:. 'Illi'~t' Il1111dnllllll rcsponsCs arc lhc cHl'lhqllake rcsponse

1I(f) = -(I/Wd) l' ii,(T)exp[-~w(t - T)lsin%(t - T)dT. (2.6)

Ill'

cc. = 2.j(mk).

A 'damping factor' ~ can then be defined which expresses the damping as a

1l,lct;on of critical damping

, I KOLE OF EAlmiQUAKE RESPONSE SPECTRA AND VIBRATIONAL MODES

W~ = (kIm) - (c/2m)2
where

lIml whcre A and Jj arc constants representing the initial displacement amplitude

lind initial phase of the motion.
The damped, unforced oscillation has thus a lower frequency ~ th~ t~e natural

It\'(juency w, and Wd decreases as Ihe value of the damping coeffiCIent C IS Illc~ased.
It {' i.~ increased to a 'critical value' Cn such that Wd = 0, Ihe system Will not
o~dllate. The critical damping is given by

(2.2)

(2.3)

(2.1)

T = 21T/(m/k).

mii + elf + ku = -mii.

GE."'lERAL FEATURES OF 51lWCTURES wrrn SElSMIC ISOLATION

'llC solutiOIl for damped, unforced oscililltiolls is

II,

where u is the displacement of Ihe single-mass oscillator relative to the ground,
u, is the ground displacement. k is the 'spring stiffness' and c is the 'damping
coefficient' .

The natural (fundamental) frequency of undamped, unforced oscillations (c = 0
and ug = 0) is

2.2 ROLE OF EARTHQUAKE RESPONSE SPECTRA AND
VIBRATIONAL MODES IN THE PERFORMANCE OF
ISOLATED STRUCTURES

TIle horizontal forces generated by typical design-level earthquakes are greatest
on structures with low nexibility and low vibration damping. The seismic forces
on such structures can be reduced greatly by supporting the structure on mounts
which provide high horizontal flexibility and high vibration damping. This is the
essential basis of seismic isolation. It can be illustrated most clearly in terms of
the response spectra of design earthquakes.

llte main seismic allack on most structures is the set of horizontal inertia forces
acting on the structural masses. these forces being generated as a result of hor­
iZOIllal ground accelerations. For mosl slruclUres, vertical seismic loads are rela­
tively unimportant in comparison with horizontal seismic loads. For typical design
earthquakcs. thc horizontal accelerations of the masses of simple shorter-period
structures arc controlled primarily by the period and damping of the first vibra­
tional mode. i.e. that form in which the system resonates at the lowest frequency.
The dominance of the first mode occurs in isolated structures, and in unisolated
structures with first-mode periods of up to about 1.0 s. a period range which in­
cludes mOSI structures for which isolation may be appropriate. Neglecting the less
important factors of mode shape and the contribution of higher modes of vibration,
the seismic acceleration responses of the isolated and unisolated structures may be
compared broadly by representing them as single-mass oscillators which have the
periods and dampings of the first vibrational modes of the isolated and unisolated
SITUClures respectively.

The natural (fundamental) period T, natural frequency wand damping factor ~

of such a single-mass oscillator, of mass m. are oblained by considering its equation
of motion
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spcctrn.. They may be defined as follows:
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SA{T.~) = (u + U1)(t)mu: Sv(T. n = U(l)mu; So(T,~) = lI(l)max'
(2.7)

Such spectra are routinely calculated and published for important accelerograms
e.g. EERL Reports (1972-5). Figure 2.1 shows response speclfa for various damp­
ing factors (0, 2, 5. 10 and 20% of critical) for a range of earthquakes. Figure 2.I(a)
shows acceleration response spectra for the accelerogram recorded in the SOOE di­
rection al El Centro, California, during the 18 May 1940 earthquake (often referred
to as 'El Centro N$ 1940'). This accclcrogram is typical of those to be expected on
ground of moderate flexibility during a major earthquake. The EI Centro acccicro­
gram is used extensively in the following discussions because it is typical of a wide
range of design accelerograms, and because it is used widely in the literature as a
sample design accelerogram.

Seismic structural designs are frequently based on a set of weighted accelero­
grams, which are selected because they are typical of site accelerations to be ex­
pected during design-level earthquakes. The average acceleration response spectra
for such a set of eight weighted horizontal acceleration components are given in
Figure 2.1(b). Each of the eight accelerograms has been weighted to give the same
area under the acceleration spectral curve, for 2% damping over the period range
from 0.1-2.5 s, as the area for the EI Centro NS 1940 accelerogram (Skinner.
1964).

Corresponding response spectra can be presented for maximum displacements
relative to the ground, as given in Figure 2.1 (c). These displacement spectra show
that, for this type of earthquake, displacement responses increase steadily with
period for values up to about 3.0 s. As in the case of acceleration spectra, the
displacement spectral values decrease as the damping increases from zero. The
spectra shown in Figure 2.I(b) and (c) are more exact presentations of the concept
illustrated in Figure I, I.

While the overall seismic responses of a structure can be described well in tenns
of ground response spectra, the seismic responses of a lightweight substructure can
be described more easily in tenns of the response spectra of its supporting floor.
Aoor-response spectra are derived from the accelerations of a poin! or 'floor' in the
structure, in the same way that earthquake-response spectra are derived from ground
accelerations. Thus they give the maximum response of lightweight single-degrce­
of-freedom oscillators located at a particular position in the structure, assuming that
the presence of the oscillator docs not change the floor motion. It is also possible to
derive floor spectra which include interaction effects. Floor-response spectra tend
to have peaks in the vicinity of the periods of modes which contribute substantial
acceleration to that floor.

The response spectrum appro.1ch is used throughout this book to increase under­
standing of the factors which influence the scismic responscs of isolated structures.
The response sl>cctrum "ppro:K:h :11-.0 a"sists in the seismic design of isolated
structures, as described in Chapter ~, "ince it allows separate consideration of the
character of dc"ign earthqtlltl..c" llud ill c,lrlhquake·re"istant structures. A technique
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II1IllCks on structureS, are most severe when the first vibrational period of the struc~

lure is in the period range from about 0.1-0.6 s and when thc structural damping
I.. low. This period range is typical of buildings which have from I to to storeys.
file shaded area marked (U) in Figure 2.I(b) gives the linear acceleration spectral
r~, ..ponses for the range of first natural periods (up to about 1.0 s) and Sb'Uctural
lllllnpings (up to about 10% of critical) to be expected for structures which are
plOlllising candidates for seismic isolation. Similarly, the shaded area markcd (I)
III Figure 2.1 (b) gives the acceleration spectral responses for the range of first-mode
llel iads and dampings which may be conferred on a structurc by isolation systems
of the types described in Chaptcr 3.

A comparison of the shaded areas for unisolated and isolated structures in
I·i~urc 2.1(b) shows that the acceleration spectral responses, and hence the pri­
11I,lry inertia loads, may well be reduced by a factor of 5 to 10 or more by intra­
ltudng isolation. While higher modes of vibration may contribute substantially to
lhc 'iCismic accelerations of unisolated Sb'Uctures, and of structures with non-linear
htllation, this does not seriously alter the response comparison based on the shaded
,1Ica:-; of Figure 2.1 (b). This figure therefore illustrates the primary basis for seismic

l'>Illation.
'Ille contributions of higher modes to the responses of isolated structures are

lk..cribed in general tems below, and in more detail later in this chapter and in
('hnplcr 4.

Almost all the horizontal seismic displacements, relative to the ground, are
(lue to the first vibrational mode, for both unisolated and isolated structures. The
~d..mic displacement responses for unisolated and isolated structures are shown in
I I~ure 2.l(c) by the shaded areas (U) and (1) respectivcly. These shaded areas have
lhc same period and damping ranges as the corresponding areas in Figure 2. I(b).
A.. noted above, the first-mode period and damping of each isolated structure dc­
Ill'nd almost exclusively on the isolator stiffness and damping. Figure 2.I(c) shows
II r.:onsiderable overlap in the displacements which may occur with and without iso­
1.llion. This may arise when high isolator damping more than offsets the increase
III displacement which would otherwise occur because the isolator has increased
thc overall system flexibility.

Moreover, while displacements without isolation nonnally increase steadily over
Ihe height of II structure, the displacements of isolated structures arise very largcly
hQIl1 isolator displacements, with little defomation of the structure above the iso­
lilLOI', giving the approximately rectangular profile of mode 1. Figure 2.I(c) shows
Ilml isol:llol" displaccments may be quitc large. The larger displacements may con­
lrihtlle substantially 10 the costs of the iso1:ltors and to the costs of accommodating
Ihe displaccments of the structures, and thcrefore isolator displacements are usually
Ull important dcsign consideration.

A convenient feature of the large isolator displacements is that the isolator loca­
tllll1 provides an effective :ll1d convenient location for dampers designed to confer
Ill!!h damping on the domin:lllt fiN vibTilliollal mode. Moreover. some dampers
h'(llllre Illrge ..tro~cs 10 he dfcctiv<:. Such damping reduces both the accelerJ.tions
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The first mode of a simple isolated structure is very different from all its other
modes, which have features similar to each other. We treallhe first mode separately
from all the olher modes, which are usually referred to herein as 'higher modes'.
The first-mode period and damping of an isolated structure. and hence its seismic
responses, are determined primarily by the characteristics of the isolation system
and are vinually independent of the period and damping of the structure.

In the first isolated mode the vertical profiles of the horizontal displacements
and accelerations are approximatcly rectangular, with approximatcly equal motions
for all masses (sce Figure 2.5). Hence an isolated structurc may be approximatcd
by a rigid mass whcn assessing thc seismic responses of its first vibrational modc.

Except for special applications, the seismic responscs of structures with lincar
isolation can be described in tems of earthquake-response spectra, and the simple
first mode of vibration. When the isolation is strongly non-linear, many important
seismic responses can still be described in tcms of mode I. but higher modes can
be of importancc.

Figure 2.1 (a) alld (b) ~how accclCI~ltl(ln resl)(}llsc spectr.t for typical design carth­
<luakcs. It i.. 'i(.'Cn lhut lhc..c nlll1(1Il11111l uc<:c1cration... :IIKI hence the general inertia

which is given some emphasis is the extension of the usual response spectrum
approach for lincar isolators to the case of bilinear isolators.

Figuf"C 2.1 (continued)

2.2.2 General effects of isolation on the seismic responses of structures

'0
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Schematic representation of a damped linear isolalion system. (a) StRICture
of mass M supponed by linear isolator of shear stiffness K". with velocity
damper (viscous damper) of coefficient CIt. (b) Shear force S versus dis­
placement X showing the hysteresis loop and defining the secanl stiffness
of the linear isolator: K" = Sb/ X". (c) Linear isolator with high damping
coefficient and higher·mode attenualor K<

c,

("

Figure 2..2

(2.8a)

A typical isolated structure is supported on mounts which are considcrnbly more
flexible under tlorizootal loads than the structure itself. It is assumed here that the
isolator is at the base of the structure and thai it does nOI contribute to rocking
mOlions. Other locations for isolators are discussed in Chapter 5. As a first approx­
imation, the structure is assumed to be rigid. swaying sideways with approximately
conslant displacement along its height, corresponding to the first isolated mode of
vibration.

Some isolation systems used in practice are 'damped linear' systems such as
those presented in Equations (2.1) and (2.5). However, an alternative approach, for
the provision of high isolator flexibility and damping, is to use non-linear hysterctic
isolation systems, which also inhibit wind sway. Such non-linearity is frequemly
introduced by hysteretic dampers, or by the imroduction of sliding components to
increase horizontal flexibility, as discussed in Chapter 3. These isolation systems
can usually be modelled approximately by including a component which slides with
friction and gives a bilinear force-displacemem loop when the model is cycled
at constant amplitude. Models of linear and bilinear isolation systems, with the
structure modelled by its total mass M, are shown in Figures 2.2(a) and 2.3(a).

The linear isolation system (Figure 2.2) has shear stiffness Kb and its coefficient
of (viscous-) velocity-damping is Cb, where the subscript b is used to label param­
eters of the linear isolator. These parameters may be related to the mass M or the
weight 1V of the isolated structure using Equations (2.3) and (2.4). This gives the
natural period Tb and the velocity damping factor ~b

which attack the structure and the isolator displacements. for which provision must
be made.

2.2.3 Parameters of linear and bilinear isolation systems

.nd

Figure 2.2(b) shows the 'shear force' versus 'displacement' hysteresis loop of
such a damped linear isolator, which is traversed in the clockwise direction as
the shear force and displacement cycle between maximum values ±Sb and ±Xb
respectively. The 'effective stiffness' of thc isolator is then defined as

(2.8b)

(2.9)

"oor-acceleration speclra. Such an increase in higher-mode responses may be
largely avoided by anchoring Ihe velocity dampers by means of components of
appropriate sliffness Ke, as modelled in Figure 2.2(c). .. ,

'nlC bilinear isolalor model (Figure 2.3(a» has a stiffness Kbl wlthoul shdlllg
(the 'initial' or 'clastic-phase' stiffness), and a lower stiffness Kb2 during sliding
or yielding (the 'posl-yield' or 'plastic-phase' stiffness). By analogy with the linear
case. thesc stiffncsses can be related to corresponding periods of vibration of the

system:

Corresponding d:Ullpilig faClor.. call also be defined:

The design values chosen for Tb and ~b will usually be based on a compromise
between seismic forces. isol:llor displacements, their effccts on seismic resistance
and the ovcmll COSlS of thc i"olated stn-chlre.

When the isolator vclocity-d:ulIping is qUIte high, say ;b greater than 20%,
higher-mode accelcralion rc"puI1W" llI;ly become imponant. eSIX'Cially regarding

(2.10.)

(2. lOb)
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("

(ol

1111 i\ppropriately defined 'effective' period TB and 'effective' damping factor SB.
Thc subscript B is used for these effecl1ve values of a bilinear isolator.

The effective bilinear values TB and ~B are obtained with reference to the 'shear
force' versus 'displacemenl' hysteresis loop shown in Figure 2.3(b). This balanced­
displacement bilinear loop is a simplification used to dcfine these parameters of
hilinear isolators. In practice, the reverse displacements, immediately before and
after the maximum displacement Xb, will have lower values. In general, the concepl
of lhese 'effective' values is a gross approximation, but il works surprisingly well.
NOlc also that the simplified bilinear loop shown does not inelude the effects of
velocity-damping forces. The damping shown is 'hysteretic', depending on the area
of lhe hysteresis loop.

The 'effective' Sliffness K B (also known as the 'secant' stiffness) is defined as
Ihe diagonal slope of Ihe simplified maximum responsc loop shown in Figure 2.3(b):

(2.lla)

An additional parameter required to define a bilinear isolator is the yield ratio
Qy/ W, relating the yield force Qy of the isolator (Figure 2.3(b» to the weight W
of the structure. Yielding occurs at a displacement Xy given by Qy/Kb\, When
the design eanhquake has the severity and characler of the EI Centro NS 1940
accelerogram it has been found that a yield ratio Qy/ W of approximately 5%
usually gives suitable values for the isolator forces and displacements. In order
to achieve corresponding results with a design llccelerognllll which is a scaled
vcrsion of an El Centro like accclerogram, ;t is necessary to scale Qy/ W by the
samc faclor, <IS dcs{;ribcd ill Chaplers 'I and 5.

It is found useful to descl'ibe the hilinear syslcm using 'cffective' v;i1ues, namely

(2.13)

(2.l2)

(2.11c)

(2.1> b)

~B =Sb+~h

where, from Equation (2.4),

and where Sh is obtained by relaling the maximum bilinear loop area to the loop
arca of a velocity-damped linear isolator vibrating at the period Ta with the same
amplitude Xb, to give

where Ah = arca of the hystercsis loop.
For non-linear isolators, it ;s convenient to have a quantitative definition of non­

line'lrity. We have found it useful 10 define a non-linearity faCial', NL, in teons of
t'"igllres 2.3(b) aud 2.3(e), a.~ lhc r'ltio of Ihe maximum loop offset, from Ihe secant
I;nc joining lhc points (X h. Sh) ilnd (-X b. -Sb), 10 lhe maximum offsel of the axis­
parallel rcct.lllgic lhrolJgh Ihese pOilltS, i.c, PI / P2- Hence the non-linearity factor
increases froll1 0 10 I ns llu: loop l.'hllll~eS from a zero-area shape 10 a rccl.lI1g11lar

An equivalent viscous-damping factor Sh can be defined to account for the
hysteretic damping of the base. Any actual viscous damping ~b of the base must
he added to Sh to obtain the effective viscous-damping factor SB for the bilinear
~ystClll. In practice Sh is usually larger than ~b, i.e. thc damping of a bilincar
hysteretic isolator is usually dominated by thc hystcrctic energy dissipation rather
than by the viscous damping Sb' Thus

This gives the effective period

:x,
,

-------- ---.'

s
(ol

Schematic representation of a bilinear isolation system, (a) Structure of mass
M supported by bilinear isolator which has linear 'spring' components of
sliffnesses Kbl and K b2 , together wilh a sliding (Coulomb) damper com­
ponent. (b) Shear force versus displacement showing the bilinear hysteresis
loop and defining the secant stiffness of the bilinear isolator: K IJ = Sb/ Xb.
The 'initial' or 'elastic-phase' and 'post-yield' or 'plastic-phase' stiffnesses
Kbl and Kb2 respectively are lhe slopes (gradients) of the hysteresis loop as
shown. and (X~. Qy) is the yield point. (c) Comparison of linear hysteresis
loop with a circumscribed rectangle, to enable definition of the non-linearity
factor NL

Figure 2.3
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0.85-1.15 for a wide range of the bilinear isolator parameters Tbl. Tb2 and Qy/W.
This gives an idea of the uncertainties associated with this method. Note that
the method is also iterative, as Ta and ;8 are functions of Xb and Sb. Practical
illustration of these concepts is given in Chapler 5 when discussing the design of
isolation systems.

2.2.5 Contributions of higher modes to the seismic responses of
isolated structures

The contributions of higher modes of vibration to the seismic responses of iso­
lated structures can be described briefly in general teons. These contributions are
examined systematically in Chapter 4.

A linear isolation system with a high degree of linear isolation and moderate
isolator damping (i.e. ;b < 20%), or with high isolator damping which includes a
higher-mode allenuator as in Figure 2.2(c), gives small higher-modc acceleration
responses. Hence all the seismic responses of a structure with such linear isolation
arc approximated reasonably well by first-mode responses and by a rigid-structure
model. Without higher-mode auenuation, high isolator damping may seriously dis­
tort mode shapes, and complicate their analysis, as described in Chapter 4. Also,
higher-mode responses may increase as the damping increases, because greater
base impedances caused by the base damping result in larger effective participa­
tion factors.

When a bilinear isolator has a high degree of non-linearity, there are usually
relatively large higher-mode acceleration responses. These usually give substantial
increases in the seismic inertia forces, compared with those produced by Ihe first
mode. Shear forces at various level.s of the structure are typically increased by
somewhat smaller amounts, the exception being near-base shears which remain
close to their mode-l values because shears arising from higher isolated modes
Il;lve a ncar-zero value at the isolator level.

Increased floor-acceleration spectra may result from increased higher-mode ac­
celeration responses and may be of concern when the seismic loads on lightweight
substructures, or on the contents of the structure, are an important design consid­
eration.

The higher-mode acceleration responses are generally reduced by reducing the
non-linearity of the isolator, but other isolator parameters may modify the effects of
non-linearity. When the isolator is bilinear the degree of non-linearity can usually be
reduced by reducing the period ratio Tb2/Tbl and {he yield ralio Qy/W, since these
changes usually give a less rectangular loop. However, the non-linearity should
normally be left ,It the highest acceptable value, since {he hysteretic damping of a
bilinear isolator is proportional to the degree of non-linearity, and the first-mode
response generally decreases a.~ the (hun ping increases.

For a given degree of Ilon-linemity, the higher-mode acceleration responses can
generally be reduced hy 1I11ikill~ the clastic pcriod 'fbl consider.\bly greater than the
lirst unisolatcd period TIH)), '1'111" Ilflpnlllch becomes more practical and ctfective

(2.14)

(2.15c)

(2.15a)

(2.16a)

(2.16b)

(2.ISb)

Xb :::::: CFS0(1'8, ~B)

Sb:::::: Qy + K b2 (X b - Xy).

GENERAL FEATURES OF STRUcrURES WITH SEISMIC ISOLATION26

From Equations (2.13) and (2.14) it is seen (hat Ihe hysteretic damping factor ~h is
proportional 10 the non-linearity factor NL for bilinear hysteretic loops. However,
re-entrant bilinear loops may have a much lower ratio of damping to non-linearity.

The maximum inertia load Fr , on the rth mass m r , is given by

2.2.4 Calculation of seismic responses

The inertia forces are approximately in phase and may be summed to give the shear
at each level. In particular the base-level shear is given by

When Ihe isolator is bilinear, seismic responses may still be obtained from
design-earthquake spectral values, but Ihe solutions are less exact than in the linear
case, as discussed in Chapter 4. Some of the results of this later chapter are antici­
pated here so that the seismic responses of a range of isolators can be compared in
Seclion 2.5. These results were obtained by calculating the responses of 81 different
isolator-structure systems and analysing the patterns which emerged. 11 was found
that the effective period TB and effectivc damping ~13 of Equations (2.11) to (2.13)
may be used with earthquake spectra to obtain rough approximations for the seis­
mic responses of the first mode. The maximum base displacement Xb and the
maximum base shear 5b (neglccting velocity-damping forces) may be derived from
the isolator parameters and 'bilinear' spectral displacement SD(TB, ;8) as follows:

Here CI' is a 'correction' factol' which wa.~ found empiric<llly. For the El Centro
NS 1940 accelerogram, the correction ractor CF lies approximately in the range

shape. For a bilinear isolator this is equivalent to the ratio of the loop area Ab to
Ihal of Ihe rectangle. The non-linearity factor NL is thus given by

When the isolator is linear and the base flexibility is sufficient for the first mode
to dominate the response, thc maximum seismic responses of the system may
be approximated by design-earthquake spectral values, as given for example in
Figure 2.1, for the isolator period Tb and damping ~b' For the approximately rigid­
structure motions of the first isolated mode, the maximum displacement X, at any
level,. in the structure is given by
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28 GENERAL FEATURES OF STRUcrURES WITH SEISMIC ISOLATION 2.3 NATURAL PERIODS AND MODE SHAPES OF LINEAR STRUCTURES "
for structures whose period TI(U) is relatively low. The mechanisms underlying
Ihese higher-mode effects are discussed more fully in Chapler 4.

2.3 NATURAL PERIODS AND MODE SHAPES OF LINEAR
STRUCTURES- UNISOLATED AND ISOLATED

2.3.1 Introduction

II

II
.. "

In general. each pair of masses m" ms is interconnected by a component with
a stiffness k(r, s) and a velocity damping coefficient c(r. s). In Figure 2.4(a). each
mass m, has a single horizontal degree of freedom. II, with respect to the supponing
ground, or u, + u. with respect to thc pre-eanhquake ground position, where the
horizontal displaccment of the ground is u•.

At each point r, the mass exens an inertia force -(ii, + jig)m" while each
interconnection exerlS lin clastic force -Cur -I/$)k(r, 05) and a damping force - (u r­
li,)c(r, s). The N equlltions which give the balance of forces at each mass can be
expressed in matrix fonn

(b)

MIN ut ..
k ••• i+ ..... ~'

K,uj---i~_
.. ... 1.-. .. .-..-. .... .-. .. .-. ......... "' .... .-....-. .. ~.-. ~""""''''

(a) Linear shear structure with concentrated masses. The seismic displace·
menlS of the ground and of the rlh mass m, are II, and (u, +u,) respectively.
The relative displaccmcnt of the rth mass is U" Hcre k(r. s) and c(r, s) are,
respectively, the stiffness and the velocity-damping coefficient of thc connec­
tion between masses r and s. (b) Unifonn shear struclure with lotal mass M
and overall unisolated shear stiffness K. such lhatthe level mass m, = MIN
and the inlennass shear sliffness Jr., = K N. If N tends to infinity. Ihe overall
heighll = h N • the mass per unit heighl m = /of II and the sliffness per unit
height k = KI

".,
,.
"

Figure 2.4

It has been stated above that most or all of the important seismic responses of a
structure with linear isolation, and many of the seismic responses with non-linear
isolation. can be appro)l;imated using a rigid-structure model. However, more de­
tailed infonnation is often sought, such as the effects of higher modes of vibration
on floor spectra. especially for special-purpose structures for which seismic isola­
tion is often the most appropriate design approach. Such higher-mode effects are
conveniently studied by modelling the superstructure as a linear multi-mass system
mounted on the isolation system.

Linear models and linear analysis can be used for unisolated structures and
also when the structure is provided with linear isolation, except that high isolator
damping may complicate responses. Simplified system models may be adopted to
approximate the isolated natural periods and mode shapes when there is a high
degree of modal isolation, namely when the effective isolator flexibility is high in
comparison with the effective structural flexibility. This useful concept, the 'degree
of isolation', is defined and discussed in Chapter 4.

When a structure is provided with a bilinear isolator. it is found that the dis­
tribution of the maximum seismic responses of higher modes ean be interpreted
conveniently in teons of the natural periods and mode shapes which prevail during
plastic motions of the isolator. This approach is effective for the usual case in
which the yield displacement is much less than the maximum displacement. These
mode shapes and periods are given by a linear isolator model which has an elas·
lic stiffness equal to the plastic stiffness Kb2 of the bilinear isolator. These mode
shapes explain the distribution of maximum responses through the structure, but in
general the amplitudes of the responses will be different to those of a linear system
with base stiffness K b2. The elastic·phase isolation factor I(Kbl ) = TbdTI(U) and
the non-linearity factor NL are important parameters affecling the strengths of the
higher-mode responses.

2.3.2 Structural model and controlling equations

where (MI.1CI :l1ld lKI arc lhe 1Il:1", damping ;l1ld stiffness mal rices, and where
the matrix clemcnt\ t'" aud A" fill' \Imply relaled 10 the damping coefficients and
the MimlC\~'" dr.l) lind A(I', \) n"'I'Il,'cllvcly.

The earthquake-generated motions and loads throughout non-yielding structures
have been studied extensively (e.g. Newmark and Rosenblueth, 1971; Clough and
Penzien. 1975). The structures are usually approximated by linear models with a
modcr.lte number N of pointllla\~\11I,. as illustrated in Figure 2.4(a) for a simple
one-dimen~ional modcl,

1M];; + ICli, + lK11l = -(Mllii. (2.17)
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Since the scale factor of each mode shape tP" is arbitrary it is here assumed, unless
otherwise stated, that the top displacement of each mode is unity: tPNIf = I. A
mode-shape matrix may then be defined as

Al each natural frequency W n , the undamped structure can exhibit free vibrations
with a normal mode shape tPn which is classical; that is. all masses move in phase
(or antiphase where tPrn is negative).

Here [MJ. ICl and [KJ are N x N matrices since the model has N degrees of
freedom, and u is an N -element displacemcm vector.

The model in Figure 2.4(3) and the force-balance Equation (2.17) can be ex­
tcnded readily to a three-dimensional model with 3N translational degrees of free­
dom (and 3N rotational degrees of freedom if the masses have significam angular
momenta). However, Figure 2.4 and Equation (2.17) are sufficiently general for
most of the discussions in Chapters 2 and 4.

2.3.3 Natural periods and mode shapes

[<OJ ~ [",." .• ".,,". "HI (2.22)

Applying Cramer's rule it may be shown that non-trivial solutions are given by the
roolS of an Nth-order equation in w2

where the displaced shape tP varies with position in the structure and with w, but is
independent of I. Substitute Equation (2.18) in Equation (2.17), with the damping
and ground acceleration terms removed

For a general stable structure. Equation (2.20) is satisfied by N positive frequencies
w". tenned the undamped natural or modal frequencies of the structure. The N
natural frequencies are usually separJle, although repeated natural frequencies can
occur. The shape tP.. of mode II is now found by substituting w" in Equation (2.19)
to give N linc.:lr homogeneous e(lualion~

Natural periods and mode shapes for unisolated and well isolated structures may
be illustrated using a continuous uniform shear structure. hereafter referred to
a, the standard structure. If a frame building has equal-mass rigid floors. and
.f the columns at each level are inextensible and have the same shear stiffness. the
building can be approximated as a unifonn shear structure. This may be modelled
a' shown in Figure 2.4(b) with nlr = MIN and k(r.r - I) = KN for r = I
to N. and with all other stiffnesses removed. The model is given linear isolation
by letting k(I,O) = Kb , where K b is typically considerably less than the overall
,hear stiffness K. It is given base velocity damping by letting e(l, 0) = Cb. The
~tl'Ul.:lural modcl is made continuous by leuing N -+ 00.

From the partial differential fonn of Equations (2.17) which arises in the limit
of N -+ 00. or otherwise. it may be shown that the mode shapes 4'.. have a SillU­
~oid<ll profile, and thaI the modal frequencies w.. are proportional to the number of
quarter-wavelengths in the modal profile. Unisolated modes have (211 - I) quarter­
wavelengths and isolated modes have just over (211 - 2) quaner-wavelengths. as
~hown in Figure 2.5. If the stiffnesses K and Kb are chosen to give first uniso­
lat/,.'(I and isolated periods of 0.6 s and 2.0 s respectively, the periods of other
modes follow from the number of quaner-wavelengths as shown in Figure 2.5.
Moreover, there are 0.6/2.1 quaner-wavelengths in isolated mode I, so that the
lirst-rnode shape value tPt.l at the base of the structure. above the isolator, is given
hy lPbl = cos(0.29 x 90") = 0.90. as shown. Higher isolated modes rapidly con­
verge lowards (211 - 2) quarter-wavelengths with increasing n. and corresponding
periods occur.

Modal acceleration profiles have thc same shapes as the corrcsponding displace­
ment profiles but arc of oppositc sign, and hence, for a uniform mass distribution,
the modal force profiles also have the samc shapes as the displacement profiles.
The shear at a given level may be obt:lined by summing the forces above that
level. so it is evident from Figure 2.5 that the shear profiles for the higher modes
(n > I) of the isolated stn-ctures h:IVe small near-nodal values at the base level.
because of the cancelling effccts of thc positive and negative half-cycles of the
profile.

The uni,olaled :lIld isolated nmural periods and modal profiles of Figure 2.5

2.3.4 Example - modal periods and shapes

(2.21)

(2.18)

(2.20)

(2.19)

II = tP sin (wI + 8)

dct([KJ - ui(M]) = O.

(fK] - w2(Ml)tPsin(wt + 8) = O.

The seismic responses of the N-mass linear system, defined by Figure 2.4(a) and
Equation (2.17), can be obtained conveniently as the sum of the responses of N
independent modes of vibration. Each mode n has a fixed modal shape 4J" (provided
the damping matrix satisfies an onhogonality condition as discussed below). and a
fixed natural frequency w" and damping ~". These modal parameters depend on M,
e and K. Other features of modal responses follow from their frequency. damping,
shape and mass distribution. and the frequency characteristics of the eanhquake
excitation.

Modal responses are developed here in outline, with atlention drawn to features
which clarify the mechanisms involved. Imponam steps in the analysis parallel
those for a simpler single-mass structure.

The natural frequencies of the undamped modes are obtained by assuming that
there are free vibrations in which each mass moves sinusoidally with a frequency
w. Let
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For structures which are non-shear and non-uniform, and have inter-mass stiff­
nesses in addition to k(r, r - I), period ratios are less simple but retain the general
features given by Figure 2.5. For a well isolated structure, the first-mode period
is controlled by the isolator stiffness. All othcr isolated and unisolatcd periods are
controllcd by the structure and arc interlCHved in the order given by Figure 2.5.
The isolated lllode-l profile is ~tjll ;Ipproximatcly rectangular. Higher-mode pro­
files arc no longer .~illu~oidal bill have Ille samc Se(lllCllCes of nodes and anti nodes.

33

When a structure is provided with a bilinear isolator there are two sets of nat­
ural periods and two corresponding sets of mode shapes; one set is given by a
system model which includes a linear isolator which has the elastic stiffness Kb1

of Figure 2.3, while the other set is given when the linear isolator has the plastic
stiffness Kb2.

The yield level of a bilinear isolator is normally chosen to ensure that the
maximum seismic displacement response, for a design-level excitation, is much
larger than the isolator yield displacement. With such isolators the distribution of
the maximum seismic motions and loads, and the floor spectra, can be expressed
cfl"cctively in terms of the set of modes for which the shapes, and the higher-mode
periods, are those of the normal modes which arise when the structure has a linear
isolator of stiffness Kb2 . An approximate effective period for mode I is derived from
Ihe secant stiffness Kn at maximum displacement, as given by Equation (2.lla)
llml illustrated in Figure 2.3(b). The relevance of the normal modes arising with a
sliffness Kb2 is to be expected, since maximum or near-maximum seismic responses
~hould normally occur when the isolator is moving in its plastic phase, with an
illcremental stiffness Kb2 . The relevance of this set of modes is discussed in the
sy.~tematic studies in Chapter 4.

This section considers the seismic response quantities which are commonly lm­
porlant for the design of non-isolated or isolated structures. Important seismic
I'csponses normally include structural loads and deformations and may include ap­
pendage loads and defonnations. Appendage responses indicate the level of seismic
ntlack on lightweight substructures, and on plant and facilities within the structures.
For an isolator, seismic displacement is likely to be the mosl important and limiting
design f'lctor.

Thc cUlllriblitions of structural modes and response spectra to the important
~dsl1lic responses Me indicated 011 thc left of Figure 2.6. The earthquake accel­
cration.s l:\ive acceleration rCSp()II,~e speclra which combine with struclural modes

2.4.1 Seismic responses important for seismic design

2.3.5 Natural periods and mode shapes with bilinear isolation

2.4 MODAL AND TOTAL SEISMIC RESPONSES

Moreover, the shear profiles of higher isolatcd modes still have small ncar-nodal
v.llucs at the isolator level.

For all well isolated structures, the damping of mode I is controlled by the isola­
tor damping. The damping of all higher modcs is controlled by structural damping,
provided the velocity damping of the isolator is not much greater than that of the
structurc. I! is commonly assumed thai the structural damping is approximately
cquHl for all significant modes.

2.4 MODAL AND TOTAL SEISMIC RESPONSES

(s) (2.23a)

(s) (2.23b)

(2.23c)

(2.23d)

(2.230)

7

,

0.12

for n > 1

...... 0.15

0.2

-0.29

o
0.6

Variation, with height h" of ljJ.n, which is the approximate shape of the flth
mode at the rlh level of the continuous unifonn shear structure obtained by
lelting N tend to infinity in the structural model of Figure 2.4(b) shown for
values of T1(U) = 0.6 s and To = 2.0 s. The modal shapes and periods are
shown when the structure is unisolated (U) and isolated (I). Note that the
responses interleave, wilh periods T.(I) and 1~(U) alternating between 2.09,
0.6,0.29,0,2,0,15 and 0.12 s respectively

T,(U)~ 0.6/(2n - 1)

T,(l)~ 2.1; T,(l) ~ 0.6/(2n - 2),

1>•• (U) = sinl(2n - 1)(rrj2)(hr /h N )]

4'rl (I) ~ cosf(O.3( 1 - II, / hN)(rr/2»]

,pr. (I) ::;,; cosl(2n - 2)(7f12)(h, / hN)].

Tn(U)

GENERAL FEATURES OF STRUCTURES WITH SEISMIC ISOLATION

o
Tn(l) ...... 2.09

h,

32

Figure 2.5

may be expressed as follows
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to give mass accelerations and hence structural seismic forces. Similarly floor~ (or
slruclUral-mass-) acceleration response spectra give the appendage seismic forces.

2.4.2 Modal seismic responses

The modal seismic responses of linear multi-mass structures can be expressed in
a simple (onn when the shapes of all pairs of modes are orthogonal with respect
(0 the stiffness, mass and damping matrices. II may be shown that undamped
free-vibration mode shapes are orthogonal with respect to the mass and stiffness
matrices. Moreover structural damping can usually be represented well by a matrix

which gives classical in-phase mode shapes. Such a damping matrix does nOI couple
or change the shape of the undamped modes. Particular exceptions to orthogonal
damping may arise with highly damped isolators or with damped appendages, as
discussed in Chapter 4.

The orthogonality of the mode shapes, with respeci to the mass and stiffness
matrices, may be obtained from Equation (2.21) by nOling Ihat the mass and stiff­
ness matrices are unaltered by transposition: the mass matrix because it is diagonal,
and Ihe stiffness matrix because it is symmetric.

If Equation (2.21), for mode n, is pre-multiplied by ¢~, and again Ihe transpose
of Equation (2.21), for mode m, is posl-multiplied by ¢n, this gives

2 T Twn¢m[Ml¢n = ¢m[K]¢n

w~¢~[MJT¢n = ¢~[K1T¢n.

(2.240)

(2.24b)

Since [M]T = fM) and lKJT = [K), subtraction of Equalion (2.24b) from Equa­
tion (2.24a) gives, for the usual case when w~ =I- w~, the orthogonality condition:

(2.250)

(2.25b)

whenn=l-m

whenn=l-m.

¢~[Ml¢n = 0;

Similarly
~(f.f-l)

StruclurQI mode5

I
Moss accelerotions

~
-S[ructurol torees

= S~"OfS

f--- .:> Moments

<1 O~IOfmot;ons

Eorthquoke (2.26)

(2.27<1)

(2.25c)whenn=l-m.¢~[Cl¢n = 0,

Sub$tilllling from Equation (2.26) into Equation (2.17), then pre-multiplying
CilCh term by ¢: and eliminating all tenns given as zero by Equations (2.25) pro­
duccs

It can be shown that Equations (2.25) imply Ihat the inertia forces, the spring
forces and Ihe damping forces of any mode (n) do no work on the motions of any
other mode (m).

The displacements u (t) of Equation (2.17) may be expressed as Ihe sum of
f"clored mode shapes:

For the special case where IWO or more modes share Ihe same frequency W rn ,

the mode shapes for modes m and fl with the common frequency can be chosen
such that Equations (2.25a) and (2.25b) hold.

It is found that the responses of damped linear structures can also be described
in terms of the same classical (in-phase) normal modes if the damping coefficients
are also constrained by a similar orthogonality condition. Thai is, provided

"' I

Floor spectro

I
Appendage

accelerations i_Appendoge

I forces

--
~ Appendoge

deformot;ons

SdlCmatic represenlation of the re~ponsc~ which dominate seismic design.
The floor spectra have the .~iItl\e role in Ihe responsc of the appcndagc a~ 1hc
e:ll'thqu;lke 'I>cctm hllve ill Ille response of the structure

Eorthquoke spectro

Figure 2.6
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When compared with Equation (2.5), Equation (2.27a) is seen to describe a
singlc-degree-of-freedom damped oscillator with damping factor ~Il and frequency
Wn given by

2 w _ 41~[CJ.pn
Sn II - ¢![MJ4>/l

2 ¢:rK ]4'1l
wI! = q,J[MltPn'

(2.27b)

(2.270)

The maximum seismic displacements of mode II are given by Equation (2.31 a).
The maximum seismic forces F,,, follow directly from Equation (2.31c). Moreover,
.~ince all the mass accelerations for these classical normal modes are in phase, and
Iherefore reach maximum values simultaneously, maximum shear forces 5," and
overturning moments OM,,,, at level r, may be obtained by successive summation
of maximum forces. This gives

(2.32a)

Here Equations (2.27) are the N-degrce-of-freedom counterparts of Equations (2.2),
(2.4) and (2.5).

Since u = E:'=lull it follows from Equation (2.26) that the displacement at level
r of the 11th mode is given by

11,11 = "'rn~'

Substituting from Equation (2.28) into Equation (2.27) gives:

(2.28)

N

Srn = L fin
;=r

N

OM," = L: [(h, - 1.,_,)5,.]
i=r+1

where h, = height to mass m,.

(2.32b)

(2.32c)

The factor r,n may be called a participation factor since it is the degree to which
point,. of mode n is coupled 10 the ground accelerations. Equation (2.30c) defines
a mode weight factor f". It is here convenient to define I<PN" I as unity. For simple
tower-like structures. when <PN" = (_1),,-1 then f" is positive.

When Equations (2.5) and (2.7) are compared with Equation (2.29) and (2.3Oc)
it is seen that

where

Hence, since [M] is a diagonal matrix,

= tPrn r".

Xr" = <Pr"rnSD(T". ~,,)

Xrn = <Prnf"Sv(Tn, ~n)

Xm = <PrnrnSA(1~, ~,,)

(2.29)

(2.30,)

(2.30b)

(2.30e)

(2.31a)

(2.31b)

(2.3Ic)

2.4.3 Structural responses from modal responses

Usually the maximum structural responses cannot be obtained from the maximum
responses of a set of modes by direct addition, since modal maxima occur at
different times. The response levels of a mode. when plolled against time, vary
in a somewhat noise-like way and the probable maximum combined response of
several modes may usually be approximated by the square root of the sum of
squares (SRSS) method (Wilson et ai, 1981). For example, the probable foree at
level r, may be expressed as:

(2.33)

where the mode i ranges over the significant modes.
However, if near-maximum responses of two or more modes are correlated

in lime by close modal periods (often arising with torsional unbalance or with
near-resonant appendages), or by very short periods or very long periods, then
the complete quadratic combination (CQc) method may need to be used. Strongly
non-linear isolators may well provide a further mechanism which correlates modal
responses, so thaI the SRSS combination is not accurate.

where the peak v:llues XII" X," and X,,, are defined as Urrlmax, I;,',"nax, and (ij,,, +
f,"iig)",ax respectivcly. Note Ihal Ihese maximulll seismic responses do not occur

simultancously. so. for illsl:mce Ihc tll:lXimlllll 'lccelcralioll X is NOT Ihe derivative

of the maximum vc!o(,;ilY X,

2.4.4 Example~seismic displacements and forces

Importanl fealures of Equations (2.30), (2.31) and (2.32) can be illustrated for the
unisolated and the linearly isolated continuous uniform she:lr structure, but with
more aCCUr:ltc profiles for higher isolaled modes as given in Chapter 4. Top-mass
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participation factors for successive modes are

2.4.5 Seismic responses with bilinear isolators

Since modal loads may be represented by the force per unit height at the top of
the structure FNn , consider FNn/p = rNnSA(Tn, 5), where p = M/h N

Several of the possible definitions of the mode shapes with bilinear isolation are
Llseful for interpreting the response or estimating the maximum response quantities.

In Section 2.2.3, we discussed the responses of a first mode defined by a rigid
structure mounted on an 'equivalent' linear isolator with 'effective stiffness' K B,

'cffective period' TB and 'effective damping' ~B' This model gives good approxi~

mat ions to the displacements and base shear of a structure on a bilinear isolator.
A useful set of modes for systems with bilinear isolation are those obtained by

Llsing the post~yield stiffness of the isolator. Then the higher-mode periods and
all mode shapes are given by Equations (2.20) and (2.21) for a linear system with
K b = K b2. Hence, as with moderately damped linear isolators, the bilinear modes
<Ire classical and nonna!. These modes arc relevant for the maximum responses
bec:luse they relate to the post~yield phase, when the maximum displacements and
shears occur.

When the bilinear isolator has a high degree of non~linearity, the seismic re­
sponses of higher modes are often much greater than the responses which occur with
the above 'equivalent' linear modes. Bilinearity usually gives greater higher-mode
uccelerations and loads, and particularly it usually gives greater values for floor­
'lcceleration spectra over the period range covered by significant higher modes.'
The reasons for the larger seismic responses of the higher modes are discussed in
Chapter 4 and are summarised briefly here.

With bilinear isolation, the input of seismic energy and the energy level of the
overall system are given roughly by a rigid-structure model with a linear isolator
of effective period TB and effective damping factor ~H' When the structure is
sufficiently flexible to give a substantial contrast between the mode-I sh:lpes for
the first and second isolator stiffnesses, then there is usually significant energy
in the higher modes, where relatively small fractions of the structural energy can
result in relatively high modal accelerations and forces.

In tenns of the modes for the plastic-phase stiffness Kb2, each isolator transition
through the elastic phase redistributes the energy between the modes. This should
result in a net transfer of energy from the large-energy mode I to the small-energy
higher modes. The effects of the relatively large seismic responses of higher modes,
with many bilinear isolators, are seen in the C:lse studies below and in the more
systematic studies of Chapter 4. The excitation mechanism for higher modes is also
described more fully there.

The mode shapes corresponding to the post-yield stiffness Kb2 are usually very
similar in shape to the free-free mode shapes, obtained when the isolator stiffness
is zero. II is sometimes more convenient to interpret the responses in terms of the
free-free modes rather than those based on Kb2 , because of the symmetry of the
free-free modes and beC.IUse there is no need to calculate new mode shapes for
differelll values of K b2. Decomposition of the response in tenns of the free-free
mo<le ShalX:S also has the useful properties that the base shear is contributed entirely
by lhe first mode, and Ihat the first-mode displacements are unifonn within the
structure. Also. the base shear scale<l by appropriate participation factors provides
the drivillg fOl'ces for lhe higher modes.

xN2(U) = 0.0037 (m)

X N 2(I) ~ 0.0009 (m).

FN2(U)/P = 3.60 (ms-2)

FN2(I)/P :::::0.37 (ms-2).

XN1(U) = 0.085;

XNt(I)~0.18;

FN1(U)/p = 9.31:

FN1(l)/p ~ 1.80;

Notice that displacements are completely dominated by mode I for both uniso­
lated and isolated structures. Moreover, for any well isolated structure, the base
displacement is almosl as large as the top displacement

Note that the force for isolated mode I is relatively small because it has a low
response spectrum factor, while the forces for higher isolated modes are relatively
small because they have small participation factors.

where T1(U)/Tb = 0.3.
Higher isolated modes are seen 10 have much lower participation factors than

corresponding unisolated modes.
The above mode-participation faclors, together with thc periods from Equa­

tion (2.23) and the spectra of Figure 2.1(b) and (e), can now be used to find
important seismic motions and loads for modes I and 2 from Equations (2.31)
and (2.32). For simplicity, a low damping factor of 5% is assumed for all modes.
With practical isolated structures a higher damping would nonnally be provided
for mode I.

Since modal displacements may be represented by top displacements, consider

X Nn = rNnSD(Tn, 5):

r Nn(U) == 1.27,0.42,0.25, , 4/lJr(ln - f)]

rNn(l) ~ 1.0,0.045,0.011, , 2/[(2n ~ 2)jO.3f

When the isolator is bilinear, there are a number of possible ways of defining the
modes, as is discussed in Section 4.3.4. For any of the definitions we consider, the
total response of a line"r structure with biline:lr isolation can be expressed exactly
as the sum of the modal responses. as for a linear system. However, the modal
equations of motiOll will be coupled, unlike thosc for classically damped lincar

systems.
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The seismic responses of isolated S(JUCIUres can be decomposed inlo the contri­
butions from suitably defined modes by a mode-sweeping technique described in
Chapler 4. Either the modes based on base stiffness Kb2 or the free-free modes can
be used with this technique. The free-free mode shapes have been used to obtain
the results given in Section 2.5.

2.5 COMPARISONS OF SEISMIC RESPONSES OF LINEAR
AND BILINEAR ISOLATION SYSTEMS

2.5.1 Comparative study of seven cases

This section demonstrates many of the key features of seismic isolation, through
seven examples which show the seismic responses of structures and appendages
for various ranges of isolation system parameter values and structural flexibility.
11le examples are summarised in Table 2.1 in tenns of the physical parameters of
the systems, the maximum overall and modal response quantilies, and the values
of Ihe non-linearity factor and elaslic-phase isolation faclOr which are imponanl
paramelers governing the isolated response.

Figure 2.7 shows the maximum values of the displacements, accelerations and
shears and the 2% damped top-floor spectra calculated for an unisolatcd structure
and six isolated structures in response to the EI Centro 1940 NS ground acceleration.
The solid lines represent maximum 10lal responses, with Ihe maximum values
oblained from response hislory analysis. The dashed lines, and chain-dashed lines
where given, represent respectively the maximum first- and second-mode responses
al Ihe various levels. In some cases Ihe first-mode responses dominate 10 Ihe extent
Ihat dashed and solid lines coincide (e.g. parts of the floor spectra, panicularly
at longer periods). In other cases, the difference between the solid and dashed
lines indicates the higher-mode contribution to the response. The modal responses
were obtained from the overall responsc hislories at all masses in the structures
by sweeping with the free-free mode shapes, as discussed in Section 4.3.4, except
for the unisolated structure, where the modal responses are in tenns of the true
unisolated modes.

The 'unisolated' slructure (case (i» is a unifonn linear chain system, wilh four
equal masses and four springs of equal stiffness, the lowest being anchored 10 the
ground. It has a first-mode undamped natural period of 0.5 s, and 5% damping in
all its modes. Most of the 'isolated' cases represent systems obtained simply by
adding below this structure an isolation system modelled as a base mass, a linear or
bilinear-hysteretic base spring and a linear viscous base damper. However, two of
the 'isolated' cases involve stiffer slructures, with unisolated periods of 0.25 s, in
order to show the effects of high elastic-phase isolation faclors. In all the isolated
cases, the added base mas:.. i<; of the same value as lhe other masses, comprising
0.2 of the total isol;.h,:d Illa..s.

'Illc viscous damping of 1111: i..ol:lled .. truclures j .. 5% of critical for :111 lhe
free free IIl{)(Ies, with the IIlIIl IUI\'H1 1\(\lnlion :-.y:-.ICIIlS having linear viscoll.s base

dampings ~b2 which are 5% of critical in the post-yield phases, as well as hysteretic
damping. The lable shows values of ~b for the linear isolators, and values of ~b,

~bl and ~b2 for the bilinear isolators, where ~b = ~b2TB!Tb2.

".fhe cases were chosen to represent a wide variety of isolation systems, with
vanous degrees of non-linearity and pre- and post-yield isolation ratios. In calcu­
lating the isolation faclOrs, I = Tb/T.(U) and I(Kbl ) =TbtlT1(U), the unisolated
period T l (U) corresponds to that of the structure when the isolator is rigid, while
lhe isolator periods Tb and Tbl are calculated for the five masses from the structure
and the isolator with all their interconnecting springs treated as rigid, mounted on
the isolator spring.

Cases Oi) and (iii) represent medium-period structures with a high degree of
linear isolation (7'I(U) =0.5 S. Tb =2.0 s, I =4), and with low (~b =5%) and
high (~b = 20%) values for the viscous damping of the isolator, respectively.

Case (iv) is a bilinear hysteretic system with similar characteristics to thai of the
William Clayton Building (Section 6.2.4), which was the first building isolated on
lead-rubber bearings. The parameter values are typical for structures with this type
of isolation system. The unisolated period of the structure is 0.25 s (the William
Clayton Building has a nominal unisolated period of 0.3 s), with a pre-yield iso­
lator period Tbl of 0.8 s and a post-yield isolator period Tb2 = 2.0 s. The yield
force ratio Qy/W is 0.05. less than the William Clayton Building's value of 0.07.
However, the laller value was chosen to give a near-optimal base shear response
(see Section 4.3.2) in 1.5 EI Centro, so scaling down the yield-force/weight ratio
by ~pproximalely 2/3 is appropriate for a system with EI Centro as the design
motIon. 1be post-yield isolator period is equal to the isolator period of the linear
systems of cases (ii) and (iii). 1be equivalent viscous damping from the combined
hysteretic and viscous base damping at the amplitude of its maximum response to
EI Centro is 24% (Table 2.1), comparable with the viscous damping of 20% for
the linear system (iii).

Case (v) represents bilinear systems with elastic- and yielding-phase isolation
factors towards the low ends of their practical ranges. The unisolaled period is 0.5 s,
with the isolator periods Tbl = 0.3 sand Tb2 = 1.5 s. giving isolation factors of
0.6 and 3 in the two phases. 'The yield force ratio Qy/ W is 0.05, as for all Ihe
~on-I.inear cases. This system has a moderate non-linearity factor which is vinually
~denll.cal to Ihat of case (iv) (0.33 compared with 0.32), but considerably reduced
IsolatIon factors, most importamly in the elastic phase where it is 0.6. The low
elastic-phase isolation gives response characteristics similar to those for a system
with an isolator which is rigid before it yields.

In case (vi), the post-yield period of Ihe isolator has been doubled from that of
case (v), to Tb2 = 3.0 s, but the other parameter values are the same. This change
produces a considerably higher non-linearity factor of 0.60, but slill a low elastic­
phase isolation factor of only 0.6. 1be response characteristics are similar to those
for wh:u is somelimes referred to as a 'resilient~friclion base isolator' (Fan and
Ahmadi. 1990, 1992; Mostaghel and Khodaverdian, 1987).

The rillal example, case (vii), is a strongly l1on-linear system. with;. non-linearity
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Figure 2.7 Responses to the El Centro NS 1940 accelerogram of a uniform shear struc­
ture when unisolalcd (case i). when linearly isolated (cases ii and iii) and
when bilincarly isolated (cases iv to vii). The information in Ihis figure com­
plements that in Table 2.1. The floor spectra are for the low-damping case
of 2%. The solid lines are the total response. while dashed and chain-dashed
lines are the seismic responses of modes I and 2 respectively. Note the

five-fold differences in scale of the unisolated and isolated cases. The scale
changes are along the abscissae for X, X/g and SJW, and along the ordinate
for lhe 11001' spectra. Note also lhal lhe shear-force/displacement hysteresis
loops have been drawn for cyclic displacements of ±O.4Xb in order 10 show
the various sliffnesses clearly

factor of 0.71, but unlike case (vi) it has high isolation factors in both phases of the
response. The force-displacement ch;lr;lcteristics of the isolator arc almost clasto­

plastic, with a post-yield period of 6.0 s. The unisolated period of the structure
(T1(U) =0.25 s) and Ihe yield*force ratio (Qy/ W =0.05) <lTC identical to casc (iv),
and the pre-yield isolatOl'I)CI'iod cri'l 0,3 s) and he1lec thc clastie-p!t;l.sc isol;\tion
factor ;II'C very simihll' to those ill CIISC (iv), 'rhi.s rcprescnts a system with high

hysteretic damping, high isolalion in both phases of the response, and a maximum
base shear closely controlled by the isolator yield force because of the nearly

perfectly plastic characteristic in the yielding phase.
The response eh<lracleristies of this wide range of examples are illustrated in

Figure 2,7, and demonstrate many or lhe key features of the response character­
istics of base-isolated ,structures, Comp;n·ison.s can be madc between features of
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Table 2.1 Responses 10 the EI Centro NS 1940 accelerograrn of an unisolated uniform shear structure. and of six isolated Structures t

UN ISOLATED ISOLATED

Linear Bilinear

Low High High elastic Low elastic Low elastic High clastic

dHmpling dampling and high and low and high and very

plastic plastic plastic high plastic
~

Units flexibility flexibility flexibility flexibility "'z
"'C=~ (i) (ij) (iii) (iv) (,) (vi) (vii) ~

>
S~'stem parameters

~

~
\.'li.'\OIaled mode-l period, T1(U) , 0.5 0.5 0.5 0.25 0.5 0.5 0.25 ~
I.... ...uor periods. Tb: Tbl • Tb1

, 2.0 2.0 0.8.2.0 0.3. 1.5 0.3.3.0 0.9.6.0
c
~

SIr\M:tural dampings. ~"(U). ~"([) % 5 5 5 5 5 5 5 rn
0

holator velocity damping ~b. ~bl. ~b2 % 5 20 4.2.5 4. 1,5 3, 0.5. 5 2.0.8.5 •
~

Isolator yield/weight, QylW % 5 5 5 5
-;
~

c
Q

;\'laximum responses c
~

Base shear/mass. Sbl M m, ' 8.18 1.78 1.36 1.08 1.38 0.79 0.627 rn
Base displacement. Xb m (X. _ 0.07) 0.180 0.124 0.058 0.050 0.067 0.127 •
Top acceleration. Xs m, ' 12.4 1.914 1.603 1.33 3.346 3.405 1.278 ~

~

\Iodc J. top acceleration X'.I ms-2 10.8 1.785 1.358 1.082 1.377 0.793 0.627 ~
~

~Iodc 2. lOp acceleration X,.2 m5-2 4.28 0.308 0.658 0.919 2.11 2.01 0.793 <n
Top-floor resonant appendage accn: ~

at (yielding-phase) period, fAs (T,,2) II1S- 2 82.3 15.3 5.90 J.J 4 2
0- ~

at (yielding-phase) period, .Efu ("li,2) ms-2 23.3 3.60 4.32 9.2 18 23 8 ~
isz

\I~I ~ponse rrom1inear

~pectra

Effecti\'c periods Tb • Ta 5

Effectivc damping. ~b: ~a = ~b +~h %

Spectral acceleration SA(Ta. ~B) rns-2

Spectral displacement So<TB. ~a) rn

Correction factor. CF = Xb/SD(T8 • ~a)

:\on-tinearity factor NL %

Elastic.phase isolation faclOr:

UKbl ) =TbdT1(U)

2.0 2.0 1.45 1.20 1.83 2.83
5 20 4.0+20 4.0+21 3.0+38 2.0+45
1.75 1.33 1.34 1.82 1.21 0.90
0.177 0.120 0.064 0.061 0.076 0.080

0.91 0.82 0.88 1.59
32 33 60 71

4 4 3.2 0.• 0.• 3.•
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~

~
~

~
~
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~

ffi
<n
~
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~
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~
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~
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~
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the responses of un isolated and isolated structures, and between those of various
iwlaled structures. Systematic vari3tions in response quantities can be seen as the
equivalent viscous damping. the non-linearity factor and the elastic-phase isolation
factor are varied.

The first point 10 nOIC in Figure 2.7 is Ihal the response scales for the unisolalcd
structure of case (i), as emphasised by heavy axis lines, are five times larger than
those for all the isolated cases shown in the other parts of the figure. The next
general comment is thaI the force-displacement hysteresis loops have been drawn
for cyclic displacements of ±O.4Xb • This has been done in order 10 show the
relative slopes.

Direct comparisons of various response quantities can be made for the unisolated
structure and the four cases (iil, (iii), (v) and (vi) involving the same structure on
various isolation systems. Cases (iv) and (vii) involve shoner-period structures on
the isolators, so direct comparisons of these with case (i) are not appropriate. The
base shears of the isolated systems with the 0.5 s structure are reduced by factors
of 4.6 (for the lightly damped linear isolator of case (ii» to over 10 (for case (vi)
with high hysteretic damping). Base displacements, which contribute most of the
total displacement at the lOp of the isolated structures. range from 0.7 to 2.5 times
the top displacement of the unisolated structure. Inler-storey defonnations in the
isolated structures are much reduced from those in the unisolated structures. since
they are proportional to the shears. Since large defonnations are responsible for
some types of damage. the reduction in structural defonnation is a beneficial con­
sequence of isolation. First-mode contributions to the top-mass accelerations in the
isolated structures are reduced by factors of about 6-14 compared with the values
in the unisolated structure. The linear isolation systems show marked reductions
in the higher-frequency responses as well, but the second-mode responses for the
systems with the greatest non-Iinearities are only slightly reduced from those in
the unisolated structure. These effects are most evident in the top-floor response
spectra.

Figure 2.7 shows several important characteriSlics of the response of isolated
structures in general. In isolated systems, increased damping reduces the first­
mode responses, but generally increases the ratio of higher-mode to first-mode
responses, particularly where the damping results from non-linearity. The elastic­
phase isolation factor I (Kbd has a marked effect on higher-mode responses, which
increase strongly as I(Kbl ) reduces from about l.0 towards zero. The reason for the
strong influence of I(Kbl ) on higher-mode responses is discussed in Section 4.3.4.
The effects of these parameters are demonstrated by considering each of the isolated
cases in turn.

The lightly damped linear isolation system of case (ii) reduces the base shenr by
a factor of 4.6 from the unisolated value, but requires all isolator displacemcnt of
180 10m. The response is cOllcentrated "Imost entirely in the first mode, as shown by
the comparison of the first-mode, toW I ilcccleration ,1IId she'll' distributiolls. and by
the top-floor sl>cctr,l. The diffcll·rH:c.; hetwcen Ihc fir~.-modc and total di~tl'iblltiolls

arbe largely from the diflcll'Ill'l' lwtwl'l'1I the free free li,... t mode \hal>C which

was used in the sweeping procedure and the actual first-mode shape with base
stiffness Kb. The maximum second-mode acceleralion calculated by sweeping with
the second free-free mode shape is only about 1/6 Ihat found by sweeping with the
first free-free mode shape.

By increasing the base viscous damping from ~b = 5% (0 20% of critical, as in
case (iii), the maximum base displacement is reduced from 180 mm (0 124 mm,
with a smaller percentage reduction in the base shear. The mode-2 acceleration
more than doubles, showing the effects of increased base impedance from the
increased base damping and modal coupling from the non-classical nature of the
true damped modes. The first-mode response still dominates. however. 1be f1oor­
response spectra reflect the reduction in first-mode response, but show increases in
the second- and third-mode responses compared with case (ii).

Case (iv) has an effective base damping similar to case (iii), but with the main
contribution coming from hysteretic damping. All first-mode response quantities
and those dominated by the first-mode contribution. including the base shear and
the base displacement, are reduced from the values for the linear isolation systems.
The non-linearity of this system is only moderate (0.32), and there is a high elastic­
phase isolation factor of 3.2. but the second-mode response is much more evident
than for the linear isolation systems, particularly in the floor-response spectrum.

Case (v) has the same degree of non·linearity as the previous case, but a much
reduced elastic-phase isolation factor of 0.6. The low elastic·phase isolation factor
has produced a much increased second-mode acceleration response, which is 50%
greater than the first-mode response on the top floor. The distribution of maximum
:lccclerations is much different from the unifonn distribution obtained for a structure
with a large linear isolation factor. The accelerations are much increased from
the first-mode values near the top and near the base, while the shear dislribution
'hows a marked bulge away from the lriangular firsl-mode distribution at mid.
height. Strong high-frequency components are evident in the top-floor acceleration
response spectrum, with prominent peaks corresponding to the second and third
I>ost-yieid isolated periods.

Case (vi) is an exaggerated version of case (v). The post-yield isolator period
has been increased to 3.0 s, giving a high non-linearity factor as well as a low
clastic-phase isolation factor, both conditions contributing to strong higher-mode
response. The nearly plastic behaviour of the isolator in its yielding phase produces
a more than 40% reduction in the base shear from case (v), at the expense of a
13% increase in the bilse displacement. The maximum second-mode acceleration
I'esponse at the lOp floor is 2.5 limes the first-mode response, being the highest
value of this ratio for any of the seven cases. The acceleration at the peak of the
lop-floor response spectrum at the second-mode post-yield period has the greatest
valuc of any of the isolated cases. almost identical to the second-mode value in the
ullisolated structure. which, however. occurs at a shorter period.

Case (vii) demonstrates that high elaslic-phase isolation can much reduce the
'dative cOlllribulion of the higher modes for highly non-linear syslems. The oon­
lmcllrity factor of 0.71 is the highest of ,my of lhe cases, but the second-mode
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response is less than 40% thai of cases (v) and (vi), which have poor elaslic-phase
isolation. The high non-linearity has reduced the base shear to 70% of that of
case (iv). The mode-2 acceleration response has been reduced by 13% from thaI
of case (iv). but its ratio with respect to mode I has increased from 0.85 to 1.25.

Maximum base shears and displacements of isolated structures are dominated
by first-mode responses. Maximum first-mode responses of bilinear hysteretic iso­
lation systems can in tum be approximated by the maximum responses of equiv.
'llent linear systems, as discussed earlier in Ihis chapter and in Section 4.3.3. The
final section of Table 2. I demonstrates the degree of validity of the equivalent
linearisation approach. It gives effective dampings and periods calculated for the
e<luivalent linearisation of the bilinear isolators, using Equation (2.11 b) for TB and
Equations (2.llc) 10 (2.13) for ~B. The response spectrum accelerations and dis­
placements for these values of period and damping are listed. The spectral values
for the base displacements give reasonable approximations to the actual values,
with correction factors CF of approximately unity, except for case (vii), the case
with the nearly plastic post-yield stiffness, for which the correction factor is 1.6.
However, the spectral accelerations SA(TB , ~B) provide much poorer estimates of
either the first-mode or overall base-mass acceleration X". Much improved esti­
mates of the base shear 5" can be obtained from KaX". which has a smaller relative
error than the estimate of X" from So(Ta, ~B)' This is the procedure we recommend
when using the equivalent linearisation approach (Section 2.2, Section 4.3.3 and
Section 5.1).

2.6 GUIDE TO ASSIST THE SELECTION OF ISOLATION
SYSTEMS

The examples summarised in Figure 2.7 and Table 2.1 show the effects of vari­
ous ranges of isolation system parameters. In particular, the effects of varying the
base damping. the non-linearity factor and elastic-phase isolation factor have been
demonstrated. Table 2.2 generalises the results found for these examples. and for
other cases studied in Chapter 4, and presents them in a more qualitative way, pro­
viding guidance to the sets of parameter values appropriate for particular purposes
and giving examples of practical isolation systems which can provide the desired
parameter values.

In Table 2.2, we consider classes of systems, rather than examples with specific
parameter values. The examples (i) to (vii) considered in Figure 2.7 and Table 2.1
fit into the corresponding categories in Table 2.2. However, the qualitative descrip­
tions of the nature of various response quantities show minor deviations from those
which would be obtained solely by considcmtion of these cxamples. Use has been
made of results of other cases considered in Chapter 4 or reported in the literature
in order to genemlise thc results from the specific ones given above.

Thus. class (vi) has been extcndcd to includc rect:lIlgular hystcresis loops (Kb1 =
00, Kb2 = 0), while thc eXlllllple \It C!I\C (vi) ha.. 'high' and 'low' value.. of
the~ stiffne..sc.. rc"IX:ctlvcly. rh{' u· ..' .... ln'tC dlllmcl(:ri..tiClt of ..implc \Iiding friction

systems included by this generalisation are similar to those of the example of
case (vi). The ways in which the various cases of Table 2.1 have been generalised
to the classes of Table 2.2 are discussed below.

Class (i) represents unisolated linear structures with periods up to about I s and
damping up to about 10%. This class is provided only for purposes of comparison.
Most short- to moderate-period unisoJatcd structures will be designed to respond
non-linearly, so their acceleration- and force-related responses may be considembly
less than those of the linear elastic cases considered here. Isolation still provides
benefits in that non-linear response in such unisolated structures requires ductile be­
haviour of tbe structural members, with the considerable encrgy dissipation within
lhc structure itself often associated with significant damage.

Class (ii) represcnts lightly damped. linear isolation systems, with the isolator
damping less than 10%. Only systems providing a high degree of isolation are
considered, with an isolation factor T"I Tl (U) of at least 2 and a period Tb of
at least 1.5 s for EI Centro-type earthquakes. The response of such systems is
almost purely in the first mode. with very little higher-frequency response. so they
virtually eliminate high-frequency allack on contents of the structure. This type
of isolation can be readily obtained with laminated-rubber bearings, with the low
i-.olator damping provided by the inherent damping of the rubber. Higher-damping
rubhcrs may be necessary to achieve the 10% damping end of the range without
lhe provision of additional damping devices. The higher-damping rubbers may not
hehave as linear isolators since they are often amplitude-dependent and history­
dcrlcndcnt. Various mechanical spring systems with viscous dampers fall into this
I,;alegory.

Class (iii) corresponds to linear isolation with heavier viscous damping, ranging
bctween about 10% and 25% of critical. Increased damping reduces the isolator dis­
pl;lccment and base shear, but generally at the expense of increased high-frequency
rc..ponse. The high-frequency response results from increased isolator impedance
"t higher frequencies. These systems still provide a high degree of protection for
..ubsystems and contents vulnerable to motions of a few Hz or greater. but with
n.:duced isolator displacements compared with more lightly damped systems.

We consider class (iv), bilinear hysteretic systems with good elastic-phase iso­
lation (TbIIT1(U) > 2) and modemte non-linearity (corresponding to equivalent
viscous base damping of 20-30% of critical), as a reference class. For many appli­
cations, this represents a reasonable design compromise to achieve low base shears
lind low isolalor displacements togcthcr with low to moderate floor-response spec­
11''1. This type of isolation can often be provided by lead-rubber bearings.

Class (v) represen1s bilincar isolators with poor elastic-phase isolation
Oi,i/T1(U) < I) and relatively short post-yield periods (..... 1.5 s). The relatively
high stiffnesscs of thcse isolation systcms produce very low isolator displacemcnts.
hut ..trong high-frc<lucncy motions and stronger base shears than the reference
bllincar-hystcretic isolator class.

('l:N (vi) i<; .!timilar in mallY resl>ccts to class (v). but with a long post-yield
pcnod (TI>~ > .... 3 s), which gives nearly ela<;to-pl:ISlic char.lcteristics and thus high
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Table 2.2 Guide 10 the behaviour of isolalion syslcms. showing seven classes correspond­
ing broadly 10 the cases in Figure 2.7
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hysteretic damping and a high non-linearity factor. Rigid-plastic systems, such as
given by simple sliding friction without any resilience, arc extreme ~xam~les of
this class. Low base shears can be achieved because of the low post-yield stiffness
and high hysteretic damping, but at thc expense of strong high-frequency rcspons~.

Even this advantage is lost with high yield levels. 'Ibis class of bilinear isolator 1$

nOI .\ppropriate when protection of subsystems or contents vulnerable 10 attack at
rrequencies less than I Hz is imporlant, but some systems in this class can ~rovidc

low base shears and moderate isolation-level displacements very cheaply. Displace­
ments can become very large in greater than anticipated earthquake ground motions.

Class (vi) consists of non-linear hysteretic isolation systems with a high degree
of clastic-phase isolation (Tbt/TI(U) > 3) and a long post-yield period (Tb2 >'"
3 s), producing high hysteretic damping. The low post-yield stiffness means that the
base shear is largely controlled by the yield force, is insensitive to the strength of the
earthquake, and can be very low. The high degree of elastic-phase isolati?n larg~ly

overcomes the problem of strong high-frequency response usually associated with
high non-linearity factors. Systems of this type arc particularly useful for obtaining
low base shears in very strong earthquakes when provision can be made for large
isolator displacements. One application of this class of system was the long f1.exiblc
pile system used in the Wellington Central Police Station (Section 6.2.6~, WIth the
e1asto-plastic hysteretic damping characteristics provided by lead-extruSion energy
dissipators mounted on resilient supports. .

As indicated by the preceding descriptions of the isolator systems and the diS­
cussion of the response characteristics of the various examples in the last section,
the selection of isolation systems involves 'trade-offs' between a number of factors.
Decreased base shears can often be achieved at the cost of increased base displace­
ments and/or stronger high-frequency accelerations. High-frequency accelerations
affect the distribution of forces in the structure and produce stronger floor-response
spectra. If strong high-frequency responses arc unimportam, acce~table. base shears
and displacements may be achieved by relatively crude but cheap IsolatIon systems,
such as those involving simple sliding. In some cases, limitations on acceptable
base displacemems and shears and the range of available or economically ac­
ceptable isolation systems may mean that strong high-frequency accelerations are
unavoidable, but these may be acceptable in some applications. Some systems may
be required to provide control over base shears in ground motions more severe than
those expected, requiring nearly elasto-plastic isolator characteristics and provision

for large base displacements. . ' .
The selection of appropriate isolation systems for a particular apphcatlon de­

pends on which response quantities are most critical to the design. These usually
can be specified in terms of one or more of the following factors:

(i) b:lse shear

(ii) base displaccmcnt
(iii) hi~h-f1'<:::qllCll<;Y (i.e. ~r~lllci' Ilmll lIhOul 2 11;.-.) floor-rcsponse spcttral atceler­

<ltiolls

(iv) control of base shears or displ:lcemems in greater than design-level earth­
quake ground motions

(v) cost.

Isolation systems are easily subdivided on the basis of those for which high­
frequency (> 2 Hz) responses can be ignored and those where they make signifi­
cant contributions fo the acceleration distributions and floor spectra. Floor spectral
accelerations are important when the protection of low-strength high-frequency
subsystems or contents is an important design criterion. In well isolated linear
systems, high-frequency components, which correspond to higher-mode contribu­
tions, can generally be ignored although they become more significant as the base
damping increases (Figure 2.7, cases (ii) and (iii». In non-linear systems, there will
generally be moderate to strong high-frequency components when there is a low
clastic~phase isolation factor of less than about 1.5. This generally eliminates sys­
tems with rigid-sliding type characteristics when strong high-frequency response
is to be avoided. For a given elastic-phase isolation factor, high-frequency effects
generally increase with the non-linearity factor (see Figure 4.12). These consider­
alions suggest that the selection of isolation systems for the protection of high­
frcquency subsystems is limited to linear systems, or non-linear systems with high
clastic-phase isolation factors and moderate non-line:lrity factors (i.e. correspond­
ing to cases Oi), (iii) or (iv) in Figure 2.7). Some systems with high non-linearity
factors but also with high elastic-phase isolation factors may also produce an ac­
ceptably [ow high-frequency response. For example, case (vii) in Figure 2.7 with a
high non-linearity factor has a similar top-floor response spectrum to case (iv) for
which the non-linearity factor is moderate, and has a spectrum not much stronger
Ihan that of the linearly isolated case (iii) which has high viscous damping. The
lincar systems usually give better perfonnance strictly in tenns of high-frequency
11oor-response spectral accelerations, but the introduction of non-linearity can re­
duce the b:lse shear and isolator displacement, which may give a better overall
perfonnance when the structure, subsystems and contents are considered together.

For situations where a need for small floor-response spectf:ll accelerations is
lIot a major design criterion, the range of acceptable non-linear isolation systems
is likely to be much greater. The main perfonnance criteria are then usually re­
laled to base shear and base displacement. Both these quantities depend primarily
on Ihe first-mode response. Except for nearly elasto-plastic systems, the base shear
decre:lses as Qy/ W inneases from zero, passes through a minimum value at an op­
timal yield force, and then increases as Qy/ W continues to increase (Figure 4.5(d)).
ThLis the base shear of most linear isolation systems can be reduced by selecting a
IlOIl-linear isolation system with Tb2 = Tb of the linear system and an appropriate
yicld force ratio and elastic-phase period. For a given yield force, the base shear
gcno.;rally decreases as Tb2 increases (Figure 4.5(d», i.e. the system becomes more
daslo-plaSlit in ch;lracter. This is illustraled by the examples in Figure 2.7. This is
I:\cllcr:llly al lhe expense of' greater base displacemelll, as for case (vii), or strong
hit,\h-frc([lIcnty responsc whcn Ihe elastit-phase isolation is poor, as in case (vi).
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3.1.1 Introduction

3.1 ISOLATOR COMPONENTS AND ISOLATOR
PARAMETERS

When base shear and base displacements are the controlling design criteria, sys­
tems with rigid-plastic type characteristics. such as simple pure friction systems,
which are not appropriate when the protection of high-frequency subsystems or
contents is a concern, may give cheap. effective solutions provided the coefficient
of friction remains less than the maximum acceptable base shear. However, some
centring force is usually a desirable isolator characterislic. For prOiection against
greater than design-level excitations, systems with a nearly plaslic yielding-phase
characteristic have the advantage Ihal the base shear is only weakly dependent on
lhe strength of excitation, but the disadvantage that their isolator displacements
may become excessive. A system similar to our reference case charact~rised by
moderate non-linearity and good elastic-phase isolation is often a good design com­
promise when minimisation of high-frequency floor-response spectral accelerations
is not an overriding design criterion.

3 Isolator Devices and Systems

The successful seismic isolation of a particular structure is strongly dependent on
lhe appropriate choice of the isolator devices, or system, used to provide adequate
horizontal flexibility with at least minimal centring forces and appropriate damping.
It is also necessary to provide an adequate seismic gap which can accommodate all
intended isolator displacements. It may be necessary to provide buffers to limit the
isolator displacements during extreme earthquakes, although an incorrecl1y selected
buffer may negate imponanl advantages of seismic isolation.

The primary function of an isolation system is to suppon a structure while pro­
viding a high degree of horizontal flexibility. This gives the overall structure a long
effective period and hence low maxima for its eanhquake-generated accelerations
and inenia forces, in general accordance with Figure 2.I(b). Ho......ever, with low
d:lmping, maximum isolator displacements Xb may reach 500 mm or more during
severe eanhquakes, as shown by Figure 2.I(c). High isolator damping usually re­
duces these displacements to between 100 and 150 mm. High damping may also
reduce the costs of isolatioo since the displacements must be accommodated by
the isolator components and the seismic gap, and also by flexible connections for
external services such as water, sewage, gas and electricity. Another benefit of high
isolator damping is a funher substantial reduction in structural inenia forces. Also,
in crowded areas there is the possibility of structures colliding with each other.

Since the expected life of an isolated structure will typically range from 30 10 80
or more years, the isolation system should remain operational for such lifetimes,
and its maintenance problems should preferably be no greater than those of the
associated structure. This will usually call for relatively simple, well designed
lind thoroughly tested isolator devices. The primary force-limiting function of an
i,~olator may be called on for only one, or a few, brief periods of operation during
the life of the structure: for example, one 15-s episode in 50 years. However, at
these times the isolator must operate successfully despite all environmental hazards,
mcluding those tending to corrode metal surfaces, cause deterioration of elastomers.
or change Ihe physic;ll prol>cnies of cQmponcnt materials. In addition to the very
lIlfrc(!ucnt <.ci\1llic IO:ld\. i,ol:tlOr, will often be subject to smaller but relatively
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frequent wind loads which they must resist withoUl serious deterioration. Diurnal
temperature changes will result in displacements which need to be accommodated
by the isolation system without the build-up of excessive forces. Finally, since
i~olator devices which satisfy the above criteria will usually be intended to reduce
the overall structural cost. the components must be sufficiently simple to allow
supply and installation at moderate cost.

idealised and oversimplified, since material properties can vary. Also, it is wonh­
while checking to see if a panicular system is rale- or history-dependem. For
example, types of high-damping rubber depend both on the amplitudc and on the
number of cycles which the sample has undergone.

Table 3.1 Flexibility and damping of common isolator components

As seen in Table 3.1, the laminated-rubber (elastomeric) bearing is the only
single-unil isolalion system, among those considered, which has both linear restor­
ing force and linear damping. In the commercially used form, this comprises layers
of rubber vulcanised to steel plates. Considerable experience exists for the design
and use of the elastomeric bearing, since its initial major application was to accom­
modate themml expansion in bridges and it was only later adopted as a solution to
seismic isolation problems. However, for seismic iSOlation, this system has the dis­
advantage that the maximum achievable damping is very low, approximately 5% of
critical. Attempts 10 overcome this disadvantage by increasing the inherent damp­
ing of lhe rubber have not yet produced an ideal system with linear stiffness and
linear dampir.g.

Flexible piles or columns provide a simple, effective linear resloring force but
dampers need to be added to control the displacements during eanhquakes and on
other occasions. If the dampers arc linear, e.g. viscous dampers. then a linear system
rc.sults. Viscous dampers are excellent candidates for linear dampers, but may be
diOicul1 to oblain at the required size. may be strongly tcmpcrature-dependent
and m<lY require maintenance. given that the required lifetime may be 30 to 80
years.

Springs with the required stiffness are likely to be difficult 10 produce, but do
provide a linear resloring forcc. The Gennall GERB system (HUffmann, 1985)
flchievcs Ihis ,llld is Illainly intcnded for industrial plant such ;IS large silos. Rollers
or ~phcl'es !x:IWcell curved (paral){Jlic) .sllrl"lCCs c,m provide linear I'cstorillg forces.

3.1.2 Combination of isolator componenls to form different isolation
systems

The design and perfonnance of various isolator components is described in this
ch:lpter. Emphasis is placed on COmponents which were developed in our labora­
tory, namely steel dampers, lead-extrusion dampers and the lead-rubber bearing.
1lle elaSlomeric bearing is also described since its properties underlie those of
the lead-rubber bearing isolation system. Some description is also given of other
isolator components.

The discussion and results presented in Chapters I and 2, particularly in
Figure 2.7. Tables 2.1 and 2.2 and the associated text. foml a context in which to
analyse the propenies of real isolator components and real isolation systems. The
isolation systems considered provide horizontal flexibility and damping and support
the weight of the isolated structure. In the simplest case a linear isolation system is
produced by using components wilh linear flexibility and linear damping. In other
cases the isolation system may be non-linear. A special case of non-linearity, the
bilinear system, occurs when the shear-force/displacement loop is a parallelogram.
as shown in Figure 2.3 and discussed in the associated text. Different seismic
responses result from linear, bilinear and other non-linear isolation systems.

In the simplest case, a system which has bolh a linear flexibility component
and a linear damping component can be modelled in terms of the differential
equation (2.1), i.e.

mil + ell + ku = -milK

where the flexibility is the inverse of the stiffness constant 'k' and the velocity
damping is described by a conslant 'c'. Figure 2.2 and the associated text define this
kind of system and show the elliptical velocity-damped shear-force/displacement
hysleresis loop which results.

However, the components may not be lincar. The most common source of non·
linearity in a component is amplitude dependence. For example. in the typicul
bilinear isolation system the stiffness is amplitude dependent, changing from Kbl
to Kb2 at the yield displacement. The damping in this case is also non-linear because
the hysteretic conlribution to the damping, which usually dominates. depends on the
area of the hystcresis loop and thcrefore also depends 011 the maximum amplilude
X,.

Table 3. I anal),scs Ihc flex ihi III)' lmd damping of soille common i.sol;ltor compo­
llCIllS, cxamining cadi 10 ,\Cl,' It II l\ 11l1\'Hr Ot' Ilou-linear. The :lIli1l)'sis is somcwhat

Propert)'

ReslOring Force

(providing spring
conSTant and nexibHity)

Damping

Linear

• Laminated-rubber bearing
• Flexible piles or columns

• Springs
• Rollers between curved

surfaces (gravity)

• Laminated-rubber bearing

• Viscous damper

Non-linear

• High-damping rubber
be3ring

• Lead-rubber bearing

• Buffers
• Stepping (gravity)

• High-damping rubber
bearing

• Lead-rubber bearing
• Lead-exlrusion damper
• Steel dampers
• Friction (e.g. PTFE)
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so that the slo~ of the (O'-() graph is E.
The corresponding relationship between shear Slress , and engineering Slrain y

(where y is twice the tensor strain) is given by

The damping devices which have been found to be most economic and suitable for
use in isolators are usually those which rely on the plastic deformation of metals.
To understand the behaviour of these devices and to gain some knowledge of their
limitations it is necessary to examine the mechanisms enabling plastic deformation
to occur.

Figure 3.I(a) shows the stress-strain curve for a metal in simple tension. Initially
the stress 0' is proportional to the strain ~, and the constant of proportionality is
the Young's modulus E. This clastic region of the stress-strain curve is reproduced
on loading and unloading and has Ihe equalion of slale

where G=shear modulus.
If the strain is continually increased. il reaches a value (the yield point B in

Figure 3.1(a» at which the material yields plastically. The yield point is of partic­
ular imponance in the design of isolator components. It has the coordinates (~y, O'y).
(Yy. 'y) and (Xy, Qy) on the stress-strain. shear-stress-strain and force-displacement
curves respectively.

Further increase in the stress results in a 'plastic-region' curve which is nearly
horizontal. in the case of lead. or which rises moderately in the case of mild steel. If
the slress is reduced to zero from a very large value of strain, then the curve follows
the line CD in Figure 3.1(a). On unloading. the metal no longer returns to its initial
state but has a 'set', i.e. an added plastic deformation. The unloading curve has the
same gradient as that in the elastic region. namely the Young's modulus or shear
modulus (Van Vlack, 1985).

It should be noted that the area ABCE in Figure 3.I(a) represents input work
while the area DCE represents clastic energy stored in the metal at point C and re­
lca::;ed on unloading to point D. The difference area ABeD represents the hysteretic
energy absorbed in the metal. In the case of lead, the absorbed energy is rapidly
converted into heat, while in the cllse of mild steel it is dominantly convened to
heat, but a small fraction is absorbed during the changes of state associated with
work hardening and fatigue.

Since metal-hysteresis dampers involve cyclic plastic deformation of the metal
componellls, it is uppropriate to consider the stress-strain relationship for a metal
cycled plastically in various strain ranges, as shown in Figure 3.1(b) for a metal
with the features typical of mild steel.' Included in Figure 3.I(b) is the initial
lilress-straill curve of Figure 3.I(a). Noticc the increasing stress levels with in­
crca~ing strain range. :lf1d the lower yield levels during plastic cycling. With lead.

Since they have 'linc' or 'point' contact it is difficult to provide for high loads.
Again, damping will usually need to be added in practice and linear damping will
produce a linear system.

Gravity in lhe fonn of a 'stepping' behaviour (see, for example the Rangilikei
viaduct, Chapter 6) can provide an excellent non-linear reslOring force. Such sys­
tems need additional damping for effective isolation. The resultant isolation systems
are non-linear.

High-capacilY hysteretic dampers may be based on the plastic deformation of
solids, usually lead or steel. The damper must ensure adequate plastic deformation
of the metal when actuated by large earthquakes. It must be detailed to avoid
excessive strain concentrations: for example these may cause premalUre fatigue
failure of a Sleel damper at a weld. Excessive plaslic cycling of steel dampers,
for eltample by wind gusts, must be avoided since this gives progressive fatigue
deterioration.

Steel damping devices. often in the form of bending beams of various cross­
sections, have a high initial stiffness and are effective dampers but care must
be taken in their manufacture to ensure a satisfactory lifetime. They are strongly
amplitude-dependent. When combined with components to provide fleltibility. they
can result in bilinear or non-linear isolation systems. Elasto-plastic steel dampers
have been used in New Zealand and other countries, induding Italy, where they
have been used for the seismic isolation of many bridges (see Chapter 6).

The lead-extrusion damper behaves as a plastic device operating at a conSlant
force with very little r,ue or amplitude dependence al earthquake frequencies. 11
creeps at low loads (see Figure 3.10), enabling thermal eltpansion to be accommo­
dated. When combined with a linear component for fleltible support, e.g. flexible
piles. then a bilinear system can result. such as that used in the Wellington Central
Police Station (see Chapter 6).

The lead-rubber bearing. which comprises an elastomeric bearing with a central
lead plug. gives structural support, horizonlal flexibility, damping and a centring
foree in a single easily installed unit. It has high initial stiffness, followed by a lower
stiffness after yielding of the lead, and is for many situations the most appropriate
isolation system. The hysteretic damping of this device is via the plastic deformation
of the lcad. The device is non-linear but can be well described as bilinear. i.e. it
has a parallellogram-shapcd hysteresis loop as shown in Figure 2.3 and discussed
in the associated text.

Friction dcvices bchllvC in a similar way to the extrusion damper; they are simple
but may require maintenance. Changes may occur in the friction coefficient due to
aging, environmenlal attack. temperature variation or wear during use. A further
problem is that of 'stick-slip'. where after a long time under a vertical 10:ld the
device requires a very large force 10 initiate slipping. A dramatic e,"lImple of a
system iwlate(t by this mcans is the Buddha at Kam:\kura: a stainless steel plate
was welded to the ha"e of the ,WHle and it W:lS rested on a polished granite b:ISC
wilhout :l1lehoring. •

3.2 PLASTICITY OF METALS

u= E€

,= Gy

(3.la)

(3.lb)
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c the hysteretic loops arc almost elastic-plastic, i.e. an clastic ponion is followed by
yield at a constant stress (zero slope in the plastic region). Typical operating strains
arc much greater than the yield strain, the loop tops are almost level, and the loop
height is not significantly influenced by strain range.

To understand the behaviour of a metal as it is plastically deformed, it is nec­
essary to look at it on an atomic scale. Before the 1930s, the plastic deformation
of a metal was not understood, and theoretical calculations predicted yield stresses
and strains very different from those observed in practice. " was calculated that
a perfect crystal, with its atoms in well defined positions, should have a Shearing
yield stress Ty of the order of lOW Pa, and should break in a brittle fashion, like
a piece of chalk, at a shear strain Yy of the order of 0.1. In practice, metal single
crystals start to yield at a stress of 106 to 107 Pa (a strain of 10-4 to 10-3) and
continue to yield plastically up to strains of 0.01 to 0.1 or more. The weakness of
real metal crystals could in part be attributed to minute cracks within the crystal,
but the model failed in that it did not indicate how the crystal could be defonned
plastically (van Vlaek, 1985; Read, 1953; Cottrell, 1961). The dislocation model
was then devised and overcame these difficulties. Since its inception the dislocation
model has been extremely successful in explaining the strength, deformability and
related properties of metal single crystals and polycrystals.

The plastic defonnation in a crystalline solid occurs by planes of atoms sliding
over one another like cards in a pack. In a dislocation-free solid it would be
necessary for this slip to occur unifonnly in one movement, with all the bonds
between atoms on one slip plane stretching equally, and finally breaking at the
same instant, where the bond density is of the order of 1016 bonds cm-2 • In most
crystals, however, this slip, or defonnation, is not Ullifonn over the whole slip
plane but is concentrated at dislocations. Figure 3.2(a}-is a schematic drawing of
Ihe simplest of many types of dislocation, namely an edge dislocation with the solid

A
/

T ..>

/£/74-(-''--1- ''i( ,, /, ,,
,

,-I

l/f~ -C 7 r
~-

c

,
o

0.07

o E
Strain

400 MPa

B
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'"

Atomic arrangClllcnts corresponding 10 (1I) ,Ill edge dislocation, (b) a serew
disIOC:lIion. Ilen; b is the Burgers veclOr, a measufC of the local distortion,
nnd AI) is Ihe dislocalion line

"igurc 3.1

",
(a) S1l\::ss-slnlin l,;'"'VC~ f(lI' ,I typical I1ICI;1I which dl<mgcs frOIll c1<1slic [0
pl:I~lic bclmvi(1Ur al Ihe yicl(] pOill1 (13). (b) Slrc~s ~lrai!l curves for a typical
mild ~I<.:cl lIndl'l C)'c1k h.m11l1lot

l'ij.:ul"C J.2

(,) (b)

WWW.BEHSAZPOLRAZAN.COM



'2 ISOLATOR DEVICES AND SYSTEMS 3.3 STEEL HYSTERETIC DAMPERS 63

spheres representing atoms. The edge dislocation itself is along the line AD and
il is in the region of this line that most of lhe crystal distortion occurs. Under the
application of the shear stress this dislocation line will move across the slip plane
AOCB, allowing Ihe cryslallo defonn plastically. The bonds which must be broken
as the dislocation moves' have a concentration of 10& em-I. and are concentrated
at the dislocation core, thus enabling the dislocation to move under a relatively
low shear stress. As Ihc dislocation moves from the lefl-hand edge of the crystal
(Figure 3.2(3)) it leaves a step in Ihc crystal surface, which is finally lransmined
to the right-hand side. Figure 3.2(b) shows the olher major type of dislocntion,
mllncly a simple screw dislocation. which may also transmit plastic deformation
by moving across the crystal.

The dislocations in crystals may be observed using electron microscopy, while
the ends of dislocations are readily seen with lhe optical microscope after the
surface of the crystal has been suitably etched. Typical dislocation densities are
lOS dislocations cm-2 in a deformed metal and about lOS dislocations cm-2 in an
annealed metal. namely one which has been heated and cooled slowly to produce
softening. Dislocations are held immobile at points where a number of them meet,
and also at points where impurity atoms are clustered.

The three main regions of a typical stress-strain curve are interpreted on the
dislocation model as follows:

(I) Initial elastic behaviour is due to the motion of atoms in their respective
potential wells; existing dislocations are able to bend a lillIe, causing mi­
croplasticity.

(2) A sharp reduction in gradient at the yield stress is due to the movement of
dislocations.

(3) An extended plastic region, whose gradient is the plastic modulus or strain­
hardening coefficient, occurs when further dislocations are being generated
and proceed to move. As they tangle with one anOlher, and interact with
impurity atoms. they cause work hardening.

It is also possible to model a polycrystalline metal as a set of interconnected do­
mains. each with (different) hystcretic features of the type conferred by dislocations,
which give the general stress-strain felltures displayed by the hysteresis loops of
Figure 3.I(b).

Since dislocations arc not in thennal equilibrium in a metlll, but are a result
of the metal"s hislOry, there is no e(luation of Slate which can be used to predict
accurately the stress sti..lin behaviour of the metal. However. the behaviour of a
met:11 may be approxim:ltc1y prc(hl"lcd III panicular ~ituatiom;. if the hislOry and
dcform:llion :Irc reasonahly w('ll l'lmr;l("tcnscd.

3.3 STEEL HYSTERETIC DAMPERS

3.3.1 Introduction

Genera/
By the late 1960s a number of damping mechanisms and devices were being used
10 increase the seismic resistance of a range of structures. At that time the logical
approach to developing high-capacity dampers for structures was 10 utilise the
plastic deformation of steel beam~. During that decade the plastic defonnation of
steel structural beams had been increasingly used to provide damping and flexibility
for aseismic steel beam-and-column (frame) buildings. The cyclic ductile capacity
of structural members was limited by material propenies, local buckling and the
effects of welding (Popov, 1966).

Early steel-beam dampers developed in the Engineering Seismology Section of
the Physics and Engineering Laboratory, DSIR. were given a much greater fatigue
resistance than Iypical steel structural members by adopting suitable steels and
beam shapes. and attachments with welds remote from regions of plastic defor­
mation. Descriptions of the principal steel-beam dampers developed are given by
Kelly et aJ. (1972); Skinner et a/. (1974 and 1975); Tyler and Skinner (1977): Tyler
(1978): Cousins et a/. (1991). The principal developers of the three main classes of
steel-beam dampers which emerged from the Physics and Engineering Laboratory
programme which staned in 1968 were Kelly: twisting-beam dampers (Type E);
Tyler: tapered-beam dampers (Type T); and Skinner and Heine: uniform-moment
dampers (Type V).

The earliest bridge structure provided with seismic isolation in New Zealand
was a bridge at Motu, rebuilt in 1973 (McKay et a/. 1990). The superstructure
was provided with seismic isolation to protect the existing slab-wall reinforced
concrete piers. which had only moderate strenglh to resist seismic forces. Isolator
flexibility was provided by sliding bearings. Hysteretic damping was provided by
plastic defonnations near the bases of venical cantilevers, in the fonn of slructural­
type steel columns. Seismic isolation systems using steel-beam dampers developed
:It the Physics and Engineering Laboratory, in New Zealand structures. are outlined
or listed in Chapter 6.

An early New Zealand application of sleel-beam dampers was in the stepping
seismic isolation system for the tall piers of the South Rangitikei Viaduct. The
seismic responses of the proposed stepping bridge, with the inclusion of hysteretic
<tampers, were studied by Beck and Skinner (1972, 1974). Steel twisting-beam
d,lIllpers were selected for the isolation system and prototypes were developed.
Construction of the bridge commenced in 1974 and it was opened in 1981 (Cor­
m'lck. 1988).

Structures with steel tapered-slab dampers in their isolation systems included a
stepping chimney in Christchurch (Sharpe and Skinner, 1983) and Union House in
Auckland, isol:lted by mounting on flexible piles. (Bo.1rdman ef (1/. 1983), while
cOllic:Jlly tapered steel dampers were u'iCd in the isolation systems for the Cap.1citor
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Banks at Haywards (Chapter 6). Uniform-moment slee! dampers were used in the
superstructure isolalion syslcm for the Cromwell Bridge (Park and Blakeley, 1979).

SleeI-beam dampers have also been adopted and developed. and used 10 provide
hysteretic damping for seismic isolation in other countries. as QUllined in Chapter 6.
In Italy Ihey have been used eXlcnsively in seismic isolalion SySlcms for bridge
superstructures. In Japan steel dampers have been used in the seismic isolation
systems of a range of structures.

Features of steel hysteretic dampers

Slce] was initially chosen as the damper material since it is commonly used in
structures and should therefore pose no very unusual design. construction or main­
Icn:lIlce problems. apart from possible fatigue failure al welds and stress concentra­
tions. Moreover, it was hoped that the development of these dampers would throw
additional light on the perfonnance of steel in duclile aseismic struclUres.

1lle performance of steeH)Cam hysteretic dampers during eanhquakelO is closely
related to the performance of high-ductility steel-frame structures. However. the
dampers are designed to have a much higher fatigue resistance and to operate at
higher levels of plastic strain. This is achieved by using high-ductility mild sleels.
by using damper forms with nominally equal strain ranges ovcr each plastic-beam
cross-section. by using plastic beams of compact section (usually rectangular or cir·
cular), and by detailing the connections between the plastic beams and the loading
members so as to limit stress concentrations, particularly at welds.

In this section, the results of many years of experience with different shapes
and designs of steel damper arc summarised in terms of a 'scaling' procedure,
which generalises many different findings and also makes it possible to arrive at
initial parameters for the design of steel-beam dampers with Ihe desired propenies.
However, it must be noted that the following discussion is based on a large number
of tests on many models and a few full-scale dampers. using in the main one
kind of steel (BS4360/43A) after stress relieving. Other steels and heat IrealJJ1ents
are expected to give similar. but not necessarily identical, results, panicularly for
the life of the damper. The procedures suggested here. panicularly for 'scaling'.
are approximalions which are included in order 10 enable a designer. to obtain
staning parameters for a given design. In practice, the full-scale device should be
tested.

For a given strain range, (he load-displacement loop changes only moderately
with repeated cycling, with a moderate reduction in damping capacity, until the
yielding beams are near the end of lheir low-cycle fatigue life. The damper loop
parameters and their fatigue life can be estimated adequately, on the basis of cyclic
lests on damper prototypes or on small-scale models.

Since Sleel-beam dampers have a slrictly Iimiled low-cycle fatigue life. con­
Iro11ed by faligue-life curves of lhe IYI)C shown in Figure 3.6, it is ncccss,.'\ry to
design the dampen; :-0 as 10 limit Ihe cyclic stmin ranges during eanhquakcs, and
to ensure Ihal there exists a cap;lclly to rcsist scvcml design-level eanh<luakc.<; as
well as at least lInc c;\trcllW kH'll',lrlhqlMl"c. For a lypical wcll designed isOlator

and for El Centro-type earthquakes, this might call for a nominal maximum strain
range of ±3% during design earthquakes and ±5% during extreme eanhquakes.
Again, to avoid premature failure the isolator installation should ensure thai wind
loads do nOI impose more than a few tens of cycles of plastic deformation on
damper beams during the design life of the isolated structure, The fatigue life of
well designed steel-beam dampers is discussed further in Section 3.3.5.

3.3.2 Types of steel damper

While steel beams may be subject to shape inslability during cyclic defonnations
into the plastic range, each of the damper geometries described below is stable for
a very wide range of member proportions.

The three Iypes of sleel hysteretic damper to be discussed are shown in
Figure 3.3:

(;) A 'un;fonn'-moment bending-beam dampe' w;th ""ns,."" loading anns,
sloped at an angle as shown in Figure 3.3(3) (rype-V damper).

(ii) A tapered-cantilever bending-beam damper (rype.T damper). The apex of
the tapered slab is at the loading level. while the apex of the lapered cone is
substanlially above the loading level. The circular-section cantilevered beam
in Figure 3.3(b) may be loaded in any direction perpendicular to the beam
axis. Figure 3.3(c) shows the load-displacemcnt curves for this cantilever
damper, as used in retrofitting the capacitor banks al I-Iaywards Power Station
with seismic isolation (see Chapter 6).

(iii) A torsional-beam damper with tmnsverse loading arms (Typc-E damper).
Figure 3.3(d) shows the Type-E damper used in the South Rangitikei Viaduct
(see Chapler 6).

Note, as shown in Figures 3.3(3) and 3.3(d). that the welds are placed at low­
stress regions of the damper. The cross-seclion of the beam may be circular. square
or rectangular. denoted by the subscripls 'c', 's' or 'r' respectively. Thus the
beams shown in Figures 3(3), 3(b) and 3(d) are of Types Ue, Tc and E,. respec­
tively.

Dampers with improved features for panicular applications may be based on
combinations of the three basic types. A considerable range of funher types of
~lccl-beam damper has been described in the literature. For example, two com­
pact dampers have becn introduced in Japan. One uses a short hoJ1ow steel can­
lilcver instead of the solid steel core of the Type-T damper. This bell damper
i<; comp:lct :md has good force-displacemenl features (Kobori et aL 1988). A
second sleel-beam damper has a set of beams in the form of venical axis he­
lices which provide for large yielding displacements in any horizontal direction. II
has lillie height and c:m therefore be inSlalled between horizontal surfaces with a
snmll venical cle:lr:mce (Takayama ct al. 1988). In Italy. sets of conical Type.T
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Figure 3.3 (a) Full.sc:llc Sleel Typc-U' bending-be;lm damper prolotype (100 kN.
±50 mm). Shaft diamctcr 100 nun. NOle position of wcld.~ in low­
~Irc~~ rq;iull. (h) Steel c:IIuilcver Type-T" d:lIllper (10 kN. ±200 mm). as
relrtll1l1ed III IlldcI hI IMll11lc Ille CilpaeilOr han"s at 1bywards Power Swtion
(,ee ('hllPI~'1 hI, Sh.lh llllum'ler 50 mill. (From Cou,ins ('1111. 1991.)

Id I

(c) Load-displacement loops for Sleel cantilever damper shown in
Figure 3.3(b). (d) Sleel lorsional-beam 'Type-E' damper wilh transverse
loading arms (450 kN, ±50 mm), as used in South Rangifikei Viaduct with
sfepping piers (sec Chapter 6). Recfangular section 200 mOl x 60 mOl.
NOlc l)()silion of welds in low·~fress region
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dampers have been mounted 011 the same base 10 provide large-force moderate­
height steel dampers, as shown in Figures 6.3 [ and 6.32 (Pardueci and Medeo!,

1987).

OMPa

3.3.3 Approximate force-displacement loops for steel-beam dampers

Slress-strain loops and jorce-displocement scaling factors

The family of force-displacement loops for a bending-beam or twisting-beam
damper can be scaled on the basis of a simple model, 10 give a sel of stress-strain
curves. Approximate force-displacement loops for a wide range of steel-beam
dampers can then be obtained from the scaled stress-strain curves.

Figure 3.4 shows scaled stress-strain loops for a Type-T, steel-beam damper
made of hot-rolled steel complying with BS4360/43A. Table 3.2 shows the force­
and displacement-scaling factors, I and I respectively, for seven types of damper.
The scaling factors I and I of Table 3.2 and Figure 3.4 are based on a greatly
simplified but effective model of the yielding beam. The extreme-fibre strains €

(or y) are based on the shape which the beam would assume if it remained fully
elastic. The nominal stresses a or i are related to the force-scaling faclor I on
the assumption that they remain constant over a beam section (as they would
for a rigid-plaslic beam material.) The circumflex n is introduced 10 emphasise
the nominal nature of the stresses and moduli derived using the unifoml-stress

assumption.
It can be shown that premultiplication of the scaling factor I by about 0.6

will correct to some extent for the approximation's non-validity. However, if
such refinement is required, it is preferable to scale using the method of 'Er­
rors in approximate damper loops' and 'Damper loops derived from models of
similar proportions' below. The force F and displacement X can then be ob­

tained

6 £%42

200

·2-4'6

(3.2a)

(3.2b)

X~l€ (or/y)

F ~ la(l +aX2
), (or li(l +aX

2»

(3.2c)

where €, a are given by Figure 3.4, y, i are given approximately by Figure 3.4,
by letting € = Y and i ~ a12, and where a is a small correction factor for

large-displacement shape changes.
For dampers of Types U, T and E respectively, values of the correclion factor

a are:

Figure 3.4 Scaled streSS-Slrain loops for Type-T, Sleel-beam damper, made of hOl­
rolled mIld sleel complying wilh BS4360/43A. This diagram can be used
10 generalc approximate forcc--displaecmcm loops using the scale factors for
the seven lypes of steel-beam damper given in Table 3.1

where f? and L are defined in Table 3.2.
Figure 3.3(c) is <Ill example showing Ihe effect of a positive (I value on the loop

shapes of Figure }, I(b). The positive (IT and (IF. valucs or Equatioll (3.2c) cause all
illcrcase ill Ihe slopc of the l\l1'cC di,pl:ICCIlIClll loop for 1:II'gc yield displaccmenls

or Type-T and Type-E dampers, in accordance with Equation (3.2b). Similarly, the
negative (lu value causes a reduction in lhe loop slope for large yield displacements
of Type-U dampers.

The stress-slrain loops of Figure 3.4 were derived from force-displacement
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loops for a Typc-T, damper, using Equations (3.2) and f(T,) and I(T,) values
from Table 3.2. The force-displacement 100ps in Figure 3.4 were not corrected for
beam-end effects, since these were considered typical for bending-beam dampers.
Hence damper designs based on Figure 3.4 and Table 3.2 already include typical
beam-end effects. The initial stiffness of the damper is somewhat uncertain, owing
to variations in end-effects and the stiffness of beam-loading anns.

When Equations (3.2) aTC used to generate stress-strain loops from the force-dis­
placement loops of a T, damper, they eliminate the large-displacement increases
in nominal stresses, as is evident from a comparison of Figures 3.3(c) and 3.4.
When dampers are then designed using Figure 3.4, Equations (3.2) reintroduce
appropriate large-displacement changes in force and stiffness.

By introducing the very rough approximation (j :::::: 2i and using € = y,
Figure 3.4 and Table 3.2 can be used to obtain a rough estimate of the force­
displacemem loops for Type-E (torsional) dampers. However, it would be more
accurate to generate a separate set of i-v loops based on force-displacemem loops
for a Type-E damper and Equations (3.2). A representative beam section should be
used, say a rectangle with B = 2t, where Band t are defined in Table 3.2. Alter­
natively, the method of 'Damper loops derived from models of similar proportions'
below, should be used if more accuracy is required.

ErrQrs in approximate damper loops

There are four main sources of error in the damper loops and parameters derived
by the method described above.

(I) Differences between the material properties of the hysteretic beam used to
generate the stress-strain loops of Figure 3.4 and the material properties of
the hysteretic beam in the prototype.

(2) End-effects and non-beam defonnations. End-effects usually reduce the initial
stiffness by about 50% and are particularly important for rectangular-beam
Type-E dampers.

(3) Alteration of loop loads, for a given displacement, by changes in the shape
of the damper under large deflections. Shape changes reduce Kb2 for Type­
U dampers and increase K bz for Typc-T and Type-E dampers. First-order
corrections have been derived for the load changes due to damper shape
changes. These have been used to remove large-deflection effects from the
loops in Figure 3.4.

(4) Small changes in the damper loops caused by secondary forces. For example,
the Typc-E (hllnpcr is deformed by bending as well as by twisting forces.
These elTects have been small or moderate for all the damper proportions
tested. I

Tho..: inelastic interaction of prillwry and secondary be,un strains results in a
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gmdual progressive cycle-by-cycle change in beam shnpe. The beam of a Type­
U damper dcfonns progressively away from 11 line through the loading pins. The
beams of a Type-E damper defonn progressively towards the axis of Ihe loading
pin. These effects were not serious in any of the dampers tested. The melhod given
below gives a more accurate procedure for generating force-displacemcnt loops for
sleel-beam dampers.

Damper loops derived from models of similar proporlions

A scale~model method partially eliminates the four sources of error given above.
In this mClhod. force-displacement loops are derived for an experimcnlal model.
or damper of proportions similar but not identical 10 those of the prototype. and
made of the same material. The scaling is then done in [enns of the force- and
displacemcllI-scaling factors, f and I, given in Table 3.2.

If subscripts p and e are used for the 'prototype' and the 'experimental model'
respectively. then, neglecting the correction factors involving a of Equation (3.2c).
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The :ncthod adopted for selecting a bilinear approxirnalion 10 a curved hys­
teresIs loop

Figure 3.5
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FplFe :: fplfe

XpIXe::/plle.

For example, for a Type-Ue damper, Table 3.2 gives

(3.3a)

(3.3b)

1lle bilinea~ loop parameters change rapidly with the maximum strain amplitude
fem at '~w stram~. but more slowly at larger strains. In practice, these parameter
c.hanges. do. not Introduce large errors to seismic designs based on bilinear loops,
~lnce seIsmIc responses are dominated by relatively large strains, wilh slowly vary­
mg paramcters. Wit.h fixed valu.es of K bt , Kbl and Qy, the bilinear loops nest on
a two-slope generatmg curve WIth a fixed starting point.

where .(m is the maximum amplitudc of cyclic strain and a, the large-deRection
c.~rre~llon fa~tor, is dcfined ill &,uation (3.2). For a (torsional) Typc-E damper,
"-I,. 1~2 and ffy of Table 3.3 and Equations (3.4) arc replaccd by Gl , G

2
and i

which are, vcry approximatcly. half as large. Y

B~l~near damper parameters from the bilinear parameters of stress-strain loops

Btllnear approximations to the stress-strain loops of Figure 3.4 have been used to
genera.te the moduli and the yield stresses and strains listed in Table 3.3. These
~~uh an~ stresses m~y be scaled by the factors f and I of Table 3.2 to give the
bilinear stiffness and yIeld parameters for particular dampers. as follows:

Section 3.3.4 describes how the stiffness ratios and yield-point ratios can also be
obtained.

3.3.4 Bilinear approximation to force-displacement loops

Method of obtaining bilinear approximation

For design purposes, the curved force-displacement loops (such as shown, for
example in Figure 3.3(e» are usually approximated by bilinear hysteresis loops
with an initial stiffness Kbl , a yielded stiffness Kbl and a yield fOl'"CC: Qy. The
method adopted here for sellXting a bilinear approximation to a hysteresis loop is
shown in Figure 3.5. The curved loop A'B'ABA' is symmetric about the centre 0,
and the coordinates of the vertices A and A' are the maximum displacemcnts ±Xb

and the maximum forcc ±Sb' The initial stiffncss Kbl is approximated by the slope
of the parallcllines AB, A'B', where Band Bt are the loop interccpts on the X-axis.
1be yield stiffness Kbl is approximatcd by the slope of the parallel lines AC. A'C,
where CC is thc line through 0 with slope Kbl . Xy and Qy. the coordinatcs of
point C. are the yield displacement ;1I1d the yield force respectively for the bilinear
;'lmroximiltiol1 10 the curved hystcrcsis 1001). Thc stre.~s-strain 1001'S of Figure 3.4
e;m ;llso he approxillllllcll hy hiliucur loo[J.~ with an initiallllo<lllilis I~l (or GI), il

yielded lllfldulu\ i.l (Ill (;.) lllllin )'ldtl \In:\\ Oy (or i y).

where

K bl :::;,; (f11)£1

K b2 ~ (f11)£2 +aQyXm(l + Ey/Em)

Qy ~ fay

(3.4a)

(3.4b)

(3.4e)
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on simple specimens and from the nominal maximum cyclic strains as derived from
simple beam theory.

The 'life', or number of cycles a steel hysteretic damper can be expected to
survive, is dependent upon the behaviour of the steel under cyclic loading as well as
on the design of the damper. The stresses which a material can survive under cyclic
loading are far less than for static loading. As the stress amplitude increases, the
number of cycles to failure reduces rapidly. These resulls are nonnal1y summarised
in 'S-N' curves, in which the cyclic .\"1ress amplitude is plotted against the number
of cycles to failure. For sleel hysteretic dampers to operate, the stress level needs to
exceed the yield strength while remaining below the ultimate strength, Fonunately
for most seismic isolation solutions, it is the displacement amplitude, and thus
the strain, which is the comrolling factor. Therefore, for the problem of seismic
isolation the imponant curve is the strain amplitude versus the number of cycles
10 failure (Figure 3.6). Note the logarithmic scale on the abscissa.

By contrast, the lead devices do not fatigue readily at nonnal operating temper­
atures, because the melting point of lead is so low. During and after defonnation,
the defonned lead undergoes the interrelated processes of recovery, recrystallisatioll
and grain growth. This behaviour is similar to that which occurs for steel above
about 4()()°C.

When assessing low-cycle fatigue capacity, the cyclic displacements of an eanh­
quake may be characterised by various strain ranges, say 2 cycles at ±5% strain,
6 cycles of ±4% strain and 12 cycles at ±3% strain, as is commonly done when as-
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Table 3.3 Approximated moduli, stresses and strains, up to a strain
amplitude €m of 7%

'. E, £2 ", "(%) (1Q2 MPa) (102 MPa) (1& MPa) (%)

I 700 122 2.70 0.36

2 700 25.6 3.70 0.55

3 700 12.2 4.06 0.59

4 700 7.58 4.24 0.61

5 700 5.34 4.42 0.63

6 700 4.79 4.52 0.65

7 700 4.65 4.58 0.66

Stiffness and yield parameters from models of similar proportions

The modelling procedure described in 'Damper loops derived from models of sim­
ilar proportions', above, can be used to give the parameters of a proposed damper.
Again, subscripts p and e refer to the 'prototype' and 'experimental' dampers re­
spectively. and f and I values are obtained from Table 3.2.

If the correction factor involving a is neglected, then Equations (3.4) give

(3.5')

,nd
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Q,(p)/Q,(e) ~ J,I/o. (3.5b)

For the Type~Uc damper, for example, Table 3.2 gives either stiffness ratio of the

fonn

,nd

The above approach is equivalent to generating a loop or loops of the type shown in
Figure 3.4, based on an approximate model of a proposed damper, and then using
values from Tables 3.2 without end corrections or large-denection corrections, to
find the parameters of the proposed damper.

6

-lfI. 5-
"'- .•~
~ 3
E«
• 2

~

Fatiguc-life curve for a .~lccl-bC'lIn damper. (The strain amplitude versus the
lIullIbcr of cycles to failllre.) (Based on Tylcr, 1978.)

3.3.5 Fatigue life of steel-beam dampers

While the load-deflection paramcters of a steel-beam damper may be achieved
readily using the above design paramcters, some sophistic'llion;s required in design
dctailing ,lI1d in mallllfnClUrinf!, h.:chlliqucs which will assurc a maximum ill the
potcmial fatiguc lifc. Tilt' pott'lltinl fatiguc lifc may be cstimatcd frOI11 cyclic tcsts

10 100

Cycles

1000 ooסס1

"
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metals is the Lead-Extrusion Damper. sometimes abbreviated to LED, which was
developed at PEL (DSIR) (the Physics and Engineering Laroratory of the NZ
Department of Scientific and Industrial Research). The cyclic extrusion damper was
invented in April 1971 by W H Robinson, immediatcly after he'd had a moming­
tea discussion with R I Skinner on the problems associated with the use of steel
in devices to absorb the energy of motion of a structure during an earthquake. The
process of extrusion consists of forcing or extruding a material through a hole or
orifice. thereby changing its shape (Figure 3.7). The process is an old one. Possibly
the first design of an extrusion press was that of Joseph Bramah who in 1797 was
granted a patent for a press 'for making pipes of lead or other soft metals of all
dimensions and of any given length without joints', (Pearson. 1944).

A lower round for the extrusion pressure !) may be derived from the yicld stress
(J of the material under simple axial load. following Johnson and Mellor (1975).
Simple extrusion involves a reduction in the cross-sectional area of a solid prism
from AI to A2 by plastic deformation. with an increase in length corresponding

M:~~illg the f:!ligue capacity of duclile reinforced-cooCTete structural members. ~e
IOlal fatigue capacity of a well designed Sleel-beam damper, for any fixed slnnn
range, nlay be estimated from Figure 3.6. A rough approximation 10 the reduction
in fatigue resistance caused by given earthquake displacements may be obtained
as follows. When a strain range of ±x% gives a damper fatigue life of n.. cycles,
as indicated by Figure 3.6. assume that m cycles consume min.. of the total fa­
tigue capacity of the damper. Hence the above earthquake displacemem consumes
2/45 +6/77 + 12/108 = 0.23 of the 10la1 damper fatigue capacity. and the damper
is eslimalcd to just survive the cyclic deflections of four such earthquakes. As
suggested by this example, the fatigue capacity of damper-beam materials may be
compared effectively on the basis of the cyclic fatigue capacity of simple standard
specimens subject to a single nominal strain range. say ±5%.

The beam and its end fixings must be detailed to avoid severe stress concentra­
tions at locations of high plastic strain. In particular. yielding-beam welds should
be confined to lower-strain locations. Again it is appropriate to adopt a damper
geometry which gives a decrease in the nominal plastic strain towards the ends
of the yielding beamS. Large-deformation effects give this end-strain reduction for
Type-U dampers with prismic yielding beams. II also occurs for Type-Tc dampers,
with circular cones loaded at the level given at the bottom of Table 3.2. For some
dampers, such as l'ype-Tr • it is appropriate to use curved transitions between yi~ld­

ing and non-yielding parts of the beam.
Rises in the plastic-beam temperature. during design-earthquakes or extreme

earthquakes. should cause little change in the damper parameters or in the damper
fatigue resistance. The plastic-deformation damper beam should be of mild steel.
for example BS4360/43A. It may be an advantage to select for low levels of
those constituents known to reduce low-cycle fatigue. The damping beam material
should not be more than moderately cold-worked. The as-rolled condition is usu­
ally appropriate for damper beams. With higher cold-working during manufact.ure.
partial annealing is appropriate. Full annealing will considerably increase fatIgue
life while reducing damping forces, whieh will then increase moderately during the
first several cycles of damper operation.

3.3.6 Summary of steel dampers

Steel-beam dampers are characterised by hysteretic foree-displacemcnt (stress­
strain) loops which can be analysed using a scaling method or approximated by
biJine:lr loops. The 'life' of steel dampers is limited by their fatigue characteristics
on cycling.

3.4 LEAD·EXTRUSION DAMI'ERS

3.4.1 Gcncr:.ll

D
Rom

Original
V.,.<.".<./ol grains

Elongated

."'"

Another lype of dlll1llX'l' lItilillill!'l Illl' hY\ICrClic cncrg.y di~~ipa1iol1 properties of
A rcl'rc~IlI:llion of the extrusion of .. melat. showing the changes in mi­
Cfustructut'e. (From RobimOll. 1976.)
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ISOLATOR DEVICES AND SYSTEMS 3.4 LEAD·EXTRUS10N DAMPERS 7'
to lillie volumc change. The process may be idealised as the frictionless extrusion
of 1m incompressible clastic-plastic solid which has a constant yield stress cry. The
minimum work W. required to change the section from A[ to A2, or the equal
minimum work to change the section from A2 to A[, arises when A[ and A2 have
the same shape and when the deformation involves plane strain. Such plane strain
occurs when sections that are plane prior to defonnation remain plane throughout
Ihe deformation process. The work W of plane-strain defonnation ean be derived
by considering a prism of section A2 which is compressed between frictionless
parallel anvils to fonn a prism of section AI. The yield foree increases with Ihe
increasing sectional area to give the work W as

(3.00)

1'1

n

Orifice

. I

where L I is the length when the prism area is AI. Indeed, Equalion (3.00) can be
used as a basis for the experimental detenninalion of the simple-strain yield SlresS
Oy for lead, since a suitably lubricated lead cylinder, compressed between smoolh
anvils. defonns in almost lrue plane strain.

The work required to cause the reverse change in area by simple frictionless
extrusion would be greater than W by an amounl which depends on the depanure
from plane-strain. which should nOI be great with a gradually tapered extrusion
orifice. For this almost plane-slrain case, a resull which appears to have been put
forward firsl by Siebel and Fangmeier (1931), the extrusion pressure p follows
simply from Equation (3.00), giving

Ibl

Figure 3.8

I~

u
(a) Longitudinal seclion of cyclic lead-exlTUsion damper. constricted~lube

Iype. (From Robinson, 1976.) (b) Longiludinal section of cyclic lead­
extrusion damper; bulged·shaft type

where the extrusion ratio ER = AllA2 and ex exceeds 1.0 by a small amount which
arises from the departure from plane-strain deformation.

A practical extrusion process will involve significant surface friction which will
give a further depanure from plane-strain and hence an increase in ex beyond the
zero-friclion value. A funher increase in pressure occurs in reaction to the axial
component of Ihe surface friclion forces. If there are significant changes in Oy

over sections of the extruded material, as may well arise when hysteretic heating
causes temperalure differences, this may change the pattern of extrusion strains
substantially. a factor which may be significant with cyclic extrusion.

When a back-pressure and a re-expansion throat are included to return a lead plug
to its original sectional area A [, as shown in the schematic sketch of 1Ul extrusion
damper in Figure 3.8. the theoretical frictionless pressure of Equation (3.6b) is
doubled. For a practical system with effective lubrication, the extrusion pressure,
as given by Equation (3.6b), should also be roughly doubled when the contraction
from area A1 to A2 is followed by an expansion from area A2 to A I. When the
throat profile is well desi~ncd. and tho.; lead-surface lubriC:ltion is effective, the
pressure should be givcll approxiuliltdy by

Another result of interest is the relation between extrusion pressure p and the
speed of extrusion v, or the strain rate (Pearson, 1944; Pugh, 1970). This is found
10 be

where b == 0.12 for lead at 17°C, so that for an increase in extrusion speed by
a factor of 10, it is necessary to increase the extrusion pressure by 36%. More
complete discussions of the behaviour of metals during plastic deformation are
found in Nadai (1950), Mendelsson (1968) and Schcy (1970).

Dcfonllation of a polycrystalline metal results in elongation of the grains and a
large incrcase in the number of defects (such as dislocations and vacancies) in each
grain. After some time the metal may, if the temperature is high enough, return to
a statc free from the effects of plastic strain by the three interrelated processes of
recovcry, recrystallisation and grain growth (Wulff el 01. 1956; Birchenall, 1959;
Jones 1'1 al. 1969). D~ring the process of recovery, the stored energy of the defonned
gl'llins is reduced by the dislocations moving, to fonn lower energy configurations
:-ouch as subgrain boundaries. and by the .mnihitation of vacancies at internal and
external surfaces.

Rccrystallisation occurs whcn small, new, undefonned grains nucleate among
the dcformed gmins ;md then grow at their expcnse. Funher grain growth occurs

(3.7b)p = av"

(3.6b)

(3.711)

p=exoylnER
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as some of the !lew gmins grow at the expense of others. The driving force for
rccrystalli'i:ltiol1 i'i the stored energy of defonnation of the extruded grains, while
the <k-crc.I'iC in the surface energy of the many recrystallised grains causes grain
~l'()wth to occur. The temperature which is sufficient to cause 50% recrystallisation
durlllj; onc hour is called the recrystallisation temperature (Wulff el al. 1956; Van
Vlack. 1985). For lead this temperature is well below 20"C, while for aluminium,
copper and iron it is 150"C, 200"C and 45O"C respectively. The rate at which
rccrystallisalion occurs is strongly dependent on temperature. For example, copper
which has been reduced in thickness by 71 %, by cold rolling, has a recrystallisation
time of 12 min at 300"C, 10.4 d at 200"C and 290 yr at lOO"C (Wulff et al.
1956). The rate at which recrystallisation occurs also increases with the amount of
defonnation.

Since the rccrystallisation temperature of lead is below room temperature, any
defonnation of lead at or above room temperature is in fact 'hot work' in which
the processes of recovery, recrystallislllion and grain growth occur simultaneously.
Working lead at room temperature is equivalent to working a piece of iron or steel
at a temperature of more than 400°e. Indeed, lead is the only common metal which
need not suffer progressive fatigue when cycled plastically at room temperature.

A device which acts as a hysteretic damper by utilising this property of lead
(Robinson and Greenbank, 1975, 1976; Robinson and Cousins, 1987, 1988) is
shown in Figure 3.8(a). It consists of a thick-walled tube co-axial with a shaft
which carries two pistons. There is constriction on the tube between the pistons,
and the space between the pistons is filled with lead. The Icad is separated from the
tube by a thin layer of lubricant kept in place by hydraulic seals around the pistons.
The central shaft extends beyond one end of the tube. During operation, axial loads
are applied with one attachment point at the protruding end of the central shafl and
the other at the far end of the tube. The hysteretic damper is fixed between a point
on the structure and a point on the earth. which move relative to onc another during
an carthquake. As the allachment points move to and fro, the pislons move along
the tube and the captive lead is forced to extrude back and forth through the orifice
fonned by the constriction in the tube.

Since extrusion is a process of plastic dcfonnation, work is done and very Iinle
energy is stored elastically, as the Icad is forced through the orifice during struc­
tural dcfonnation. Thus during an earthqoake such a devicc, by absorbing encrgy,
limits the build-up of destructive oscillations in a typical structure. The successful
operation of this hysteretic damper depends on the usc of a material, in this case
lead. which recovers and recrystallises rapidly at the operating temperature, so that
the force required to extrude it is practically the same on each successive cycle. If
the cxtruded material had a recrystallisation temperature much abovc the operating
temper-Ilure. it would work-harden and be subject to low-cycle fatigue. Moreover,
such materials typically have much higher strcsses, which would present very se­
vere problems for cont:linlllCllt, pi'ilOll sc:lling and lubrication in a cyclic extrusion
device.

A hysterctic d:lI11l>Cf Wllllh tll"ll'r,t1{''i On lhi'i same principle but has ditTerent

construction details is shown in Figure 3.8(b). Here the extrusion orifice is fomled
by a bulge on the central shaft rather than by a constriction in the outer tube. The
central shaft is located by bearings which also serve to hold the lead in place.
As the shaft moves relative to the tube. the lead must extrude through the orifice
fonned by the bulge and the tube.

3.4.2 Properties or the extrusion damper

One of the most important properties of a hysteretic damper is its
force-displacement loop. If the device acts as a 'plastic solid' or 'Coulomb damper'
then over one cycle the forcc-displacement hysteresis loop will be rectangular
and the energy absorbed will be a maximum for thc particular force and stroke.
Figure 3.9(a) shows hystcresis loops typical of constricted-lUbe and bulged-shaft
dampers. For both types, the force rises almost immediatcly on loading while there
is no detectable recoverable elasticity on unloading. Note the plastic force is the
force Qy for the extrusion damper. The perfonnance factor. defined as the ratio of
the work absorbed by the damper to that contained by the rectangle circumscribing
the hysteresis loop, is 0.90-0.95. The force to operatc one of the extrusion hysteretic
dampers has also been found to be almost independcnt of both the stroke and the
position from which displacement starts. The hysteresis loops in Figure 3.9(b).
which show the behaviour of the same damper at an interval of 10 years (1976
and 1986), confinn the stability of the extrusion dampers (Robinson and Cousins,
1987. 1988).

The extrusion force is ratc-dependent, as can be understood on the dislocation
model by considering lhe speeds of dislocation motion and grain boundary sliding.
To examine the rate dependence of the extrusion force for the extrusion energy ab­
$Omcrs, a number of them were tested at speeds ranging from 3 x 10-10 to I m S-I.

The experimental results for the rate dependence of the encrgy absorbers are
shown in Figure 3.10, in which the ordinate is the 'Ioad ratio' relating the force
to that which will cause the damper to yield at a speed of I ms- I . 1be damper's
performance has two diffcrenl characteristics, with the change occurring at a speed
of 10-01 m S-I. Below this speed, the ~xpollCmial equation (3.7b) is valid with
I, = 0.14. Hence if the rate of cycling is increased by a factor of ten, the load
increases by 38%, or the rate must be increased 140 limes for the load to be
(toubled. Above a speed of 10-4 m S-I, b = 0.03. in this case a 7% increase
in load increases thc rate by a factor of 10, whilc a 40% increase in the load
requires the rate 10 be increased lOS times. Thc value of 0.14 for b, for rates below
10 4 III s-l. agrces well with thc figure of 0.13 obtaincd by Pearson (1944) for
lead at 17°e. Loads which cause creep may also be compared with the load at
illl earthquake-likc speed of 10-1 m S-I. At a load ratio F/F(IO- 1 III s-t) = 0.2,
the creep roue becomes - 10 mm per yr. The results above 10-4 m 5- 1 indicate
lhat at these speeds the extrusion energy absorbers arc nearly rate-independent: for
example.;11 a rate of - 1Q2 III S-l the extrusion forcc is expected to be 1.15 times
that for ;11l e:lnh<luakc-like lil>ced of 10 I III S I. Above a mte of 2 x 10-2 III S-I.
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tests on large energy-absorbing devices become difficult because of the large power
required. For example, for a 200 kN hysteretic damper operating at 1 Hz with a
total stroke of 250 mm, a power of 100 kW mUSI be supplied.

The effect of temperature on the extrusion energy absorber is complex, in that
an increase in temperature, due either to ambient changes or to the absorption of

energy during an earthquake, has a twofold effect;

,.,

" "'••
E ..
~

•
•

• As the temperature inereases the extrusion force decreases.

• The higher the temperature, the more rapidly the lead will undergo recovery,

..0'00

(al

o

-'00 ;;;-~~-__:_;;:_-::_-__=_c_--------l
-'50 -100 -50 0 50

Oisplocemenf (mrn)

>00

-\00

•g
"

z•

Fj~llre 3.9 (a) Typical .load-djsplaccnlC~ll hyslcresis loops for IC:ld-extnl .. ion d;1l11PCrs.
(b) .C~mpanf;()n of h)'~lcrc"I" loops obtained for :l con..lriClcd lUbe Icad­
C~ll11slon d~lIl1pcr lc<,ICd III 1976 (...oli<l linc) amI agllin in 19116 «(Ill,hc(l line)
(hom l~oblllSllll !lnd (·nll~IIN. 19li7.) .

Figure 3.10

Speed (m I sec )

RillC dcpcndencc of lC~ld-cx(rusion hystcretic damper. TIIC force is com­
pared wilh (hat corresponding to a specd of 1 III S '. and this IO<'ld ratio is

ploued :IS :1 function of spet:d
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3,5,1 Rubber bearings for bridges and isolators

3.5 LAMINATED·RUBBER BEARINGS FOR SEISMIC
ISOLATORS

(4) 1lJe length of stroke of the extrusion energy absorber is limited only by the
problem of buckling of the shaft during compression. 1be dimensions of a
ISO kN energy absorber with a stroke of ±200 mm are:

'" ISO mm

'" 1.5 m

'" 100 kg.

Outside diameter

Total length

Total mass

(2) Because the interrelated processes of recovery, reerystallisation and grain
growth occur during and' after the extrusion of the lead, the energy absorber
is not affected by work hardening or fatigue, but instead the lead is forever
returning to its original undeformed state, The extrusion damper therefore has
a very long life and does not have to be replaced after an earthquake,

(3) The extrusion damper is stable in its operation and cannOI destroy itself by
building up excessive forces. As the temp::rature rises during its operation,
then

• the extrusion force decreases and therefore the energy absorbed and heat
generated decrease, and

• the higher the temp::rature, the more rapidly the lead will recover and
recrystallise, lhereby regaining its plasticity.

These dimensions ensure simple installation in many isolator applications, 1be
lead-extrusion damper has, to date, been used in New Zealand in three bridges
and to provide damping for one ten-Slorey building mounted on nexible piles (see
Chapter 6). It has also been installed in the walls to increase the damping of two
buildings in Japan. In addition to providing damping, the extrusion damper 'locks'
the structure in place against wind loading in the case of buildings, and against the
braking of motor vehicles in the case of sloping bridges.

Another method of seismiclllly isolating structures is by mounting them on
laminated-rubber bearings (elastomeric bearings). These bearings arc a fully
developed commercial product whose main application has been for bridge
superstructures, which often undergo substantial dimensional and shape changes
due to changes in temperature. More recently their use has been extended to the
seismic isolation of buildings and other structures (Chapter 6).

These bearings are designed to sUPI>on large weights while providing only small
resisl:U1ee to large horizontal displacemcnts, and 10 fll<xlcratc tilts, of the upper

recrystallisalion and grain growth, thereby eliminating work hardening and re·
gaining its plasticity.

The lead-extrusion damper, in which mechanical energy is converted to hellt by
the extrusion of lend within a tube, is a device that is suitable for absorbing the
cnergy of motion of a structure during an earthquake. The principlc is simple but
the design is not necessarily so.

Thc Icad-extrusion damper has the following properties.

3.4.3 Summary and discussion of lead·extrusion dampers

(I) It is :i1most a pure '('oulomh damper' in thaI ils force-displ:,ceillellt hystercsis
loop i" IIc;,1'Iy rC('llIll!'t1I:11 :lIld i, practic:llly rate-illdcpcndellt at e:,nh<\uake­
likc frCI!IICllcic"

These factors ensure thai the extrusion damper is a stable device which cannot
destroy itself by building up excessive forces. A 15 kN constriclCd-tubc extrusion
damper was operated conlinuously at I Hz for 1800 cycles and during this teSllhe
temperature on the oUiside of the orifice reached an equilibrium value of 2100C.
The effect of lowering the temperature was checked by cooling an energy absorber
10 -20"C bUI no noticeable change in extrusion force, compared with thai at 2j"C.
WilS observed.

The lifetime of an extrusion energy absorber has been tested by oper.uing a
15 k 'constricted-lube device continuously at frequencies of 0.5, 1 and 2 Hz for a
IOlal of 3400 cycles (Robinson and Greenbank, 1975, 1976). After this test, which
provided conditions far more severe than those to be expected in service (during an
earthquake the device would be expected 10 undergo'" 10 cycles), the extrusion
encrgy absorber was found to opcrnte as initially at 1.7 x 10-3 m S-I. This result is
nO! surprising since 'hot-worked' lead is forever recovering its original mechanical
properties. Therefore the extrusion damper should be able to cope with a very large
number of earthquakes.

11le maximum energy an extrusion damper can absorb in a short time is limited
by the heat capacity of the lead and the surrounding steel. To increase the tem­
per..lture of lead from 20"C to its melting point of 327°C, but without mel ling it.
n.'quires 3.8 x 1Q4 J kg-I of lead. The surrounding steel raises the heat capacity
of tile device by a factor of '" 4 so that the total energy capacity of the extrusion
dcvice is ...... 1.6 x lOS J kg-I (total weight).

An extrusion damper with a 30 mm outside diameter had an extrusion force
of'" 15 kN while a device with alSO mm outside diameter required a force of
'" 150 kN to operate it. The stroke of the extrusion energy absorber is not limited
ill :lIIy way by the basic properties of the device. To date the largest extrusion
<tampers madc had a total stroke of 800 mm (±4oo mm) and operated at a force
of 250 kN. The total length of a device when at its maximum extension is three to
four timcs the Icntlth of its stroke.
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c

A

Figure 3.11 Sketch of laminated elaslomeric bearing.
of area A and circumference C. in which
rubber layers. of thickness /. arc bonded
to thin steel plates

3.5.2 Rubber bearing, weight capacity lVma~

The principal features of rubber bearings can be seen from the behaviour of a
thin rubber disc, with rigid plates bonded (vulcanised) to its plane surfaces. when
subjected to nonnal (axial) and to parallel (or shearing) loads. The relationship
between the load Wand the maximum engineering shear strain y in the disc has
been derived by Gent and Lindley (1959) as outlined below in modified fonn.
(Following Borg (1962). y = Y.u = aw/ax + au/at = 2l'/xz where l'/xz is the
tensor shear strain.)

When the rubber is assumed incompressible. a vertical compressive strain €z

causes the rubber to bulge by an amount proportional to its distance from the
centre of the disc. When the bulge profile at any radius r is approximated by a
parabola. constant rubber volume gives the maximum shear strain Yxz as:

Figure 3.12 Sketch of circular layer of rubber. diam·
eter D. thickness I, and of the parabolic
pressure diSiribution p

Now consider a basic rubber bearing consisting of n equal rubber layers of any
compact shape. Also let the lOp of the bearing be displaced by Xb to give an over-

where G = shear modulus of rubber.
The corresponding load W may be obtained by summing the pressure over a

disc area A to give:

(3.8e)

(3.8b)

(3.8.)Yx: = 651£:

Po = 2GSyxz

W = AGSyxz.

where the vertical strain E: = 6./ / I. the thick.ness of the rubber layers is denoted
by t. and lhe shape factor S = (loaded area)/(force-free area). For example, for a
circular disc of unstrained diameter D and thick.ness t, S = D/4t.

The rubber shear forces cause a pressure gradient within the disc which is propor­
tional to the distance from !.he centre. This gives a parabolic pressure distribution,
as shown in Figure 3.12. The maximum pressure Po is given by:

surfaces of the bearings. A typical bridge bearing consists of a stack of hori7,on·
tal rubber layers vulcanised to interleaved steel plates, as shown schematically in
Figure 3.11 for a cylindrical bearing. For a given bearing area and rubber composi­
tion, the load capacity is increased by reducing the thickness of each rubber layer.
while the resistance 10 horizontal and tilting movements is reduced by increasing
the lotal height of the rubber.

Rubber bearings, of the types used for bridges. can be dimensioned to pro­
vide the support capacity and the horizontal flexibility required for seismic iso­
lation mounts. Of particular importance is the ratio of bearing weight caJX.cilY
to horizontal flexibility, which detennines the maximum achievable value for the
rigid-structure period Tb. Of equal importance is !.he maximum acceptable hori­
zontal displacement Xb. which is set either by the allowable rubber strain or by
the allowable offset between the plan areas of the top and bonom of the bearing.
Rubber bearings also provide adequate isolator centring forces during large seismic

displacements.
Rubber bearings have a considerable range of applications in seismic isolators.

as described later in this chapter. In their basic fonn, rubber bearings may be used
to provide support, horizontal flexibility and centring forces. Isolator damping may
then be increased by separate components. Alternatively, lead plugs may be inserted
in rubber bearings to add high hysteretic damping to the features of the basic
bearings, as described in Section 3.6. Again. rubber bearings may be sunnoul1led
by horizontal slides which provide increased horizontal flexibility and frictional
damping. Additional isolation roles for rubber bearings include tilting supports for
rocking structures and clastic components in displacement-limiting buffers.

The detailed design and the manufacture of rubber bearings call for technical so­
phistication. However. the approximate features of rubber bearings may be derived
using Siml)le. well known approaches. as described below. An understanding of the
factors influencing the features of elastomeric bearings is useful when developing
isolation systems. ilnd may assist during preliminary design studies.
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A'

Figure 3.13 Sketch of rubber cylinder of diamclcr
D, with a shear displul,;cmcllt X~ and
overlap A'

by

(3.9)

where
A ::: rubber layer area

Ii ::: total rubber height.
There will be some reduction in bearing height wilh large displacements, partly

due to flexural beam action and partly due to increased compression of the reduced
overlap area A'. The resulting inverted pendulum action, under structural weight,
reduces the horizontal stiffness Kb and in extreme cases might cause serious re­
ductions in the centring forces. However, the inverted pendulum forces are reduced
by increasing the layer shape faclor S, and these forces are unlikely to be serious
for S values in the range from 10 to 20, a range appropriate for isolator mounts.

lap area A' between the top and bottom of the bearing, as shown in Figure 3.13.
Then experiment and analysis show Ihat Equation (3.8e) may be generalised ap­
proximately as follows:

Bearing period Tb

The bearing weight capacity, Wmu , from Equation (3.8d), and the horizontal stiff­
ness, K b , from Equation (3.9), can be combined to give the bearing and isolator
period Tb , when the bearing is supporting its maximum weight, as

Wma~ = A'GSyw (3.8d)
h = 2Jr(SliYwA'/Ag)I/2 (3.10)

where K,(y), the vertical stiffness of the bearing without volume change, is given

where Yw is the allowable shear strain due to the weight W.
For example let S = 16, II = 0.15 m, A'/A = 0.6, and Yw.max = 0.2I:::.L/L,

where the breaking tensile strain I:::.L/L = 5, (typically 4.5-7.0). Then Tb = 2.4 s.

Bearing vertical stiffness Kz

Some isolator applications of rubber bearings are influenced by their vertical stiff­
ness, and some by their related bending stiffness. The vertical deflection of a bear­
ing is the sum of the deflections due 10 rubber shear strain and to rubber volume
change, and these two respective stiffnesses are added in series. Thus the overall
vertical stiffness is

(3.lla)K, ~ K,(y)K,(V)/[K,(y) + K,(V)]

Bearing damping ~b

Energy losses in the defonning rubber layers provide damping which is predom­
inantly velocity-dependent. Typical bridge bearings provide bearing and isolator
damping factors in the range from 5% to 10% of critical. However, acceptable
bearing rubbers have been manufactured which increase the bearing and isolator
damping to about 15%, and development aimed at higher damping values continues.

,

3.5.3 Rubber-bearing isolation: stiffness, period and damping

Bearing horizontal stiffness K b

A rubber bearing may be approximated as a vertical shear beam, since the steel
laminations severely inhibit flexural defonnations while providing no impediment
to shear dcfOrtlwtions. The approximate horizontal stiffness Kb is therefore given

If an isolator consists of a set of equal rubber bearings, each supporting an equal
weight, then the isolator period call be calculated directly from the weight and
stiffness for a single bearing. In practice the average weight per bearing may be
reduced because the weight on some bearings has been reduced to offset vertical
seismic loads, or for structural or architectural convenience. However, such weight
reductions are neglected here and the isolator parameters are expressed in terms of
those for a single bearing.

where

Wma~ = allowable weighl

Yw = allowable shear strain due 10 weight

A' = overlap of bearing top and hOllom.
The use of A' in Equation (3.8d) is a somewhat arbitrary simplification and is

probably conservative.
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by Equations (3.8n) and (3.8e) as

K,(y) =6GS'Alh (3. lib)

the bearing dimensions depends somewhat on the shape of the horizontal section
of the bearing.

For a cylindrical bearing with rubber discs of area A and diameter D

and where K=(V). the vertical stiffness due to volume change without shear strain,
is simply

A'IA = 1-(2/JT)(8+sin9cos9) (3.13a)

K,(V) = <Alh

where K = rubber compression modulus. Thus

(3.lle)

(3.11d)

where sin9 = Xb/D. Hence for moderate values of Xb/D

X,",0.8D(l-A'IA).

Similarly, for a rectangular bearing

(3.13b)

When the displacement Xb may be in any direclion, a more appropriate dis­
placement limit is

where Xb(B) and Xb(C) are the bearing displacements parallel to the sides of
lengths Band C respectively. Hence, for displacements parallel to side B.

Equations (3.1 I) show that a small shape factor S gives a moderate vertical
stiffness which is controlled by shear strain, while a sufficiently large value of S
gives a very high vertical stiffness which is controlled by volume change. For a
typicnl bridge-bearing rubber, with G = I MPa and /( = 2000 MPa, shear strain
and volume change make equal contributions 10 vertical stiffness when S ::::0 18. The
above discussion neglects the usually small reduction in Kz(y) which occurs, due
10 a pressure redistribution in the layers, when rubber compressibility is introduced.
When the S value is high, rubber compressibility reduces considerably the bearing
vertical stiffness and the related bending stiffness. However, rubber compressibility
causes little change in the other bearing parameters described.

A'IA" 1 - X,(B)18 - X,(C)IC

X,(8) " 8(1 - A'IA).

x, "0.88(1 - A'I A)

(3.13c)

(3.13d)

(3.13e)

3.5.4 Allowable seismic displacement Xb

Displaument limited by seismic shear strain Ys

When the rubber shear strain Yw, due to the vertical load W. is below its maximum
allowable value there is a reserve shear slrain capacity, say Ys. to accommodate a
horizontal displacement Xb, which is given by

(3.12)

where Ys = allowable shear strain due to horizontal seismic displacement. If this
displacement is inadequate it may be increased by increasing the rubber height h.
In addition, or alternatively, Ys may be increased if the strain due to weight Yw is
reduced.

Displacement limited by over/ap factor A'iA

For an isolator bearing. a lower limit to the overlap factor A'IA is set by the
reducing weight capacity, Equation (3.8d), and sometimes by the increasing end
moments. Typical lower limits for the overlap factor may be 0.8 for a sustained
horizontal displacement and 0.6 for design-carthquake displacements. Where pos­
sible, such ovcrlap limits should be based on laboratory tests and field experience.
TIle relationship between the overlap factor A'IA. the bearing displacement Xb and

where B is the shorter side of the bearing. From equations (3.13b) and (3.l3e) it
is seen that, for a seismic overlap factor A'iA = 0.6. the allowable values of Xb

are D/3 and BI3 respectively.
When the weight per bearing is low, the bearing diameter D or side B may be

too short to accommodate the required seismic displacement Xb • If the discrepancy
is not great it might be met by increasing the bearing area A and/or by reducing the
design-earthquake displacement Xb. The bearing area may be increased, without
changing the bearing stiffness ratio Kbl W, if there is a compensating reduction in
the rubber shear modulus G and/or an increase in the rubber height h, as required
by Equation (3.9). Again, the bearing area may be increased if it is possible to
design the isolator with fewer bearings and hence with a greater weight W per
bearing. Alternatively, the design-earthquakc displacemenl Xb may be reduced by
increasing the effective isolator damping.

If the weight per bearing is so low that the allowllble displacement falls well
short of the design-earthquake displacement, then the allowable displacement may
be increased as required, by segmenting the bearing and introducing stabilising
plates, as described below.

Segmented bearing for a low weight/displacement ratio WIXb
When a rubber bearing supports a small weight W it has a small area A, and hence
its displacement capacity, as given by Equation (3.l3b) or (3.13e), is also small.
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3.5.5 Allowable maximum rubber strains

where fit = shon-duralion failure Slrain in simple tension. Experiments suggesl
that corresponding factors for shear strain during eanhquakes are 0.4 or more for
design--earthquakes and say 0.7 for cxtreme earthquakes.

Allowable negative pressure

Under the combined action of uplift forces and end moments, the rubber within
isolator bearings may be subjecled to large negative pressures. Consider a rubber
bearing subject to an uplift foree of -Wnw. From Equation (3.8) it is found that
this gives a small increase in bearing height of /j.h = hYw/(6S), and a large
central negative pressure of Po = -2GSyw. For a typical bridge bearing, with
G = I MPa, h = 0.15 m, S = 10, and -Yw = -1.0, it follows that t::.h = 2.5 mm
and Po = -20 MPa. Negative pressures may also arise from bearing end momcnts,
which are generatcd by relative displacemcnt and tilting of the ends of a bearing.
These end moments cause local increases and decreases of the pressure within the
bearing discs. A large negative pressure evidently causes a set of small cavities
within thc bearing rubber, which grow progressively during sustained and cyclic
negative pressures. The cavities cause a large reduction in axial stiffness, which
may be regardcd as resulting from a reduction in the effective shape factor S, but
there is little reduction in the horizontal shear stiffness.

Figures 3.15(a) and (b) show a vulcanised laminated-rubber bearing before and
during venical loading, while Figure 3.15(c) is a stress-Slmin plot showing both

(3.15)Yw = 0.2 E,

Allowable shear strains Yw and Ys

The allowable rubber shear strains for various loads and displacements are im­
ponant factors in the perfonnance of rubber bearings, as discussed above: When
bearings are used as isolation mounts for compaci struclUres, they must withstand
the combined rubber shear strains due to struclUral weight and seismic displace­
ments. When bearings isolate bridge superstructures, some provision must be made
for additional shear strains due to traffic loads and thennal displacements. In ad­
dition 10 their seismic design, rubber bearing mounts must be checked for Iheir
capacity to withstand the more sustained non-seismic loads and displacemcnts.

The damaging effect of a given rubber strain increases with its tOIa] duration
and with the number of times it is reduced or reversed. In particular, rubber Slrains
due to frequent and fluctuating traffic loads are found to be more severe than a
corresponding steady strain applied for the life of a bearing. On me omer hand,
laboratory tests show that the cyclic strains due to seismic displacements are much
less severe than corresponding long-duration steady Slrains, evidenlly because they
involve so few cycles and have such a shon duration.

The sustainable steady shear strain in a rubber bearing is sometimes given as
(Bridge Engineering Standards, 1976)

(3.14)

Figure 3.14 Segmenle<l bearing formed by rubber
segments placed at the comers of
comiTM)IJ stabilising plaits, iIIuslraled by
six S1abilising plaits and 20 (mullilayer)
segments

Such a simple bearing may be replaced by an equivalenl segmenled bearing, as
shown in Figure 3.14, which increases the displacemenl capacilY.

Consider the replacemem of a simple bearing by an equivalent segmented bear.
ing in which sets of four segments are located near the comers of rectangular
stabilisation platfonns or plales, as shown in Figure 3.14. If all the linear dimen­
sions (including the thickness) of the segment rubber layers are half those of Ihe
simple bearing layers, and if the number of layers is increased so that Ihe rubber
height is unaltered, then both bearings have the same values for Ihe rubber area A
and the rubber height 11, and the same shape factor S, resulting in the same load
capacily and the same horizontal sliffness Kb• For a given rubber and operating
conditions, a shape factor which is suitable for a non-segmented bearing is also
suitable for the equivalent segmented bearing. Typically each of the cylindrical seg­
ments shown in Figure 3.14 will be multilayer, to give the small layer Ihickness
required wilhout the use of more stabilising plates than arc necessary to rctain the
overlap factor required for overall bearing stabilily.

When, as here, the segments have half the horizontal dimensions of the corre­
sponding non-segmented bearing, and Ihere are n segments in each verticnl stack
(e.g. 11 = 5 in Figure 3.14), then a required overlap factor is retained with an
increased allowablc displacemcnt given by

where

X.,(I) = allowable displ:'lccmcilt for Ihe corresponding non-segmented bearing.
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compression and tension. This bearing failed in the rubber at a tensile strain of
350%, allhough small internal cracks were most probably formed before this strain
was reached.

It is nonnal practice 10 design bridge bearing installations so that negative pres­
sures do nOI occur in the rubber under the combined action of non-seismic loads
and motions. It is also appropriate to design isolmcd structures so that non-seismic
actions do not cause negative pressures. However, when seismic actions cause
negative pressures in isolator mounts, their duration and frequency are so low that
considerable negative pressures might be tolerated (Tyler, 1991). In general, an
isolator design should be adopted which avoids very high negative pressures dur­
ing seismic action. In the particular case of high uplift forces under the corner
columns of two-way frame structures, high negative pressures in comer rubber
bearings may be avoided by attaching the bearing tops to the bottom beams of the
frames designed to allow comer uplift as described, for example, by Huckelbridge
(1977).
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Figure 3.15 (continlled)

(a) Vule,mised lalllinaled-rubber bearing before loading. (b) Vulcanised
l:uninalcd-nlbbcr bc:lring under vertical tension. (e) SlI'ess-strnin curve
for the YU!clllli'il'<l lamin:llcd-rubbcr bearing under bo(h compression and
tension. (From T)'ler. 1991.)

Figure 3.15
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3.5.6 Other factors in rubber bearing design

In practice the application of laminated-rubber bearings to seismic isolation calls
for sophisticated design and specialised manufaclUring techl~ology. The rubber must
be formulated for long-teon stability and resistance to environmental factors: ~ar­

ticularly deterioration due to ozone and ultraviolet light. Th~ bonds (vulcamsmg)
between the rubber and the interleaved metal plates must resist the large and vary­
ing operating stresses. Bearings must be provided with end and side rubJx:r co:er
to inhibit corrosion of the metal plates and to remove rubber-surface detenorallOn
from regions of high operating strains. The rubber cover and additional surface
materials may be used to increase fire resistance. Interleaved steel plates m~st have
adequate strength to resist rubber shear forces. However, some pl.ale ~ndmg may
reduce the build-up of rubber tension when large displacements give high end n.lO­
mellts. Bearing end-plates must provide for dowels or for other means of pre~entmg
end slip under high shear forces. Such shear connections must operate despite end

Illoments and in some cases when uplift occurs.
The effecl of a fire on the perfonnance of rubber elastomeric bearings and

le'ld-rubber bearings has been checked by Miyazaki (1991) in ~apan,. by heating. the
outside of bearings to greater than 800"C for more than 100 mtn w~lle the .beanngs
arc under a vertical load. After this heating the rubber e1astomenc beanngs and
the lead-rubber bearings perfonned in a satisfactory way without any appreciable
change in their force-displacemenl loops or load bearing capacities.

3.5.7 Summary of laminated-rubber bearings

Laminaled-rubber bearings are already in use in bridges, in order to aeco~modate

Ihenn:L1 expansion. Their modification for the seismic isol.atio.n of b.uildtngs .an.d
bridges is a fairly simple engineering concept, but in practice It reqUIres SOphlSll'
c'lled design and specialised manufacturing technology.

3.6 LEAD-R.UBBER BEARINGS

3.6.1 Introduction

Laminated-rubber bearings are able 10 supply the required displacements for seism~c

isolation. By combining these with a lead-plug insert whi~h ~ro.vides. hysteretic
energy dissipation, the damping required for a successful seIsmIc lso.latl~n system
call be incorporated in a single compact component. Thus o~e. ~evlce IS able .to
support the structure vertic'll1y, to provide the horizont~l f1exlb.lhty together with
the restoring force, and to provide the required hysteretIc dampmg. .

The lead-rubber bcarilltJ, was invented in April 1975 ~y W ~ Rob1t~sOll, t~len

workillg al P!ZL, I)Sll<, WIICIl he S<lW a rubber el;lst0111enc beanng while trymg,

with little success, to get a cylindrical lead shear damper to operate at large strains.
The steel plates in the elastomeric bearing were immediately seen to present a
solution to the problem of how to control the shape of the lead during large plastic
defonnation. A glued elastomeric bearing was drilled out to take a lead plug, as
shown in Figure 3.16, and was tested immediately, and the results forwarded to
the New Zealand Ministry of Works and Development (MWD). In the next few
months, the MWD redesigned the isolators for the William Clayton Building (see
Chapter 6), replacing the planned design (clastomeric bearings plus steel dampers)
with lead-rubber bearings, which were substantially less costly to install, and they
provided a 650 mm diameter elastomeric bearing for testing with a range of lead
plugs. At the same time the Bridge Section of the MWD designed the Toe Toe
and Waiotukupuna bridges 10 take lead-rubber bearings. Thus, during a very short
and exciting time, lead-rubber bearings were invented, tested and used in practical
applications.

Before describing the lead-rubber bearing in detail, it is worthwhile considering
the reasons for choosing lead as the malerial for the insert in the isolalors. The major
reason is Ihat the lead yields in shear at the relatively low stress of ....... 10 MPa, and
behaves approximately as an elastic-plastic solid. Thus a reasonably sized insert of
'"- 100 mm in diameter is required to produce the necessary plastic damping forces
of ....... 100 kN for a typical 2 MN rubber bearing. Lead is also chosen because,
as noted above for the lead-extrusion damper, it is 'hot-worked' when plastically
defonned at ambient temperature, and the mechanical properties of the lead are
being continuously rcstored by the simultaneous interrelated processes of recovery,
recrystallisation and grain growth (Wulff el al. 1956; Birchenall, 1959 and Van
Ylack, 1985). In fact, defonning lead plastically at 20"C is equivalent 10 defonning
iron or sleel plastically al a temperature greater than 400"C. Therefore, lead has
good fatigue properties during cycling at plastic strains (Robinson and Greenbank,
1975, 1976). Anothcr advantage of lead is Ihat il is used in batteries, and so it is
readily available at the high purity of 99.9% required for its mechanical properties
to be predictable.

An elastomeric bearing, as described in Section 3.5, is readily converled into
a lead-rubber bearing by placing a lead plug down its centre, Figure 3.16. The
hole for thc lead plug can be machined through the bearing after manufacture or,
if numbers pennit, the hole can be made in the steel plates and rubber sheets
before they are joined together. The lead is then cast directly inlo the hole or
machined into a plug before being pressed into the hole. For both methods of
placing the lead, it is imperative that the lead plug is' a tight fit in the hole and
that it locks with the steel plates and extrudes a lillIe into the layers of rubber.
To ensure that this occurs, il is recommended that the lead plug volume be 1%
gre'lter than the hole volume, enabling the lead plug to be finnly pressed into the
hole. Thus, when the elastomcric bearing is defonned horizontally, Ihe lead insert
is forced by the interlocking steel plates to defoml in shear throughout its whole
volull1c.

I

WWW.BEHSAZPOLRAZAN.COM



993.6 LEAD-RUBBER BEARINGS

3.6.2 Properties of the lead-rubber bearing

Figure 3,16 (colllinued) (e) Lead-rubber bearing with top and bottom plates vulcanised to
Ihe rubber, suitable for applications requiring applied vertical tension. (From Robinson,
1982.)

Tesl procedures were designed to measure the load-deflection loops of lead-rubber

bearings during Ihc horizontal displacements of design earthquakes and extreme

CllI·lhqUllkcs. while an axial load representing structural weight was applied. These

tests were performed at seismic velocities to ensure that the lead strain rates and

Icmperature rises represented those which would apply during the simulated earth­
quakes. Further load measurements were made at very low velocities to find the

reactions 10 slnlclural dimension changes arising from daily temperature cycling,

(a) Lead-fllbber bearing which consists of a lead plug inserted info a vul­
canised Illmin1l1ed-rubber bearing. The fonn shown here is suitable for ap­
I)lic<llions whcre there is no applied tension. (b) Lead-rubber bearing for
Willillill Clayton Building (see Chapter 6). Note the 300 mm rule placed on
Ihe bellring. Load capacity 3 MN, stroke ±Ioo mill. (c) Lead-rubber bear­
ing undel' slatic ICS\, (d) Lead-rubber bearing for William Clayton Building
Hnder dyll<ll11ic lest (1979), The motive force was supplied from the drive of
a converlell calel'])illlir tmctor: vertical load up to 4 MN, frequency 0.9 Hz,
llluxil1l\llll power 100 kW, maximum shear force 400 kN. stroke ±90 mm.

ISOLATOR DEVICES AND SYSTEMS
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Figure 3.16
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as well as the reactions 10 the even slower motions associated with the decay of
residual isolator displacements after an 'earthquake (Robinson and Tucker. 1977,
1981; Robinson, 1982).

The force-displaccmenl hysteresis loop of an elaSlomeric bearing without a
lead plug is shown as the dotted curve in Figure 3.17. This loop, which is for
a bearing 650 mm in diameter. is mainly elastic with a rubber shear stiffness.
Kb(r) = 1.75 MN m- l and a small amount of hysteresis. Also in lhe figure is the
loop for the same bearing when il contains a lead insert with a diameter of 170 rom.
The dashed lines are at the slope of 1.75 MN m- I and are a good approxim(uion
to the post-yield stiffness. In this case the lead is behaving as a plastic solid which
adds'" 235 kN to the elastic force required (0 shear the bearing. Another factor of
interest is the inilial elastic part of the foree-displacement curve for small forces.

Thus a reasonable description of the hysteresis loop is a bilinear solid with an
initial elastic stiffness of K bl followed by a post yield stiffness of K b2 where

Kbt '" IOKb(r)

Kb2 ::::::: Kb(r)

(3.16a)

(3.16bj

where Kb(r) is given by Equation (3.9).

40rJ-"'::BO:;-~I,(J-:;;-~-;O'---'---:I,(J';;-~;CBO:;--'

Displacement/(mmi

Dynamic (orce-displacemcnl hysteretic loop, for a 650 mOl diameter bear­
ing. obt:ained using equipmenl shown in Figure 3.16(d). with vertical com­
pression force "-(vcn) = 3.15 MN_ frequency 0.9 Hz, stroke ± 90 mOl.
The da.~llCd curve is for lhe bearing wilhout a lead plug. Tlle solid line is
for a lead plug of 110 111m diameler. 11te slope of lIte d:I.~lted line is Kb(r).
(From Robill~OI1. 19R2.)
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(a) Force-displacemenl hysleresis loops for a lead-rubber bearing used
in the William Clayton Building. at 45 and 110 mm strokes. with
a venic.. l force of 3.15 MN al 0.9 Hz. (From Robinson. 1982.)
(b) Forcc-displacemcnl curves for lhe bearings used in lhe Wellington Press
Building (see Chnplcr 6). (From Robinson and Cousins, 1987. 1988.)
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F = r(Pb)A(Pb) + Kb(r)X

o
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Force lJuc III III!' 11'1111, I (hI I (r). ;1\;. function of lhe cros.'l-Sttliolllll <Ire..
of the Ie.ld 111\1'11 (I ""11 Itnblll\llll. 1982.)

Fi~lIrc J.1X
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where the shear stress at which the lead yields r(Ph) = 10.5 MPa, A(Pb) is the
cros."-scctional area of the lead. Kb(r) is the stiffness of the rubber in a horizontal
plane. and X is the displacement of the top of the rearing with respect to its base.
This f;lct is illuslr;:lled in Figure 3.18 where the maximum shearing force, minus
Ihe force due to the elastic stiffness of the rubber, is ploued against the cross­
sectional ;lre;! of the lead insert. The slope of this line is the yield stress of lead,
10.5 MPa (Robinson, 1982). Note Qy of a hysteretic damper is given approximately
by r(Pb)A(Pb).

Figure 3.19 contains the force-displacement hysteresis loops for two recent ex­
amples. namely the lead-rubrer bearings for the seismic isolation of (a) the William
Clayton Building and (b) the Wellington Press Building. For both of these exam­
ples lhe initial stiffness Kbl ..... IOKb(r) while the post-yield stiffness is approxi­
mately Kb(r).

Dependence on the diameter oJ the lead insert

The horizontal force, F, required to cause the rearing to re horizontally sheared can
re considered as two forces acting in parallel, the first due to the rubrer elasticity
and the second due to the plasticity of the lead. The rubrer elasticity results in a
force which is proportional to the displacement while the plasticity requires a force
which is independent of displacement. Thus to a very good approximation

~ 200

"
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whcre below y = 3 X 10-4 S-I, b = 0.15 and above, b = 0.035. For the lead
extrusion damper (Figure 3.10) it was found that, for the twO regions, b = 0.14
and 0.03. For slow creep Olher authors conclude that b = 0.13 (Birchenall 1959.
llugh 1970). When Ihe experimental errors are taken inlO account. all of Ihese
results arc in reasonable agreement.

l'lC.~ results illdic:lte lhal the lelld rubber bearing has lillie ratc-dcl>cndellcc at
strain ratcs of 3 x 10 .. 10" I, which includes typical earth(llHlkc frequellcies of
10 1 I s I. For this nll1~l' 01 Illndll lules, ;1Il illcrease ill rale by a fllctor of 10
C:lll"C~ an increa"C ill fmu' 01 ollh W' Below \train rates of 3 x 10 .\" I. the

Nnw l/(IIJ'llUlcllce

':(ll' llllUll1bcrof applications it is necessary to know the behaviour of the lead-rubber
bearing under creep conditions. For example, if a bridge deck is mounled on Ihe
bc:lrings then, during the nonnal 24-hour cycle of lemperature, Ihe bearings will
have to accommodate several displacements of ...... ±3 mm without producing large
forces. In order to detennine the effect of creep rates of"'" I mm h- I

, the second
lcad-rubber bearing made, (that is, one with dimensions of 356 x 356 x 140 mm3

with a 100 mm lead plug) was mounted in the back-to-back reaction frame in the
Instron testing machine. The first result was obtained at 6 mm h- l, with the force
due to the lead alone reaching a maximum afler 2.5 h, before decreasing slowly.
After 6 h Ihe displacement was held constant and the force due to the lead decreased
to one half in about I h, and continued to fall with time, giving a relaxation time of
1-2 h. Another creep test was carried out at I mmh- 1 for 6 h, when the direction
was rcversed, giving the hysteresis shown in Figure 3.20. For complcleness the
force F(r), due to the rubber, is included with its ±20% error bar. The shear stress
in the lead plug reached a maximum of 3.2 MPa, which is ...... 30% of the stress
of 10.5 MPa for the dynamic lests. The force due to the rubber is great enough to
drive the defonned lead, and the structure, back to its original position.

Because of the large errors caused by F(r), it was not possible to detennine
:lccur.ltely the rate-dependence of the lead in the lead-rubber bearing. To overcome
this problem three lead hyslerelic dampers, which had been developed earlier to
operate in shear without a rubber bearing (Robinson, 1982), were tested at various
strain rates. These dampers consisted of lead cylinders whose diameters varied
parabolic:llly as shown in the insen to Figure 3.21, and whose ends were soldered
10 lwo brass plates. The parabolic variation was designed to minimise the effeci of
bending stresses, which occur away from the neulral axis of the lead, during [he
application of shearing displacemenls: in fact. the shear stress near the parabolic
l-Urf:lce of the lead remained constanlto a first approximation. The rate dependence
of these dampers, with their shear stress nonnalised to Ihat at y = 1 S-l. is shown
ill Figure 3.21, by the circled poinls. This figure also denotes, with the symbol (x),
the values obtained for the second lead-rubber bearing made, al rates of y = IO-~

and 3 x 10- 1 S-I. These results have a rate dependence
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r(Pb) = ayb (3.18)

Figu~ 3.20

Fi/:lIrc .121

(5 = x/h(Pbl

0.1 ' 0.2
'Or--~--',;,--~-~-...,5

Force due to lead during creep of 356 mm2 bearing with 100 mm lead
plug, at vertical force of 400 kN. Open poinrs are 6 mm h- ' . filled points
are I mm h- I alld dashed line is F(r). (From Robinson. 1982.)

Rate depcndenee of lead cylinders or p;lrabolic section (sec inscrt) in shear.
:IS illdil,;;ltcd by the cirl,;lcd POliltS. The crosses indic;lte the rate dependcncc
or Ihe le;,d 1)lug in ;, lc;ld ruhbcr bc;lring. (From Robinson. 1982.)
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dependence of the shear stress on creep rale is greater. with a 40% change in force
for each decade change in rate. However, this means thai at creep displacements of
...., I mill II I for a typical bearing 100 mm high (that is. at y - 3 x 10-6 5- 1), the
..hear MI'CSS has dropped 10 35% of its value al typical earthquake rates, Y ...... 1 5-1.

Filligue and temperature

-nlC lcad-rubber bearing can be expected to survive a large number of earthquakes,
c:\ch with an energy input corresponding to 3-5 strokes of ±100 mm. For example,
the results for a series of dynamic tests on the 650 mm diameter bearing with a
[40 mm diameter lead plug are shown in Figure 3.22. The symbols F(a) and F(b)
correspond to points such as a and b on Figure 3.17. F(a) and F(b) decreased by
10 and 25% over the first five cycles but recovered some of this decrease in the
5 min breaks betwcen tcsts. An intcrval of 12 d between the last two tcsts did not
givc a greater recovcry than that obtained in 5 min. The effect of the 24 cycles is
~hown more clearly by Figure 3.23, where the outer hysteresis loop is the 1st, and
the inner loop is the 24th. ~e area of the 24th loop is 80% of the I st, indicating that
the bearing has retained most of its damping capacity over these seven simulated
earthquakes.

As a further check on the fatigue perfonnance, the 356 mm bearing was dy·
namically tested at a shear strain of 0.5 for a total of 215 cycles in a two-day
period. This bearing was also subjcct to II 000 strokes at ±3 mm (0.9 Hz), 10
demonstrate that it could withstand Ihe daily cycles of thermal expansion which
occur in a bridge deck over a period of 30 years. II pcrfonned satisfactorily.

3OO,L.o80--~iJJ~~-C0!c-~""iJJOO-~"'80,-J

Displacement / lmml

I st and 24th hysteresis loops for lead-rubber bearing shown in Figure 3.22.
Thc outcr loop is the 1st and lhc inncr loop is the 24th. (From Robinson,
1982.)
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OynallUl' ll"t~ 1111 1\".1<1 ,uhher hearing over seven ~imul:llcd e:u1hquakes.
(1'f111ll \{l,hm'''ll. 1'/11'1

The 356 mm bearing was also studied with dynamic tests (y .... 0.5, 0.9 Hz)
at temperatures of -35, -15 and +45°C. to ensure its perfonnance in extreme
temperature environments. lbe ralio of the force F(b) to that at 18°C for the firsl
cycle was 1.4. 1.2 and 0.9 at -35, -15 and +45°C respectively, showing that the
lead-rubber bearing is not strongly lemperature-dependent (Robinson, 1982).

Effect of verticallDad on hysteresis

As can be seen from the resullS of Figure 3.20, il is possible to design lead-rubber
bearings which have little change in their hysteresis loops over a wide range of
vertic:Il loads (Tyler and Robinson, 1984). On Ihe basis of a simple model, Ihe
nominal upper limit of hysterelic force, ry(Pb)A(Pb), should be achieved if Ihere
is no vertical slippage of the plug sides and no horizolllal slippage of Ihe plug
ends. Side slip can be made small by using a small spacing t between the plates
and by ensuring a large confining pressure Po. Satisfaclory results are achieved
with a spacing t less than d/IO. and with a pressure Po, as given approximalely
by equation (3.8b) when S is greater Ihan 10. The effcci of end slip can be made
..mall by lI'~ing a lead plug wilh an adequate heighl-to-diameler ralio hId, say nOI
lc~!> than 1.5. Complicating faclOr-. include the hyslerelic forces due to lhe lead
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wllll:h I~ t:xlmdcd small distances into the spaces between the plates, additional
IIIf\,,'c\ which may increase overall hysteretic forces beyond their nominal upper
hUHI. Again lhe confining pressure is enhanced, beyond that given by the vertical
load, hy inserting a lead plug whose volume exceeds thai of the undcfomlCd cavity
in the bearing.

Hi/it/ear parameters for small f!arthqlUlkes

When the isolalOr motions arise from small earthquakes. wilh displacement spectra
reduced by a faclor of 2 or more. the bilinear loop parameters change in the same
general way as the bilinear loop parameters for an isolator consisting of laminated­
rubber bearings mounted beside steel-beam dampers, with the same beneficial re­
sults. Reduced displacements cause considerable reductions in Qy and considerable
increases in K b2 , as shown in Figure 3.24. As a net result, the cffective (sccant)
j:lCriod. and somctimes the hysteretic damping, faU more slowly, with decreasing
earthquake severity, than they would with a fixed-parameter bilinear loop. (oJ Displacement

3.6.3 Summary of lead-rubber bearings

(a) Differeocc in bilinear loop parameters corresponding to small and
large displacemcnts. (b) Load-displacement loops for various strokes of
Icad-rubber bearing used in Press Hall, Petone (see Chapler 6). (From
Robinson and Cousins. 1987. 1988.)

~I
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Figure 3.24

For strain rates of y ...... I S-I, the Icad-rubber hysteretic bearing can be treated as
a bilincar solid with an initial shcar stiffness of -.. IOKb(r) and a post-yield shear
stiffncss of Kb(r). The yield force of thc lead insert can be readily detennined
from the yield stress of the lead in the bearing, i.e. Ty(Pb) "" 10.5 MPa. Thus the
maximum shear force for a givcn displacement is the sum of the elastic force of thc
c1astomcric bearing and the plastic force required to deform the lead. 1lle actual
post-yield stiffness is likely to vary by up to ±40% from Kb(r) but will probably
be within ±20% of this value. The initial elastic stiffness has only been estimated
from the experimental results and may in fact be in the range of9Kb(r) to 16Kb(r).
Thc prcdiction for the maximum force, F(b), is more accurate and has instead an
uncertainty of ±20% which is thc same as expectcd for thc uncertainty in the shear
stiffncss of manufactured elastomeric bearings. The actual area of the hysteresis
loop fonned by this bilinear model is approximately 20% greater than the area of
the measured hysteresis loop.

llle lead-rubber hysteretic bearing provides an economic solulion 10 lhe problem
of seismically isolating structures, in that the one unit incorporates Ihe three func­
tions of vertical support and horizonlal flexibility (via the rubber) and hysteretic
damping (by the plastic deformation of the lead). Further discussion on lead-rubber
bearings is contained in Robinson and Cousins (1987, 1988); Skinncr el al. (1980);
Skinncr el al. (1991) and Cousins et al. (1991).

3.7 FURTHER ISOLATOR COMI'ONENTS AND SYSTEMS

A wide r.mge of further i..olaltJl' component.., 10 provide nexibility and/or damp­
ing, have been u..ed or !ll'tllkJ"l'll ,!iOIllC of these isolator components arc 1x.'>Cd
Oil matcrial propcrlics, 1)11111(ullllly Ilul..(, which provide flexibility alld hy~tcretic

damping forces, as in the cases described above. A second class or isolator com­
ponent depends on sliding sUPl>orts and on frictional damping forces. A third class
dCI>cnds on g<.:omctrical factors such as rocking with uplirt, or rolling surfaces, or
pendulum action undcr gr:lvity forces. Representative eXlllnples from each class of
isolHlor' componcnt ;Ire described briefly below.
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3.7.1 Isolator damping proporlionallo velocity

In Chapter 2 il was found Ihal linear isolators. with damping forces proportional
to the velocity of isolator defannation, greatly atlenuated the higher-mode seismic
responses and floor spectra of the isolated structures. In contrast. it was found that
high isolator damping which departs severely from linear velocity dependence,
gives smaller reductions in the seismic responses of higher modes. When small
higher-mode seismic responses, or 'low floor spectra, are a design requirement
then the benefits of high isolator damping can still be obtained by increasing the
Yclocity-dependent damping.

lJeari"gs l4'ilh high-loss rubber

Velocity-dependent damping may be obtained using high-loss elastomers, or pilch­
like subst:mccs, or hydraulic dampers with viscous liquids, The rubber bearings,
which may be required for horizontally flexible supports, may use specially fonnu­
Iated and manufactured rubbers which give an effective isolator damping of about
15% of critical. These high-damping rubbers are both very amplitude-dependent
and history-dependent. For example, at a strain amplitude of 50% in the rubber
during the first cycle of operation, the ;unscragged' state, the modulus is approx­
im:lIcly 1.5 times that for the third and subsequent cycles, when ;scragged', The
original unscragged properties return in periods of a few hours to a few days. The
reduction of modulus between the unscragged and scragged state decreases as the
slr:ain amplitude increases. Future improvements in the energy absorption of rub­
bers are to be expected. but at present problems arise with creep under sustained
10.1ds. with non-linearity and temperature dependence of the damping forces. and
with change of shape of the bearing at large displacements, giving rise to amplitude
dependent damping.

Hydraulic dampers

It should be possible to develop effective velocity dampers. of adequate linearity,
for :l wide range of seismic isolator applications by utilising the propenies of
existing high-viscosity silicone liquids. '

[n principle. the development of a velocity-dependent silicone fluid-based hy­
draulic damper is straightforward. A double-acting piston might be used to drive
lhe silicone fluid cyclically through a parallel set of tubular orifices. designed 10
give high fluid shears and hence the required velocity-damping forces. By us­
ing a sufficient working volume of silicone fluid 10 limit thc temperature rise to
4Q'>C during a design-level carthcluakc, the corresponding reduction in d:lmpcr
force is limited to about 25%, For comparison, the thennal capacity per unit vol­
umc for silicone fluid is compamhlc to lhat for le:ld. or about 40% of th:lt for
iron.

The development oj Prul'llllil ImeHr hydraulic dampers is complicated by a
number of f[lctOI" illcludlll~ till' 111\ tr,IW HI 'iliconc fluid volume with tcmperature.

about 10% for a 10000C temperature rise, and also the tendency of the silicone
liquid to cavitate under negative pressure'.

3.7,2 YfFE sliding bearings

UnlubricaJed rTFE bearings

The weight of a structure may be supponed on horizontally moving bearings con­
sisting of blocks of PTFE (polytetrafluoroethylene) sliding on plane horizontal
stainless-steel plates. Starting about 1%5. such bearings were used to provide
low-friction supports for parts of many bridge superstructures. The coefficient of
friction of a PTFE bridge bearing is typically of the order of 0.03. when operating
at the very low rates arising from temperature cycling of the bridge superstruc­
ture. However, it is found that the coefficient of friction is very much higher.
and is dependent on pressure and sliding velocity. when the operating velocity is
typical of that which occurs in an isolator during a design-level earthquake, and
when the operating pressure is typical of that adopted for PTFE bridge bearings
(Tyler, 1977). For operating conditions typical of seismic isolator actions during
design-level earthquakes, the frictional coefficients ranged from about 0.10 to 0.15
or more.

Consider a set of the above PTFE bearings used as a seismic isolator. The first
isolator period Tbl arises from foundation flexibility only. and is typically very
short. The second isolator period Tb2 tends to infinity and therefore provides no
centring force to resist displacement drift. The yield ratio Qy/W is given by the
bearing coefficient of friction and is therefore rather large and variable. The approx­
imately rectangular force-displacement loop gives very high hysteretic damping.
However, absence of a centring force may result in large displacement drift if seis­
mic inertia forces are substantially greater than the bearing frictional forces. Also.
high initial stiffness leads energy into higher modes, providing strong floor spectra
of high frequencies.

An isolator with a wider range of applications is obtained if part of the weight
of the structure rests on PTFE bearings, while the remainder of the weight rests
on rubber bearings. The reduced sliding weight reduces lhe yield ratio Qr/ W,
while the rubber bearings can be used 10 give an appropriate value for the centring
force, as indicated by the second isolator period Tb2 , which should usually be in
lhe range between 2.0-4.0 s. Problems arising from a very short first period Tbt
may be removed by mounting the PTFE bearings on rubber bearings. as described
below.

tllbricaletl JYfllE bearings

Lubricatcd JYfFE bearings have (Iuite small coefficients of friction. usually less than
0.02 (Tyler, 1977), for the pressures and vclocities which they would encounter as
~ci,mie isolator mounts. When an isolator has low-friction lo.1d-suppon bearings,
thCll coml)(}llcnts which provide centring and damping forces need not support any
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weight. For example. approximately linear centring and damping forces could be
provided by blocks of high-loss elastomer. for which creep is nOI a problem without
sustained loads. If higher linear damping is required. hydraulic dampers could be
added. However, since almost every isolator application is tolerant of at least a
moderate degree of non-linearity, it should usually be possible to provide some
of the centring and damping forces by non-linear components, such as weight­
supponing lead-rubber bearings.

For high reliability, lubricated PTFE bearings should be serviced regularly. How­
ever, for high-technology applications. for example nuclear power plant isolation,
lIl;linlcnance should not prcsem a serious problem.

3.7.3 PTFE bearings mounted on rubber bearings

In Chapler 2 it was found that a bilinear isolator with a short first period Tbl results
in relatively large higher-mode seismic accelerations and floor spectra. In Chapter 4
it is shown that these higher-mode seismic responses may be subslantially reduced
by increasing the first bilinear period Tbl to exceed the first period of the unisolated
stnlcture TIM.

A compound isolator component developed in France (Plichon et al. 1980)
consistcd of a sliding bearing mounted on top of a rubber bearing. Initially the
bearings were made of lead-bronze blocks sliding on stainlcss steel. while latcr
designs replaced the lead-bronze blocks by PTFE blocks. The flexibility of thc
laminated-rubber components of the compound bearing can be chosen to give a
tirst bilinear period Tbl which exceeds TI(U), thc first structural period. As in
thc previous section. the second bilinear period Tbl may be limited to a value
which prevents excessive displacemcnt drift by supporting part of the structural
weight directly on rubber bearings. This also reduces the value of Qy{W for thc
i"Olalor.

3.7.4 Tall slender structures rocking with uplifl

TIIC seismic design loads and defonnations of tall.slender structures are nonnally
associated with high overturning moments at the base level. If the narrow base of
such a structure is allowed to rock with uplift, then the base moment is limited to
that required to produce uplift against the restraining forces due to gravity. This
base moment limitation will usually reduce substantially the scismic loads and
dcformations throughout the structurc.

The feet of a stcpping Siructure arc supported by pads which allow some rotation
of the weight-suPI>orting fcct. whilc the ovcrall structure rocks with uplift of othcr
fccl. L..1.minated-rubbcr or 1c:ld slah~ have been used to allow this rotiltion. lllCSC
fI..-C1 pilds also accommodall' 'lllutl lnl'1tlltaritic... and slope mismatchcs between the
fl.oct :md thc SUppOllllli\ !tlul1\I,ltItU". The ,tcpping feet movc in vertical guides

which prevent 'walking', which would give horizontal or rotational displacements
of the base of the structure.

Rocking with stepping is panicularly effective in reducing the seismic loads
and defonnations of top-heavy slender structures such as tower-supported water
tanks (where the tanks should be slender or contain baffles 10 prevent large loog­
period sloshing forces during major earthquakes). Another lop-hcavy structure is
a bridge with tall slender piers. Thc piers may be pennilled to rock in a direction
transverse to the axis of the superstructure, providing the superstructure can ac­
commodate the resulting defonnations. Thc seismic responses of a slender rocking
structure are related in some ways to the responses of a structure with an ap­
proximately rigid-plastic. horizontally defonning isolator. but thcre are also major
diffcrences.

For mode-I seismic responses a rigid rocking structure may be assumed, with
forces and displacements expressed as horizontal actions at the height of the centre
of gravity. The cyclic forcc-displacemcnt curve is then almost vcrtical for all forces
below the uplift force (which corresponds to Qy with bilinear hysteresis) and almost
horizontal for all displacements during uplift. The force-displacement curve is
essentially bilinear elastic. An effective period may be derived using the secant
stiffness for maximum seismic displacement. The effective damping will arise from
any energy losses during structural and foundation defonnations together with the
contribution of any added dampers. The cffcctive period and damping may then be
uscd to relate the maximum seismic displaccment to thc earthquake displaccmcnt
spectra, as in the case of any other non-linear isolator.

Since stepping isolation is a very non-lincar constraint. and since the equivalcnt
first isolator period Tb is substantially less than the first period of the unisolilted
structure, the maximum seismic acceleration responses of the higher isolated modes
are expected to be relatively large. With stcpping. the higher-mode periods and
shapes may be derived by assuming a zero base moment instcad of the zero base
shear force assumed when the isolator acts horizontally.

With rocking isolation there is always a substantial centring force, which is given
by the uplift foree. This centring force ensures that there is lillie drift displacement
to add 10 Ihe spectral displacement. The substantial centring force and the high
first stiffness of the rocking isolator also ensure that there is very liUle residual
displacement after an earthquake. even when substantial hysteretic dampers have
becn introduced.

An early application of rocking with uplift. to increase the seismic resistance of
a 1'111 slcnder structure, is contained in a design study by Savage (1939). The 105 m
picrs of the proposed Pit River road-mil bridge were designed with their bases free
to rock with uplift undcr severe along-stream seismic loads. A New Zealand railway
bridgc at Mangawek:l, ovcr the Rangitikci River. with 69 m piers. was designed and
built with the picr fect frec to uplift during severe along-stream seismic loads (sec
Ch:lptcr 6). A tall rocking chimney structure. buill al Christchurch. New Zealand,
i\ dc.<:cribed by Sharpe and Skinner (1983).
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3.7.5 Further components for isolator flexibility

TaJl columns and fre~ piles

Horizontal flexibility can be provided by lall first-storey columns or by free­
sl:lllding piles. Such flexible columns must have adequate length to avoid Eu­
ler instability under combined gravity earthquake loads, while providing adequate
horizontal flexibility. With lall columns, lhe end moments may be severe despite
relatively low horizontal shears.

With deep free-standing piles it is usually convenicni 10 provide dampers and
SlOpS or buffers al the pile lops since it is usually practical to anchor them at
Ihis level. This approach has been used in Union House, Auckland, which uscs
sll.:c1 cantilever dampers, and the Wellington Central Police Station. which uses
Icad-cxtrusion dampers (see Chapter 6). If tall columns are used to isolate a tower
block it would be possible to anchor dampers to a surrounding high-stiffness. high­
\Ircngth mezzanine structure.

In both the above cases where isolation was provided by tall free-standing piles,
the tall piles were required to suppon the structure on a high-strength soil which
underlay a low-strength soil layer. TIle tall piles were made free-standing by sur­
rounding them with clearance tubes. Basement boxes, supponed on shoner piles
and embedded in the surface layer, were used to provide anchors for the hysteretic
dampers and the buffers.

Jlal/ging links and cables

It is possible to provide horizontal flexibility by supporting a structure with hanging
hinged links or with hanging flexible cables (Newmark and Rosenblueth, 1971).
Effective pendulum lengths of 1.0 and 2.25 m would give isolator periods of 2.0
lind 3.0 s respectively. The necessary overlap of the supports and the structure can
certainly be provided but in most cases this would be somewhat inconvenient and
probably expensive, particularly for the longer links required for the longer isolator
j:leriods. When isolation is required for a relatively small item within a structure it
would sometimes be appropriate to suspend it from anchors at a higher structural
level.

Rollers, balls and rockers

1\1\ object can be supponed on rollers or balls. between hardened steel surfaces.
10 provide a very low resistance to horizontal displacement. Again the objcct may
be supported on rockers with rolling contact on plane or curved upper and lower
lturf:lCCS. with the curvatures of thc four contacting surfaces chosen to give a gravity
centring action.

While simple in principle. the lise of hard rolling surfaces to I)rovide horizontally
flexible isolator SUPIXHh prc\Cnt, pmctic:ll problems. lllC.-.c may include load shar­
ing between the rolling compolll'l\l'i 1I1l(Ithe low load capacity of rolling units. par­
IICllhlrly when only pMt' (II th(' lllllhlltHl~ 'urfllccs are worked during the imervah

between substantial earthquakes. It is therefore likely that rolling supports will nor­
mally be restricled to the isolation of specilll components of low or moderate weighl.

3.7.6 Buffers to reduce the maximum isolator displacement

/soJa/or maximum displacement

Isolators are normally designed 10 accommodate a travel greater than that which
would occur during design earthquakes. However, during extreme low-probability
earthquakes there is a possibility that the base of the structure will arrive at the
end of the isolator design displacement when the structure still has considerable
kinetic energy. If a stiff structure encounters a rigid base stop with considerable
kinetic energy the ductility demand on the structure may be high, and may even
substantially exceed the structure's design deformation capacity. The use of a re­
silient or energy-absorbing buffer can considerably increase the acceptable base
impact velocily.

1bere are IWO components of shear strain when the base of a struclure impacts
a sliff buffer. One is a transient shear pulse which travels up the struClure, with
attenuation. and is reflected successively at the top and base. This transient shear
pulse can be attenuated substantially by having a buffer stiffness which is substan­
tially less than the inter-storey stiffness. The other component is an overall shear
deformation, which can be substantially reduccd by having a buffer stiffness lower
than the overall structural stiffness. This is not practical in all cases.

During a low-probability extreme earthquake it is acceptable to permit much
grclller damage than is accepted for design-level eanhquakcs. The principal rc­
quirement is to prevent casualties and particularly to avoid the extreme hazard of
structural collapse. Typically a seismic gap and buffer syslem should be designed
to ensure that a struclure does not collapse for a base displacement which would
be from 50% to 100% greater (in the absence of a buffer) than that provided to
accommodate design-level earthquakes.

Omnidirectional buffers using rubber in shear

Consider a structure mounted on laminated-rubber bearings which has a maximum
horizontal rubber shear str.tin of 100% under design earthquakes. Under earthquakes
of twice this severity the bearings would deform to a strain of approximately 200%,
and store four times Ihe elastic energy. Suppose that the earthquake energy is not
reduced by the presence of buffers (in fact it is likely to be reduced by 20% or
30%). The energy to be stored or absorbed in the buffers is three times that stored
in the bearings on buffer impact. If stiff rubber shear buffers are used they will be
required to store almost three times the energy in the bearings. For a shear strain
of 3 in the rubber buffers the energy density is nine times that of the bearings and
hence the rubber volume required for the buffers is a third of that in the bearings.
'1l1e stiffness of the buffers may be based on the maximum base shear acceptable
for the lttructure under extreme earthquake conditions.
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Omnidirectional buffers using tapered steel beams

Steel-beam buffers can be made omnidireclional in the same way as can rubber
buffers. They may be designed to yield at a level which limits the base shear on
the structure 10 an acceptable level. lbey may be of lower cost but more costly
10 inslall than equivalent-capacity rubber buffers. Operationally lhey are superior
!>cC:IU$C of their yield-limited resistance force and because of the capacity to absorb
most of the energy put into them.

IIl1ffer anchors

Por many structures it will be difficult to provide buffer anchors of the desired
strength. If the buffer anchors dcfonn in a controlled way with an appropriate
level of resistance. they may themselves funclion as buffers and greatly reduce the
demands on a buffer device or even remove the need for added buffers.

The basemen! box which provides stops for base displacement of the Wellington
Central Police Station has a level of soil and pile resistance which allows it to
provide considerable buffer action. Because the basement box is comparable in
mass to a building storey, it is necessary to have a base-to-basement defonnable
interaction which has lower stiffness than the inter-storey members, to aUenuate
impact shear pulses. Such a defonnable interaction is provided by lead collars
around lhe columns near their tops, which may impact basement stops during
exlreme e'lrthquakes.

3.7.7 Active and tuned-mass systems for vibration control

A-; mentioned in Chapter I, lhis book deals primarily with passive systems of
....:ismie isolation, active isolation being a fascinating emerging field which has
l)()tclltial on its own and in combination with passive systems. Like many of the
passive systems, active systems are useful for both aseismic applicalions and for
the reduction of wind-induccd vibration in tall buildings.

Active control systems involve real-time sensing of the structural vibration, com­
puters to calculate the optimum vibration-suppression force, and forces to counter­
aCI Ihe resulting motion. The active-mass damper uses the inertial force of added
masses as the reaction to the control foree, while other systems utilise reaction
forces of the structural body of the building itself.

Tuned-mass d<llllper systems involve the matching of frequencies between the
building and the tuned-mass damper so that out-of-phase vibration occurs.

There is a move to using hybrid active-p'lssive systems for reducing the vibration
induced by wind and e'lrthquake excitation on large bridge towers and high-rise
building structures.

A state-of-Ihe-'lrt review of lIl·tivl' ,ystem, i-; given by Soong (1988) and other
recenl reference' arc 10 he foulI\1 111 the I'roceedings of the various conferences
referred to in C1l11pter I. "It'll ~I' thl' 11th lind 10th World Conferences on E:lrthqual.e

Engineering (I 988 and 1992 respectively) and the 4th US National Conference on
Earthquake Engineering (1990).

A measure of the interesl in 'active conlTOl and tuned dampers' for Ihe reduction
of vibration due 10 earthquakes and wind, is !he fact that this topic was included in a
recenr conference (SMiRT-11, 1991). As a special scienrific event of this conference
an cxhibition was organised, with presentations by 18 Japanese companies.

The material presented al this exhibilion was presented as a special issue by the
organisers of the conference. A list al the end of lhis publication dClails buildings
using vibralion-control devices in Japan. The first of these was completed in 1986
and comprises thc 125-m lall Chiba Port Tower which uses a tuned-mass damper.
In 1987 the Yokohama Marine Towcr was completed; this 30-ftoor observatory uses
tuned liquid dampers for vibration controL In 1988 the Sonic CilY office building
was completed, with friction dampers conrrolling the level of vibr,uion. This has
31 floors above ground and four basement floors and an area of 107 (XX) m2,

Sixteen buildings using such systems were complete in 1991, with eight based on
tuned-mass dampers. •

J
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4 Structures with Seismic
Isolation: Responses and
Response Mechanisms

4.11NTRODUCTION

Major aseismic perfonnance features of well isolated structures were introduced
and studied in Chapter 2. This chapter is a more systematic study of the seismic
responses of isolated structures as the parameters of the structure and the isolation
system are varied over wide ranges.

We begin by considering a unifonn continuous linear vertical 'shear-beam' struc­
ture mounted on a linear isolator. In the case of a well isolated structure, we show
that ils earthquake response can be approximated by a fundamental-mode response
in which the structure moves as a rigid body attached to the isolator, with the overall
flexibility of the system very close to the flexibility of the isolator. Higher modes of
the structure make only a minor contribution to the response, with the higher modes
of the isolated system approximated very closely by the corresponding modes of the
structure with free-free boundary conditions, as would be obtained with an isolator
of zero stiffness and damping. The period of the fundamental mode is controlled by
the ratio between the mass of the overall structure, plus the isolation system, and
the stiffness of the isolator, with the participation factor close to unity throughout
the structure. The higher-mode periods are close to those of the free-free structural
modes, lying between the fixed-base period for the corresponding mode and the
next lower mode. Modes higher than the first have near-zero participation factors.

Since the well isolated modal periods and shapes are approximated well by
the corresponding free-free periods and shapes, isolated modal features may be
expressed as simple perturbations of the features of free-free modes. Such expres­
sions give a simple picture of the modal features with linear isolation, and assist
in the initial design of the isolated structure.

Perturbation cxpressions are derived giving the correction to the free-free pe­
riods and participation factors resulting from a non-zero isolator stiffness. Exact
exprcssions arc also given for the isolated periods in lenns of the structural free-free
1I10dal properties and Ihe base stiffness, but these require the solution of transcen­
dellwl eqllatiolls. However, the c<llcliial iOIl of lhe isolator stiffncss required to obtain
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II tllVl'11 Nllatt:d fundamental·mode period greater than the period of the fixed-base
,UUllUrl.: 1\ cxplicit.

We ncxt consider the introduction of viscous damping into the structure or iso­
lator. which in general leads 10 non-classical isolated modes. Usually the damping
ill thc unisolaled Slructure is assumed to be classical, but when base damping
i.~ imroduccd, often at most only one mode remains classical, in the sense Ihat
the modal dcfonnations are in phase throughout the structure, and the modes be­
come non-orthogonal leading to coupled modal responses. Many practical isolation
systems involve higher damping in the isolation system than that inherent in the
structure. For linear isolation systems with flexible bases and moderately high vis­
cous damping (i.e. around 15-20% of critical), the fundamental-mode damping is
mainly governed by the base damping. The base damping is generally relatively
Ie,s important for higher modes, and often the damping from the structure dom­
illates beyond the second mode even when the isolator damping makes a large
contribution to the first-mode damping. Damping in the isolator can considerably
illcrcase the participation factors of the higher mooes, although their participation
fllClOrs usually remain much less than for the first mode. Increasing isolator damp­
ing gcnemlly decreases the displacement response of the overall system, which
i, mainly governed by the first-mode response. bUI increases the importance of
Ihe higher-frequency acceleration components. The earthquake attack on contents
of the structure may increase significantly wilh increasing isolator damping be­
cau'>C of the enhanced high-frequency response, although remaining less than in an
IIni,ol;lted structure.

The geller-II effects of isolation on structures which are Ilon-unifonn in eleva­
tion are simil;lr to those on unifonn structures. Some specific mass and stiffness
distrihutions with smooth variations can be handled analytically for continuous
lIl()dGL~. (e.g. Su el al. 1989) but discrete mass and stiffness models arc usually
1I10l'C cOllvcllient for treating non-unifonn structures. As with the unifonn contin­
lIilU' model. we develop expressions for the mode shapes and periods of isolated
'tructures modelled as discrete masses and springs in terms of perturbations about
fl\:e free modes. Again, a technique is given for explicit calculation of the base
d.unping and stiffness required to obtain a desired fundamental-mode frequency
and damping.

Seismic isolation systems can greatly reduce the acceleration response of a build­
ing. but some systems are capable of giving even greater reductions in the forces
which act on contents of the structure, and on secondary vibratory systems such as
plant and equipment attached to it. The response of a linear structure well isolated
Oil a linear isolation system is dominated by low-frequency mOlion at the iso­
Inted fundamental-mode frequency. with only minor high-frequency components.
Equipmcnt often has high omural frequencic..... so its excitation is much reduced
in a well isol:lted struclure. while even for e(luipment tuned to the isolated struc­
turc's fundamcntal frequency, II' excitation may remain mode-'\! comp.1fcd with the
earthquake ground motion, loll! 'uh'y,tclll\ with mUltiplc a"..chment points. such
a, \erviec, in building' 01 pllllHtl \y,t{'IIl'i III industrial structures, the ncar rigid-

body response of the isolated supporting structure eliminates problems caused by
differential movements of the support locations.

Perturbation techniques similar to those for the isolated structure are used in our
analysis to detennine the important dynamic properties of secondary structures in
an isolated structure. Response spectrum techniques accounting for the interaction
between the primary and secondary structure are used to estimate Ihe earthquake
response of the secondary structure.

Many practical isolation systems involve isolators with non-linear stress-strain
characteristics. Non-linear isolators provide hysteretic energy dissipation, either
through sliding friction systems or through the plastic deformation of metals such
as steel or lead in mechanical energy dissipators. It is usually possible to achieve
greater and more reliable energy dissipation with non-linear hysteretic isolators than
wilh linear isolators and viscous damping. The non-linearity also allows the struc­
ture to be stiff in small-amplitude motions so that displacements under mooer.ue
winds and traffic vibrations and the like are minor, while in larger-amplitude mo­
tions, such as those resulting from strong earthquake ground motions, lhe isolator
softens to give the large base flexibility required for effective isolation.

For non-linear isolation systems in which the elastic (i.e. low-amplitude) stiffness
of the isolator is sufficiently less than that of the structure, the dynamic responses
are similar in character to those of a well isolated structure with linear isolation.
The energy dissipation is through hysteretic rather than viscous action. but the su­
perstructure responds essentially as a rigid body mounted on the isolator with little
high-frequency response from higher mooes. As well as depending on the low­
and high-amplitude stiffnesses of the isolation system, the response is governed
by a parameter describing the yield level of the isolator. Usually there is an opti­
mal value of the yield strength which will minimise the base shear or acceleration
response for a given earthquake motion; this optimal strength increases with the
severity of the earthquake motion. One-degree-of-freedom response-history analy­
ses which treat the superstructure as a single lumped mass will be reliable if the
dynamic characteristics of the system change lillie with the effective stiffness of
the isolator at different amplitudes of motion, as will occur when the structure is
moderately well isolated even with the isolator acting in its elastic range. Alter­
natively, equivalent linearisation techniques can be used to obtain reliable results
with either single-mass or multi-mass models under the same conditions: that the
effective mode shapes are similar in character for all isolator displacements.

Unfortunately, the analysis and response mechanisms for many practical and
effective non-linear isolation systems arc morc complicated, in that the dynamic
chafllcteristics alter considerably as lhe displacement of the isolator increases. At
small isolator displacements, the clastic isolator stiffness may be high, so that the
system is not behaving like a structure with effective linear isolation. The dis·
placemems will vary significantly through the structure. wilh the superstructure no
longer having rigid-body characteristics. TIle non-unifonn displacements within the
stnlClUrc occur bec:lUse of the non-rigid-body ~hape of the fundamental mode and
becau'iC higher mode, will al~o palticipate :>Irongly. A' the i\olawr wftens. the
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rigid-body fundamental-mode characteristics will appear. There will be little fur­
ther excitation of higher-frequency response umil the response reverses direction,
hill \ignilicanl high-frequency mOlion excited in the initial high-stiffness phase of
lhe isolmor response may persist. On the reversal of motion, the effective stiffness
of the isolator will again be high. Further high-frequency mOlion may be excited
in this phase of the motion until the isolator softens in the reverse direclion. born
through direct excitation from Ihe ground motion and from non-linear energy trans­
fcr mechanisms which occur on the reversal of motion when the effective mode
Sh:lpeS change. High-energy dissipation through hysteretic action, which limits lhe
Qvcmll displacemenl response, requires a high degree of non-linearity (i.e. a large
difference between the low-amplitude and high-amplitude stiffnesses of the isolator
IOgelher with a significant displacement beyond yield). High non-linearity generally
leads to strong excitation of high-frequency response, unless the high non-linearity
can be obtained while retaining a reasonable degree of isolation in even the elastic
re~ponsc phase of the isolator. Hystcretic isolation systems may be able to achieve
11 moderate degree of isolation even in the elastic response stage if the superstruc­
ture has 11 short natural period compared with the elastic period of the structure
llud isollLtor, but sliding friction systems generally have poor isolation in their non­
sliding phases, allowing both direct excitation of high-frequency motion by the
ground accelerations and indirect excitation of high frequencies through non-linear
transfer mechanisms.

Our analysis of such systems is based on response-history analysis. However,
the results can be presented in tenns of various important parameters, with the
curves for various response parameters changing smoothly enough with the system
parameters thai the responses can be estimated for a much wider variety of combi­
nations of system parameters than those we calculated explicitly. Also. to illustrate
the underlying response mechanisms, we have developed a 'modal sweeping' (or
'modal filtering') technique, which presents the response histories of various sys­
tem" with bilinear hysteretic isolation in tenns of the modal responses of the elastic
piln.\<: and post-yield phase. In particular, this presentation shows the effect of the
non-linear energy transfer mechanisms which occur at yielding and at the reversal
of response motion.

The analysis and prediction of the response of secondary systems in structures
wilh non-linear isolation syslems is more difficult than for systems with linear iso­
lalion, because of lhe various mechanisms by which the support point motions may
oblain high-frequency componcnts. The modal sweeping technique is used again to
illuslrate the response mechanisms. Generally the responses of secondary systems
ill Slructures wilh non-linear isolation will be less than in non-isolated structures,
but some isolation systems relying on frictional dissipation can produce increased
response. The secondary system responses may be less than in linearly isolated
structurcs if the hysteretic energy dissipation is sufficient to counteract the high­
frc(lUl.lrlcy components induced hy the non-linear action. but generally a high degree
of linenr ,\olation is more cll\'II,vc fOl' reducing secondary system responses. As
with the \.·aIClilatiOl1 HI \trtll'lllr,.1 ''''pOll\(:\ them<;clvcs. the response of secondary

systems in structures with non-linear isolation is calculated by delailed response­
history analysis, but despite the complicated inleracting response mechanisms al
play, the results can be crystallised into a few simple graphs in tenns of pertinent
system parameters. again allowing generalisation to a much broader range of cases
than studied explicitly.

It has long been known thaI seismic isolation can be very effective in the reduc­
tion of torsional response in lorsionally unbalanced buildings. Many aspeclS of the
torsional response mechanism are similar to those of secondary syslem response.
Similar analytical techniques have been used to demonstrate the advantages of
seismic isolation to overcome Ihe problems of the earthquake response of highly
torsional structures (see Section 4.5).

4.2 LINEAR STRUCTURES WITH LINEAR ISOLATION

4.2.1 Introduction

As the starting point of our detailcd analysis of the earthquake response of seis­
mically isolated structures, we begin by considering a structure modelled as a
continuous uniform linear 'shear-beam', mounted at base level on a linear shear
spring and viscous damper which represent the isolation system. We present the
equalions of motion for the earthquake response of this model, and then derive
ellaCI expressions for its mode shapes and modal periods. In general, with the pres­
ence of damping thc isolated modes are non-classical, i.e. their phases depend on
their position in Ihe Slructure.

For a well isolated structure, i.e. one in which the isolated first-mode period
is much more than the first-mode period of the unisolated structure. we present
perturbation expressions for the modal properties of the isolated structure. Our
results are for perturbations of the slructure with free-free boundary conditions al
the base and top, corresponding to an isolator spring of zero stiffness.

A similar approach is followed for the modal properties of a non-ullifonn struc­
lure represented in tenns of mass, stiffness and damping matrices. Perturbation
expressions are derived for a well isolated non-unifonn structure in a manner anal­
ogous to that for the unifonn continuous model, in tenns of the free-free structure.
For this discrete element representation, we also refer to perturbation results de­
veloped by othcrs (Tsai .Itld Kelly, 1989) in terms of the modal properties of Ihe
fixed-base structure. As the structural properties are often defined in terms of the
fixed-b.\se structure, this perturbation allows a direct comparison of the modal
features of thc isolatcd and un isolated structures.

As the damped isolated structures have non-classical modes, their earthquake
response cannot be found by the simple modal decomposition technique available
for classically damped systems. Howcver. their earthquake responses can still be
found in tcmlS of decoupled modal responses by using Foss's mcthod (Hurty and
Rubinstein. 1964: Tsai and Kelly, 1988). Wc dcrive thc expression for Ihe displace·
ment response of .1 non-ciassic'llly damped mode in terms of :. combinalion of the
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For the continuous uniform shear structure, expressions are simplified by giving
its parameters as the overall values:

The boundary conditions for Ihe 'shear-beam' are that it has the same displace­
ment as Ihe base mass (the lOp of Ihe isolator) at z = O. and zero shear al Ihe top
(z = L):

(4.3)

K = GAIL.

L ulUl

,
ulz,t1

• "~t

h,(tl- ulz,t1

(b)

al/(L, t) = 0,
a,

'.

u(O, t) = lIb(t)

CM = c",AL,

(a) Model of a continuous unifonn venical 'shear-beam' structure of
height L. on a linear shear isolalor whose mass, damping coefficient and
stiffness are Mb , Cb and Kb respectively. (b) System coordinates: ".(f)
is the ground displacement. and U(Z.f), Ub(l) and udf) are me structural
displacement, wilh respect to the ground, at level z, the base level and the
lOP level respcrlively

M = pAL,

+

r
L

J~~
(.)

Figure 4.1

Gel/eral modal fealures

Consider a struclure modelled as a continuous unifonn linear venical 'shear-beam'
mounted on 11 linear isolation system consisling of a mass Mb , a linear spring of
~lifflless K b and a linear viscous damper of damping coefficient Cb, as shown in
Figure 4.1. The shear-beam has a length L, unifonn cross-sectional area A, unifonn
dcn'ity p. constant shear modulus G, and damping coefficients Cm (proponional to
lhe lila,s dislribUlion from beam elements to the ground) and Ct (in parallel with
lhe ,hear modulus, and proponional 10 lhe stiffness dislribution). The equalion of
mOllOIl for Ihe structure, when subjected 10 a ground acceleralion il", is

(tisplaCCrnel11 and velocily responses of a single-degree-of-frecdom oscillalor with
lhe l1lmlld frC{lllclICY and damping. The response expressions can be interpreted in
lI:n1l\ ot' the di.~placement response of such an oscillator, multiplied by a complex
P,lItll,;IIMtlon factor, Isolator damping increases the modulus of the higher-mode
p,lItll.:lpalion factors, as well as introducing the phase shifts, throughout the natural
l1Iodc~, lhat make lhem non-classical.

Unlike the exact expressions for the mode shapes and complex modal frequen­
cics which require solution of transendcntal equations, il is possible, for both the
continuous and discrete models, 10 develop direct expressions for the isolalor spring
stiffness and damping which are required in order to achieve a desired ratio be­
tween Ihe isolated first-mode frequency and the fixed-base frequency (as well as
;1 given first-mode damping). These dirccl expressions are of practical importance
for design, For the continuous case, the isolalor sliffness and damping are given
by a pair of algebraic expressions, while in the discrete case they arc given by
el11ering Ihe iterative Holzer mclhod (Clough and Penzien, 1975) for detennining
mode shapes and periods with Ihe desired (complex) frequency.

4.2.2 Modal properties of a uniform linear 'shear-beam' on a linear
isolator

(4.1)
Hcre 11(:, t) is lhe displacemenl al posilion z in the struclure in Ihe horizontal x
direction with respect to the ground al time t, and u g is the ground displacement.

The equation of motion of the base mass is

(4.4)

(}2(1I +II~) au. a2
( a,,) a ( a,,)pA +c A---- CtA- -- GA- =0

Of2 m at ataz az az az O<z<L.
Consider the free vibration case where ii g = O. There arc then a pair of coupled
differenlial equations:

... 2a2u(Z.I) 2a2u(z,r)
Mu(z,t)+C",u(z,t)-CKL az2 -KL az2 =0

and

(4.2)

wherc III> i!ol Ihc base mass di,placement with respect 10 the ground. The integral
expression i' the base !olhea.. of the slIllcrstruchll'C. A variation on this represenlation
of the coupling force,~ hclwccllllll' isnlalion systcm and the slll)Crslructurc has becn
u'cd hy Su l't 01. (19jo19), Thc method of sepl....llion of v..riablcs produces free-vibration 'oilitions of Ihe
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fonn of motion (4.5)

Un(Z, t) = (an COS YIlZ + bn sin y"z)eP•1

Ubn(t) = Ubnc P• 1

(4.6')

(4.6b)
(4.13)

The term YIlZ is written without brackcl$ but is to be read as a single argument.
Al this stage p", YI!' an, h" and Ubn may be complex-valued.

The complex frequency p" can be expressed in terms of its real and imaginary
parts:

(4.7)

where WI! is the undamped natural frequency and ~n is Ihe fraction of critical viscous
damping. Relationships between an, b" and the wave number YI! are found from
considering Ihe boundary conditions (4.3). From the no-shear condition al the lOp
(, = L),

If U\;ln == 0, Equation (4.11) shows that cos Yn L is zero for non-zero ULn.
We have assumed that the structure has mass-proportional damping (with the

ratio CM / M) and stiffness-proportional damping (with the ratio CK / K), and hence
the unisolated modes are classical. Classical modes have the same phase at all
positions, which occurs when the mode shape is real, requiring y"L to be real.

If the isolator mass Mb and stiffness K b are provided with mass- and stiffness~

proportional damping coefficients in the same ratios as for the slructure, then the
isolated structure has proponional damping, the isolated modes are classical and
y" is again real. Hence isolated modes are classical if Cb has the value:

Again, the term yllL is written without brackets but is to be read as a single
:lrgulllcnl. Letting z = L in (4.6a)

-an YI! sin yllL + b"Yn cos yllL = O. (4.8,) (4.14a)

When (4.14a) is substituted in (4.12) and (4.13) it gives Equation (4.14b) below:

Pl'()vided Utvp #- 0, II SCC()I1(1 1\'[UtIOIl hctwccil p" and y" is obtaincd by substi­
lutill~ Illc Illode-slmpe eKpI'C~~ltlll~ (,1,10) lind (4.11) illto the base lllilSS cquation

Sillce 11/",(/) "'" UIJ"e P", lening z == 0 in (4.10) and applying the boundary
condition 11(0. t) == IIb(l) gives

(4.15a)

(4.14b)

CM WFtH
<;" == 1/2-- = -<;FBI.

Mw" W n

Kb I M b
tanY"L == --- - -ynL.

K YnL M

This equation does not explicitly involve damping terms, gives real values for
Yn, and defines the wave number for classical mode shapes. The modes are also
classical if the damping is zero: Cb == CM == Cx = O. This also satisfies (4.14a)
and gives the same real values for YnL as (4.14b).

When the damping coefficients do not satisfy the constraint given by Equa­
tion (4.14a), then YnL is complex and the mode shapes are non-classicaL In par­
ticular, it may be desirable 10 have a much larger Cb value than that which gives
classical modes in order 10 obtain high first-mode damping of the isolated system,
and hence reduced structural displacements. Also, an undamped structure supported
on a damped isolator gives non-classical modes. Such non-classical mode shapes
are generally less convenient to deal with analytically.

For mass-proportional damping (i.e., CK = 0, CM #- 0), the fraction of critical
damping in isolated mode n is given by

This gives high damping in the first mode with respect to the first-mode unisolated
(fixed-base) damping, <;FIIl. wilh the damping decreasing in higher modes in inverse
ratio to their isolated frequencies, w". Dampings for the higher modes are greater
th;1I1 lhe damping for the fixed-base modes of corresponding number. but approach
Ihe unisolalcd values as the mode number increases.

(4.9)

(4.8b)

(4.12)

(4.11)

(4.10)

b" == UL" sin y"L.

Ubn == ULn cos y"L.

a" == UL" cos y"L.

II" (z, t) == UL" (cos y" L cos y"z + sin y" L sin y"z)et',t

== UL" (cos [y" L(l - z/ L)}) exp(p"/)

Whcn cos y"L == 0, the base displacement is zero, and the structure is unisolated.
The re[alionship between the complex frequency p" and the (sometimes com­

I)[ex) wave number y" is obtained by substituting (4.10) into (4.4); and requiring
a non-zero top displacement V,.,,:

Iknee

where VI-II is defined by u,,(L, r) = UL"cP,t.
Provided Y" is non-zero, that is, there is some structural deformation,
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For sliffness-proportional damping (i.e., e", = 0, ex =F 0)

(4.15b)

""d

UF8JI(Z. t) = Ubi si~ y"L sin(y"z)eP•
,

= (_1)"-1 UL" sin(y"z)eP,'. (4.19)

(4.21)

(4.22)

(4.20.)

(4.2Ob)

If, H
WF8JI = -(211 ~ 1)-

M 2

= (211 - I)CLlF81.

This leads to the free-free mode shape

UFF,,(Z, t) = UL" cos y"L(cos y"z)eP"

= (-I)"-IULn(CosYnz)ePol

For the undamped case, (4.16) gives

The second reference case is the free-free case (i.e. Kb = Cb = Mb = 0), which
corresponds to perfect isolation. The boundary condition at the base of the structure
(z = 0) corresponds to no shear force, requiring

dUFF,,(D) = D.
d,

For the first mode the damping is low with respect to the unisolated value, but
il grows for higher modes to approach the damping value for the corresponding
unisolatcd mode.

The actual damping mechanisms in structures are more complicated than the
types of viscous damping assumed above. Hysteretic mechanisms are likely 10
be involved, either from friclion between elemcms of a structure or because of
the nature of the material stress-strain characteristics. However, viscous damping
gives a mathematically convenient representation of Ihe damping with acceptable
accuracy for amplitudes up to the onset of significant yielding in the structure,
which orten corresponds approximately to the amplitudes at the onset of damaging
motions. Usually the distribution of the viscous damping through the structure is
:lssumcd to be such that classical mode shapes are obtained, with no coupling
between the modes. In addition, the damping is often assumed to be either of the
Rayleigh type as assumed above (i.e., the damping distribution is proportional to
a lillcar combination of the mass and stiffness distributions), or such thaI equal
fractions of critical damping are obtained in all modes.

with

CI"s.~ical normal modes or no damping

Without damping. CM = CK = Cb = 0, and also~" = D. from (4.7), p; = ~w;.

1?Aluations (4.12) and (4.13) become

siny"L=O

i.e.

(4.23a)

(4.23b)

'1lis equation is the same as (4.14b) since it also applies with classical damping.
TIIC mode shape 11,,(1) and frequency WIt for any degree of isolation, that is for any
values of the ratios KblK and MbIM, may be found by solving (4.17) for y"L
and substituting these y"L values in (4.10) and (4.16).

Before investigating the roots of (4.17) it is worth considering two reference
cilses. The first is the fixed-base case, in the absence of the isolator. For a fixed­
hasc. 11,,(0, I) = 0 and (4.11) gives for non-zero UL"

NOle Ihat Ihe fixed-base and free-free frequencies interleave. II is also convenient
to introduce the frequency

(4.26)

(4.25)

(4.24a)

(4.24b)

For the undamped case, (4.16) gives

CLIFF" = If,(n - 1)11"

= (211 - 2)IiJFBI.

corresponding to :1 rigid structure of mass M on an isolator of stiffness K b • and
the associaled natural period Tb = 211"/%. Many of the modal expressions for the
isolated syslem are a function of the isolation ratio

(4.16)

(4.17)

(4.18a)eosy"L=O

w. ~ j(K/M)y.L,

Kb I M btanvL=----yL.
,,, K y"L M"

i.e.
H

1)­
2

(4.18b)
In placc.'i the not"lion w,(U) and TI(U) is used for the undamped firsl-mode

frcllllcncy alld period of the 1Illisol'llCd l>lfUClllre railler lhan Wi'1I1 .mel "li'B I. where
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I

.."---------

.....
;I~

---==-------,;;--fiII"4-I--- I

... I~
:: 1:lC

(4.30)

(4.28)

(4.31a)

(4.31 b)

(4.29,)

(4.29b)

(4.27a)

(4.27b)

Y11. ~~ (I _~ :b)
:,(1 2:;2)

Higher-order approximalions arc given by

In terms of the parameter I,

TIle natural frequency is given by

Here it is seen thai' I' is a measure of the ratio of isolator flexibility to structural
flexibility. '/' and % are common parameters in isolated modal features, when
expressed as perturbations of free-free modal features.

Return now to a consideration of the rOOIS of Equalion (4.17) for the isolated
case with no damping, or with classical damping. It is informative 10 plol the two
sides of this equation as functions of y"L (Figure 4.2). For the case of Mb = 0
(Ihe dashed curve), the higher roots y"L approach but lie above (n - I)JT. which
are lhe roots for the free-free case. The first root lies in the range 0 < Yl L < Jr12.
thaI is. between the free-free and fixed-base roots.

For a small value of Kbl K. lhe first root YI L will lie near zero. For Ihis case

so from Equalion (4.17)

the subscript 'FBI' denotes 'fixed-base first-mode'. The isolation ratio I varies
from 0 for an unisolaled system (i.e.• a rigid isolator with Tb = 0), to infinity for a
free~free system where Kb and Wi:> are zero. The unisolated first-mode undamped
frequency and period are
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(4.37c)

(4.38,)

(4.37a)

(4.36)

(4.35b)

(4.37b)

(4.38b)

w" = (211 - 2)WFBI [I + (211 12)2/2]

= WFffl [I + (211 _1 2)2/2]'

[
M,

;::::; (211 -2)WFBI 1- - +
M (2n

11"2 I 'Mb
6" = - - -(n-I)Jr

4/ 2 (n - 1)11" M

y"L;::::; (n -1)11" [I + 4(n 11)2/2 _ :b]
w"=~y,,L

2
= ~WFBly"L

"

For increasing /, this converges very quickly 10 the free-free frequency WFF,. for
higher modes, as shown in Figure 4.3(e) and discussed below.

The flexible base spring changes the nalural frequencies from the fixed-base
values to values close to lhe free-free frequencies. It is the isolator sliffness, together
with the total mass of the structure and isolation system. which detennines the
fundamental frequency. On the other hand, the low isolator stiffness causes the
higher-mode frequencies to be near the free-free frequencies of Ihe structure, but
has lillie influence on the actual frequency values, which are detennined primarily
by the stiffness of the structure and the total mass of the system, with the isolator
stiffness introducing a small perturbation.

For some of the low modes, the base mass may bring the isolated higher~

mode frequencics c10scr to the free-free frequcncies than those obtained with zero
base mass. Note that large base masses cause greater changes in the higher-mode
frequencies than in the lower-mode frequencies. On the other hand, non-zero base
stiffness has its greatest effects on the frequcncics of low modes.

Next consider the mode shapes and shear distributions. These are presented in
Figure 4.3, in which normalised profiles 1'", as defined in Chapter 2, are given
instcad of II". The shears and momcnts arc denotcd 5' and M' to indicatc nonnal­
ismion.

The mode shape at position z for mode II is

ForMb=O

i.e.

(4.34)

(4.32,)

(4.32,)

(4.33,)

(4.32b)

(4.33b)

(4.330)

(4.33d)

YIIL :::::: (n - l)lT + l::.n.

y,L'" !K, M (I_~K'( M )' + ...)VK M + M b 6 K M + M b

W, '"~ (I _~ K, ( M )' + ...).yM"""+M;, 6 K M+Mb

Expanding Ian t:." as a series, HIl(t retaining tcnllS to 1:::."

lienee from Equation (4.17)

For the higher modes, as can be secn from Figure 4.2, for sufficiently small Mb/ M

For a non-zero base mass Mb• all roots YIIL are smaller lhan with zero base mass,
as can be secn in Figure 4.2. lbe roots for sufficiently high modes n approach bUI
exceed (n - I)n' - (Tr/2), which is the fixed-base roOl for mode (n - I). Again
assuming thai }'l L is small, the firsl root can be found approximately as

As before. this is the frequency for a rigid slrueture of tOlal mass M + Mb
supported on the base spring Kb•

Similar fonns of higher-accuracy approximation are available as for the zero
base mass case:

A"
At,

K(" II'!
(4.3501) (4.39)

WWW.BEHSAZPOLRAZAN.COM



[34 $TRUcrURES WITH SEISMIC ISOLATION 4.2 LINEAR STRUCTURES WITH LINEAR ISOLATION 135

,•I
,

,,,

"'-1-0 """ no<

"

,•I

,----

""--,----

, ,

3
'; ,
3

•

,

,

'01

Figure 4.3 (conrinued)
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(4.41)

(4.40)

(4.42)

Modal features of a continuous unifonn 'shear-beam' structure with various
degrees of linear isolation, given by f = TbIT1(U), so that I = 0 gives
a fixed base (unisolated system) and I = 00 gives a shear-free base (well
isolated system). It is seen thlll, for any degree of isolation greater than 2,
the modes have high-isolation modal features. (a) Model defining the pa­
rameters of the isolated structure, of height L, and muss III and stiffness k
per unit heighl. (b) V(lri,ltion with height z of the nonnalised first, second
and third mode ShllpeS !/J" !/Jl and !/J3 respectively, for various values of I.
(e) Variation with height z of normalised modal shear forces S; and S;, for
vilriOllS v~tlues of I. (tI) VariatiOn with height z of normalised mooal over­
turning lllonh.:nts M; and M;. for v(lriOliS vllilles of f. (e) Variation of modal
frequencies 11)" with degree of isolation I. (1) Varilltion of top I)articip~tion

factor wilh I

Figure 4,3

Also, for higher modes !l > 1:

u,,(z) ~ UN" cos [(2n - 2):: (I + I ) (I - .:..)]
2 4(" 1)'1' L'

Here ULn denotes the nth-mode displacement at the lOp of the SlrUCI:Jre. This
notation is anticipating the later treatment of discrete systems, where mass N is
the top mass of the struclUre. For the massless base case and small WnlWFBh i.e.
large I:

The well isolated higher modes have juS! over n - I half-wavelengths between
z = 0 and z = L, with antinodes at the top and just above the base. and as J and
n increase, quickly converge to the free-free mode shapes

UFFn(Z) = UNncos[(ln -2)% (I -1)].

" .
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For a massless base and large isolation factor I, the participation factors becomeAs I increases. particularly for larger n, the free-free modes have almost exactly
(n - I) half-wavelengths. with anlinodes at the top and base (Figure 4.3(b».

The earthquake response of the shear beam can be written as the sum of lIIe
modal conlribUlions:

r.(,) '" (I + ~)oos[!:- (I-~) (1- ~)]24/2 21 24/ 2 L
(4.49a)

u(z, I) = L 1I.. (Z)~II(l).
• andforn> I

The equation of motion (4.1) then becomes

AI this stage, we are considering classically damped modes, SO using the standard
modal decomposilion approach (e.g. Clough and Penzien. 1975) and making use
of lhe orthogonality of the normal modes, the equation of motion for the nth mode
becomes

(4.503)X NI :::::: (I + :Z:;2) So(W\. ~l)

XN"::::::2(n \)2/2 (1- 2(n \)2/2)SO(W",~,,) 11>1. (4.50b)

(-1)'-' ( ')
fn(z):::::: 2(n 1)2/2 1- 2(n 1)2/2

x cos [(n - I)n (I + 4(n _")'1') (I -~)]. (4.49b)

The panicipation faclors at the top of the shear-beam are shown for the first three
modes in Figure 4.3(f).

The maximum modal displacements at the top of the shear-beam are given by

(4.43)

(4.44)

For an earthquake excitation with a relative displacement response spectrum
So(w,.n. the maximum displacement of mode 1/ at position z is given by

The fundamental mode dominates the displacement response because the firSI­
mode spectral displacement Sp(W!.':l) is usually much larger than the higher-mode
spectral displacements SO(W",':n), and the first-mode participation factor is slightly
grealer than unity, while the higher-mode participation faclors are small.

For an earthquake acceleration response spectrum SA(W~. ~~). the maximum
seismic acceleration at position z in mode n is given by

(4.51)

(4.52)

X,,(z);::: r~(Z)SA(W", ~~)

= rN"cos[y.. L(I-z/L)]SA(w",~~),

Note that X" denotes the maximum absolule acceleration. while X" and X" refer
to displacements and velocities relalive to the ground. r N~ denotes the nth-mode
participation factor at the lOp of the struclure. using a similar nOlalion as introduced

earlier with UN".
The maximum seismic force per unit height. at level z of mode II, is obtained

by multiplying the corresponding acceleration by the mass per unit height MIL.
to give

(4.45)

(4.47)

(4.400)

(4.46b)

foL
Mu,,(z)dz .

fll(z) = I uII(z).
fo' MII~(z)dz

fo
L[eM + CK(y"L)2]1l;(z)dz

~~w" = L
10 MuHz)dz

~" = CM + CK(y"L)2
2w.

Evaluation of the imcgralo: produces

The p;lnicipation factor f,,(z) is given by

The frc(IUencies w" have been derived earlier. The damping S"" is given by

(4.48:1)

(4.48h)

l1lC corresponding maximum seismic ~hean. and overturning moments at level z of
mode II ;IR: oblained by successive integr:llion of the maximum seismic forces. This
may he done since the 11l()(le, are c1:l"ical and tllCrcfore ;111 the forces throughout
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For !he first mode, the base shear is the maximum shear. However, for the higher
modes the maximum shear is much larger than the base shear

The ratio of S...mu 10 the firsl-mode base shear is an important parameler for
determining Ihe overall shear distribution in the structure. As shown above. for
a well isolated uniform shear-beam structure the firsl-mode shear distribulion is
approximately triangular:

a given mode are in phase. The integrations give

f"S,,(z) = : F,,(z')dz'

~ [(Mjy.L)JrN. s;n [y.L(1 - ,jL)1S.(w.. ,.) (4.53)

OM.(,) = f' S,(")""

~ 1MLj(y.LJ')rN. (I - oos [y.L(1 - ,jLJ]) S. (w. , '.J. (4.54)

For a large isolation factor I, that is for small Khi K, peak seismic accelerations,
forces. shears and overturning moments may be obtained by substituting r HI< and
YIlL values (from (4.49), (4.33) and (4.36» into (4.51) to (4.54).

Seismic shears are of particular interest because they are usually a good measure
of the seismic loads on a structure. For a massless base and large isolation (aelOT I

,

I

S...mu::::: 21f(n M 1)3/2SA(w".~.. )

4 ,::::: -en -I)/·S.....
rr

(4.60)

(4.61)

For the other modes. the distribution is approximately an integml number of half­
cycle sine waves, with a zero value near the base, with the maxima al various
positions up the structure. Obviously, if S...ma~/Sbl is not small, the sinusoidal
higher-mode shear distributions will modify the overall distribution considerably
from the triangular first-mode distribution. The ratio is

(4.63)

(4.62)

for~l »~...
S mu/Sbl'? Ij(21f(n -1))IJ,

S ~~jSbl '? l/l21f(n - I»)J.

Hence it is evident that, at most, only mode 2 can significantly increase the
scismic shears given by mode I.

An overall piclurc givcn by Figure 4.3 is the extcnt to which the isolation factor
J must be increascd ill order that the modal features approach their high-isolation
v;,lucs. In Figures 4.3(e) and (I), which show the frequency ratios and top-level par­
ticipation factors. lhe high-isolation asymptoles are shown dotted. All the modal
features shown approach close to their high-isolation values, or expressions, by
the time Ihe isolalion faclor is increased 10 2.0. The grealest, but still moderate,
dcparture is for Ihe mode-I shape wilh corresponding departures for mode-I ae·
cclcr;lliolls and forcc:;, It i:; shown l:lIer Ihat such trends "Iso apply to a wide range
01 rCII~ollllhly regnlllr ~lmClUres,

This ratio is generally small. Since SA(W..,~.. ) is usually not greater than
ISA(WI'~I), for ~l ::::: ~.. , and also since SA(W... ~.. ) is usually not greater than
/2SA(WI. ~I), for ~I »~.., therefore,

(4.56)

(4.58)

(4.59)
I SA(W... ~.. )

HIli 1)~/4SA(CtlI.l:"d·

"lllUS the first-mode shear dislribution is approximately triangular, from zero al
the lop to the maximum value Sbi at the base. as shown in Figure 4.3(c). Tbe
lirsl-mode base shear is given by:

'1)'I,)('-iJ]
(4.57)

This llhcar distribution has n zeroes, at the top and at spacings of approximately
t/(II - I) down the structure. There is a zero just above the bllse (Figure 4.3(c».
Thc base shear is

"Ille higher-mode shears are given by

The higher-mooc b;lsc ~hCllr~ are generally much smaller Ihan the firsl-mooe bllSC
~hclIr. with thcir n1lim given Ilpproximalely by
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11111" dumping Cb, but zero damping in the structure

W~, 1I0W consider the case where there is isolator damping, but no damping in the
'lIllCr"tructure i.e. CM =CK =0, Cb =F O. From Equation (4.7), the frequency p~

IS defined by

(4.64)

(4.6113)

(4.6Sb)

For CM and CK =0, the frequency equation (4.12) gives
To first order,

(4.65a)

(4.65b)

(4.69a)

(4.69b)

Substituting in the frequency equation (4.13) and equating real and imaginary
pans leads, after some manipulation, to

This corresponds to a rigid structure on the ba~ ~pring and damper. If Mb = 0,
higher-mode frequencies can be found by substltutmg:

(4.70)

(4.71a)

= (n - I)lT + 6~.

K I-{' [ ~~~.~~-~I)'_']b ~ l+cosh-
6~:>;:;K2(11 l)lT JI~~;

.JK7M ~~ [I + <o,h ~.(" - I)'](~) %. (4.71b)
6w~ = JI _ ~; 6~ 4(11 _ I) ./1 - ~; WfBl

This leads to

(4.663)

(4.66b)

where, as given previously in Equation (4.27a)

~81=~~'
Abo

2 ~~(n - l)lT
Cb ::::::: -Mwrlll tanh ,.,...---;y'

11" "l-~~

(4.72)

Given a required damping ~l and frequency WI and known unisolated first-mode
frequency ~81, these lead to explicit expressions for the required base stiffness and
base damping for a given base mass. Assuming wl/~81 is small, and expanding
10 order (wI/WF81)2:

.. . od all C :>;:; '41Wl M when Mb = O.To compare dampmg m vanous m es, rec b

Thus

. 1 T I ...j 's c'ln be uscd
The rig.hl hllll(1 i-i(!c j" ~mllll, SII the Ic:lding tcrm ot llC ay or ~c, c.· '

(4.67:1) ~"(,, - 1)11"
tanh 2

1 - {~

(4.74)
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to expand the left-hand side which must also be small:

Thus the effectiveness of the base damping in introducing damping 10 the higher
modes is inversely proportional 10 the frequency of the higher mode. However, if
Cb introduces high first-mode damping (e.g. "- 20%), the second- and third-mode
damping from the base damper may still be as high as the internal damping from
the SIrUClure for those modes. Moreover, as shown later, base damping may have
a significant effect on the participation factors of the higher isolated modes. even
when il makes only a minor contribUlion 10 the overall damping of these modes.
Also, the case where there is damping in the SUUClure as well as the isolator, for
which the algebra be<:omes very lengthy for the continuous case, is considered in
the following section for discrete-mass SlJUClura] models.

Now consider the nalUre of the non-eJassicaJ mode shapes, which from Equation
(4.10) are given by

(4.79)

(4.80a)

y"L is complex, with real and imaginary pans denoted by Re and 1m:

u,,(z) = UN" cos {Re(y"L) (I - z) + Im(y"L) (I - z)}
= UN" [cos Re(y"L) (I - z) cosh Im(y"L) (I - i)

-i sin Re(y"L) (I - i) sinh Im(y"L) (I - i)]

= UN" cos2Re(y"L) (I - i) + sinh2Im(y"L) (I - i)
x exp [ -i tan-I (tan Re(y"L) (I - i) tanh Im(y"L) (I - i))] (4.80b)

(4.75)

(4.76)

This is the same fonn of expression as for the classical modes, but y" L is now
complex rather than real. UN" is the nth-mode displacement at the top of the shear
beam.

In general, from Equation (4.12)

This compares with the classically damped mode shape

rr "" ( ')u,,(z) = UN" cos --- 1-- .
2 WfBI L

(4.81)

where fJ" is the complex modal frequency as defined in Equation (4.7).
Letting (CM + Cdy"L)2)/M = ~;w,,' the expression for y"L

rewritten as

(4.77)

can be

When Im(y"L) is small, the non-elassical mode has a similar variation of displace­
ment modulus along the beam to that of the classical mode, except that it increases
sliglllly from top to bottom. 1lle most noticeable changes are near zeroes of the
Cl'lssical mode shape, with the modulus of the non-elassical modes having no ze-

rocs because of the extra sinh2 Im(y"L) (I - i) tenn. Also, the phase On of the

mode-n displacements varies down the shear beam, with

(4.78) tun 0" = tan Re(y"L) (1 - i) tanhlm(y"L) (I - i). (4.82)

Note that y"L is real when 1:; = 1:". The condition for this was derived earlier. We
are dealing here with the case where 1:; = 0, i.e. no damping in the structure, but
(tamping in the isolator. This simplifies the algebra slightly, but the nature of the
modes is similar to the general case. With this simplification

rr '''" ( i , 2f1=TI''')l'XP t.m
2/'11 III 2 I -~;

ror the classical system, 0" is independent of height z, corresponding to
[m(y" L) = O.

To illustrate the n"ture of the non-classical modes, Figure 4.4(a) shows the
linn three mode shapes for lhe structural alld isolator par.lmeters TFB1 = 0.6 s,
'Ii, = 2.0 S,l:b = 0.3 and eM = CK = O. lIence the isolator is highly damped and
lhe slruClure is un([.unped. 111e solid and dOlled lines are the real and imaginary
curvcs n:::spcclively and the dashed Iincs lire cnvelopes for the real and imaginary
componcnts of lhc mod,ll displacclllcnls. Thc cnvclopcs may be defincd by thcir
h:lse il1terccpls. ± (I I /),.~) and Ia~ rcspectively. where 2a1 = all :::::: rrl;hW1JW1'1t1 ::::::
O.2M tllld whcrc <11\.'1 ,,~ O.5a; O.()4 for lhis Cll\C. NOlc tlml a~ Illl(y~t).
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(4.85)

(4.83)

(4.84a)

(4.84b)

LCI = [CoJ+ lO

[KI = [Kol + lO

[M!u + [c)u + [K}u = -[MJlu,

where u is the vector of displacements of the N masses with respect to the ground.
For a well isolated structure. consider a penurbation alxlut the classically damped

free-free case, The damping and stiffness matrices may be expressed as:

where the subscript 0 refers to the free-free casc and 0 is the (N - I) x (N - 1)
matrix of zeroes. Kb and Cb are thc spring stiffness and damping coefficient of the
isolator, respectively,

The cigenvalue problem for Ihc free vibration response of the isolated structure.
whcre u = llt/e Pot

, i~

Consider exp,msion of the complex frequencies and mode shapes of the damped
structure on the linear isolator with viscous damping, in terms of penurbations
of the free-free un(\mnl>cd cases. The perturbations will be in terms of a power
expansion of the parameter S, where e is the ratio of the frequency Wb of the
structure, taken as a rigid mass MT sUPI>Or1ed on the isolator spring of stiffness
K I" 10 lhe first-l1lo<le frequency W,'111 of lhe unisolated structure. In this expansion
scheme, the isol:llor spring stiffness K b and isolator damper coefficient Cb are both
laken <IS order £2. This implies thai the fraction of critical damping ~b of the rigid
structure on lhe isolalor i.s of order €, since Cb = Uh(UbMT, where M.,. is the

4.2.3 Non-uniform linear structure on a linear isolator

The results so far in this chapter hav'e been for a structure modelled as a con­
tinuous uniform linear 'shear-beam' on a linear isolator. Many structures have
non-uniform distributions of mass and stiffness with heigh!. Except for special
variations of mass and stiffness, it is generally not possible to obtain closed-form
analytical expressions for the mode shapes and frequencies of non-uniform contin­
uous structures. However. if the structures are modelled as systems with discrete
masses and springs, i.c. their mass and stiffness distributions are represented in
matrix form, it is possible to obtain approximate but accurate expressions for the
mode shapes and frequencies of well isolated non-uniform structures in terms of
their free-free mode shapes and frequencies. It is also possible to derive expres­
sions in terms of their fixed-base frequencies and mode shapes. for which we give
references later.

11le equation of motion for a structure modelled as a discrete linear system
with viscous damping may be wrinen in terms of the mass, damping and stiffness
matrices [MJ. IC) and [K] as

,,

l~~==fUnd,am""d 1+121r Dam~d 1+121

_Undamped IS~21
Oampild I5'..1

~oCo~,--~,.o

~)

,

Complex mode shapes for [he uniform 'shear-beam' structure with a highly­
damped linear isolator. (a) The real and imaginary curves, i.e. the solid and
dotted lines. are the front and side elevations respe<:tively of the end point
of the mode displacement vector r/J. at the time when 4Ju. is TCtll. A plan
view for the mode-2 vector is also shown, below the elevations for mode 2.
(b) The moduli of the normalised displacements and shears for mode 2. with
and without damping. The dOlled lines:;trc for I;b = 0 and the solid lines nre
for I;b "" 0.3

,

Figure 4.4

The moduli of nomluJised displacements and shears for mode 2 aTC shown in
Figure 4.4(b). The solid curves are for the damped isolator, ~b =:: 0.3, and the dOlled
curves arc for an undamped isolator, ~b :::: O. It is seen thai non-clflssical behaviour
has a signific'lllt effect 011 the highcr-mode base shear.

The solution of the cqu:llioll.~ of motion for the forced response, ill lerms of
1ll0<h,1 resl}()lIsCS, is discu..:-.ed in a later section. The solution technique shares
much in commOIl with Ihrll fOl' di ..crctc syslems with lion-classical damping, so the

IWO SOluliolis :,rc pre:-,clllC{IIO~l'lhl'" flftcr cOllsideration of lhe 1ll00Ial prol>Cflies of
discrete models of i..olntcd IlOIi II111tOltli :-.lrllcturcs.
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Applying these definitions 10 the expressions for the complex first-mode frequency
given above:

where~ = Kb/MT, ~bWb = Cbl MT, UbjO is the base displacement in the free-free
mode j, and J-LjO is the modal mass of the jlh free-free mode defined as

(4.89<)

(4.89')

(4.89b)

(4.88a)

n # I (4.88b)

II 0:1 I. (4.88c)

w" =lp,,1

- Re(p,.)
~. ~ Ip.1 .

where ~" is the fraction of critical viscous damping and w" the undamped nat­
ural frequency in isolated mode n. Inverting this expression gives the following
relationships for w,. and , .. in terms of the complex frequency p,,:

Note that the damped nth-mode natural frequency of the free-free system,

JI - ~;ownO, expands to w"o - lh~;ow"o .... As ~"o has been assumed to be O(e2
),

the second (erm in this exp'lllsion does not appear inlhe above results, which neglect
terms of 0(£4).

It is convenient for interpretation to express the complex frequency as

tOlal mass of the structure and isolator. Normally the fraction of critical damping
of the isolator is greater than that of the various modes of the superstructure, so
we assume that the modal dampings s..o of the free-free structural modes are of
order £2. The same orders for the base damping and damping in the structure were
assumed by Tsai and Kelly (1988). The damping malrix of the free-free system
and its perturbation will then both be of order e2

, the same order as the isolator
spring stiffness. An allemative assumption, thaI the damping in the structure is of
lower order. so that s..o are of order e, makes little difference to the final resu!ls,
generally bringing in terms involving the modal damping of the free-free structure
al half the (even) orders in which they appear in the expressions we derive below.
As will be seen, the damping in the slruclUre is generally of little significance for
the isolated system. The particular orders for the damping assumed above lead to
simpler algebra in Ihe derivation of the perturbation expressions than the alternative
assumption.

There are two technical matters in the perturbation which deserve mention.
The first is that the fundamental free-free mode has zero frequency, so the lowest
order of the perturbed first-mode frequency is e, rather than order zero as for the
other modal frequencies. The second technical point arises from the first. Since
the fundamental free-free mode is a rigid-body mode with no internal defonnation
in Ihe superstructure and it has zero frequency, the fraction of critical viscous
damping is a meaningless concept for this mode. In the modal equations of motion
it is multiplied by the zero modal frequency, so there is no loss of generality in
tllking the modal damping itself as zero. In Tsai and Kelly's work discussed later,
where the perturbations were taken about the fixed-base modes for which the first­
mode damping is defined. the first-mode damping of the structure has little effect on
the isolated properties, so the difficulties of defining the damping for the rigid-body
first-mode of the free-free system are of little consequence. The fonnal expansions
for the perturbed complex frequencies and mode-shapes can be wrinen as

1)" = l)tIfj + P"I + P,,2 + P..l + P..4 + ... (4.86a)

" .. = 11..0 + L a"",II",o + L ~"".II",O + LY""'umO + L TI..",UmO + ... (4.86b)

'" '" '" '"
The perturbations are in tenns al powers of e, where

The mode shapes 11,,0 are Ihose of the undamped free-free modes. Kb. Cb and [CJ
are order e2. The first subscript for the frequency and mode shapes indicates the
mode number, and the second the order of the expansion. Mode-] is that with the
lowest frequency. Some of the orders of the perturbations turn out to be zero. for
ex.unple the expansions for the mode-shapes other than the first involve only the
cven orders. The results arc given below:

(4.90,)

(4.90b)

The corn.."Ctiolls to thc rigid-structure approximations % and ~b for the first-mode
n.llum! frC(IUency and d.ullping arc both order £2, indicating the high accur.lcy of
the rigid-"Iructurc appruximlllioll. Note that damping in the struclure docs not enler
11110 cven thc correction tcrm for the fir"t isolated modc damping.

(4.87)

(4.86c)
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(4.97)

(4.96)

(4.95)

(4.94)

(4.93)(KJ41i = w;[MI4',.

N

K"(lp,, 1/1" d = LwiMj¢j.
j "

Stcpping down the structure one mass at a timc, we come to the equation for
gcneral mass II. This can be wrinen directly from the eigenvalue problem as

Alternativcly, by summing thc C<lu;ltions for masses n to the top mass N, the shear
at thc Icvel below mass II c;m be writtcn in Icrms of the sum of thc inertia forces
011 Ihe masses abovc it:

AI this stage, the I1lOtlC ,~hllll\'~ till levels II to N have becn <lctCnllilled from the
c(JlHltil1lh for IIIC IlittlH'l 11I11~~('~, ~lll/J" I j" Ihc oilly unkllown, Solving the c<lliation

The only unknown is 'lJN-1> as 4'N has been assigned an arbitrary value (the eigen­
value problem is non-unique to the extent of a scaling factor in the mode shapes,
so one of the elements of each mode-shape vector can be taken as arbitrary and
the other clements defined in tenns of it) and the required first-mode frequency is
known. The unknown mode-shape value is thus given as

(K] is the tridiagonal stiffness matrix and (M]the diagonal mass matrix for a linear
chain system. The Holzer method starts with an arbitrary mode shape value 4'N,
(often taken as I) at mass number N at the top of the structure and an assumed

value w~1) for the first iteration for the itll-mode natural frequency. For our problem,,
the frequency is the required first-mode frequency WI·

In the following, where we are dealing wilh the first mode, the subscript indi­
cating the mode number is dropped in the mode.shape values, with the remaining
mode-shape subscript denoting the position in the structure. M" denotes the nih
mass in the system. from n = I at the base to n = N .11 the top, and K. denotes
the stiffness of spring n numbered in the same way.

Consider the equation for the top mass

using the Holzer technique (Clough and Pcnzien, 1975), an iterative method for
detennining natural frequencies and mode shapes.

We demonstrate the approach first for a system with classical damping. For
such a system, the eigenvalue problem is to find frequencies Wi and mode-shapes
'lJi which satisfy

(4.9\,)

(4.92a)

(4.92b)

(4.9\b)

IIi-I

" i= I.

n>\

WIt = (VIIO [I + lh MTII~O (% )'] + 0(£4)
j.t"o (VIIO

M
' ( )'

T II btIO lLJb 4
;" = (",,0 + ~b-2-- -- + 0(£ )

f,l-IIO Will)

Similarly, the higher-mode nalural frequencies and dampings arc:

Again. the correction lenn 10 the free-free frequency is order £2. and becomes
smaller for higher modes since it involves lhe ratio of % to the modal frequency,
rather than the first-mode unisolatcd frequency.

With typical values of e = wt./ClJFBI < 1/3 and %/w..o < 1/(6(n - I» for
practical isolation systems, these expressions show that the approximations

A common design problem with base-isolated structures is how to dctermine the
base isolalor stiffncss and <l;l1npillg fi':<luired to achieve a target fundamcntal period
and d.unping for the isolatcd Sll'licturc. For a stl'llcture which can be modclled as
a di"erete linear ch:lin system, Illi" plOhlcm can be solved cxactly and directly by

arc in error by a few % at most. Thus. varying the isolator parameters has significant
effect on the frequency and damping for the first mode only. The isolation governs
the nature of the high modes. in thai they are of the free-free type, but the actual
frequencies and dampings of the modes higher than the first are detennined by the
properties of the S1ructure rather than by those of the isolation system.

The nature of Ihe isolated mode shapes is also worthy of investigation. The
first isolated mode is real below order 6\ which is the lowest order at which
damping affects the mode shape, so remains essentially classical, with nearly the
same phase throughout the structure and isolation system. The higher-mode shapes
become complex and hence non-classical at the lowest perturbation to the free-free
mode shapes, which is of order 62.

lhis different characlcr of the first mode and higher modes with non-classical
damping is apparent in the cxample given earlier for an isolated continuous unifonn
shcar-beam. Figure 4.4 showed tllat the imaginary component of the mode shape,
and the change in the real part of the mode shape from the undamped modc shape,
arc insignificant for the first modc, and the general character of the first-mode shear
distribution is similar for the two cases. The imaginary part of the modc shapes
has a greater influence for the higher modcs, most importantly in its effect on the
base shear.

4.2.4 Base stiffness and damping for required isolated period and
damping
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for mass n gives

(4.105)

(4.106)

Stepping through the masses in similar fashion to before, we obtain the top mass
equation

(4.98)

or, in the allemativc fannulation, the equivalent expression

(4.99)

This process continues down 10 the base mass, n = I, where we have the equation

which gives the mode-shape value

(4.107)

or, in the alternative formulation,

(4.100)
In general, ¢N~l and other mode-shape values will be complex, unless we happen
to have a classically damped silUation.

Arriving at the base mass we have the alternative forms of equation

For the standard Holzer process for finding Oalural frequencies and mode shapes.
K .. K2• MI. 4>1 and ~ are known. tPo must be zero from the boundary condition
at the base. but unless the process has converged will generally be non-zero, and
further iterations are required 10 find the natural frequency and mode shape.

For our case of finding the required base stiffness of the isolator, the equation for
the lowest mass is used in a different way. The stiffness K] = Kb is the unknown,
with tPo SCI equal to zero, satisfying the boundary condition, and all other values are
known at this stage of the process. Rewriting the equations gives the alternative,
but equivalent, expressions for the base stiffness Kb:

Consideration of real and imaginary pans of these equations will give the required
K b and Cb• As before. the fundamental mode shape has been produced in the course
of the process. Again, higher-mode frequencies. dampings and mode shapes can be
found in an iterative fashion once the base stiffness and damping have been found,
although the process is complicated by the generally complex-valued non-classical
mode shapes.

N

K1(4)1 - ¢Jo) = L wiMjtPj.
11=1

(4.101) 0'
N

P~ L Mj4Jj + P ICb4J1 + Kb4Jt = o.
j-I

(4.108)

(4.109)

(4.102)

4.2.5 Solution of equations of motion for forced response of isolated
structures with non-classical damped modes

0'

The fundamental mode shape has been found in the course of the process. With the
base stiffness now known. the process can now be repeated in the usual iterative
manner to find the frequencies and mode shapes of higher modes. if required.

For the damped case, wilh a required first-mode natural frequency WI and d.unl>­
ing ;10 we start with

I"

(4.103)

(4.104)

Now that we have determined the modal frequencies and mode shapes of the
isolated system represented by either a continuous or discrete model, we move
on to presenting the solution of thc forced vibration problem in terms of modal
responses.

For forced response, Poss's mcthod Clm be llsed to solve the equations of motion
for nOll-classically damped base-isolaled slructul"CS in teons of modal responses for
both the continuous shear-beam model and the discrete model. We consider first
the (tiserete model. for which Foss's lIlethod has been presented for general non­
classically d'1Il1pcd S1l"uClllrcs by lIuny alld Rubinstein (1964). Igusa et al. (1984)
llnd VclClsOS llnd Vcntura (1I)H6). fUU! for ba.~e-isolated structures by Tsai and Kelly
(19H8). We thcll cXlcnd Illl' rl'~ultl; III Ihc continuous shear-heam. for which they
nfC mllllogou~ to thc dIWll'1{' l'U!;I"
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Here [M], [C] and (K] are N x N matrices, where the system has N masses. Define

The equation of motion for the discrete case is

fM]ii + [CJti + [Klu = -[MJlug (4.110)

reduced to 2N uncoupled modal equations:

(4.118)

Then the equation of motion may be wrincn as

[[M] [Cll' + 1[0] [Kll' = -IM]lii,.

(4.111)

(4.112)

Now

so the above expands to:

(4.119)

By complementing the equations of motion with an identity expression, we obtain

[
[0] [M]]. [-[M]
1M] IC] ,+ LO]

101] (0) ..[K] v = - [M]l ug • (4.113) (4.120)

Define the 2N x 2N matrices LA] and [81:

[A]=[[O]
[M]

LM]]
IC]

[8] ~ [-1M ]
LO]

10] ]
[K] . (4.114)

Assuming zcro initial conditions, Ihe general solution can be written in lenns of
lhc Duhamel integral:

(4.121)

Then the free vibration case with solutions of the form vncM leads to the eigenvalue
problem

(4.115)

Associated with mode n will be mode n*, for which Un" Pn' and ~n,(t) arc the
complex conjugates of Un, Pn and ~n(f).

Thc solution vector U(f) is given as

For the forced vibration, express the solution as the sum of modal responses

LA I and fB] are symmetric real matrices but are not positive definite, so the eigen­
values Pn and eigenvector v" occur in complex conjugate pairs.

Also, the following orthogonality conditions apply, for Pm i= Pn (Hurty and
Rubinstein, 1964; Tsai and Kelly, \988)

'N
U(I) ~ I),(I)U,

n",1

v~LAJl'n = 0

TvmLB]vn = O. (4.116)

N

= L(~n(r)Un +~n·(r)un·)
n""l

N

= 2 L RC(~IP(r)tln)
,,=1

(4.122)

'"v = L~",(t)vtll.
11/",1

(4,117)
whcrc lhc sumllwliOll is now ovcr olle of cach complex conjugate pair.

The Dull;unel illlcgral call be eXI)illldc{1 by writing the complex frequency in
IcrlllS of ils I"c,,1 lind illlagilllll'y paris:

Thcll, slIbstiltlting in thc cquation of motion ;lI1d prcl1lultiplying by v;~' aud making
usc of thc OrihOgOIl<llily felation ~ivcll abovc, lhc equations of Illotion call be I'" (4.123)
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Thcn

,
/ CI'.(1

o

,
t)ii~(r)dr = / e-{·"",(r-~) [cos}I - ~n2UJn(l - r)

o

(4.124)

Also, its relative velocity response 2,,(t) is given by

(4.128)

Ilcre Ihe lenn ~wn(l- r) is to be read as a single argument. This gives:

To interpret this expression, consider the relative displacement response Z,,(t) of a
single-degree-of-freedom oscillator of undamped natural frequency w" and damping
~n to a ground acceleration ug(t), governed by the equation

,
2,,(t) + ~nw"Zn(t) = - / e-{·w,,(I-T) cos [ } I - ~;wn(t - r)] ug(r)dr. (4.129)

o

.~ I u;IM]! I
2Re(~,,(t)lIjn) = -112y I - ~,;wnl 2 TIM] + TIC] jljn

pnUn. Un Un U"

X [II e-(.w,,(I-~) I sin (}I -~;UJn(t - r) -lPjn) iig(r)dr] (4.131a)
~Wn

o

N

u(t) ~ I:2R,«,(t)u,)
n=t

Alternatively, from Equation (4.125) the modal response for the jth component
can be written as

Thus

and

(4.125)x [sin}1 - ~;UJn(t - r)] ug(r)dr.

(
uTIM]! ) I'+ 1m n U e-{.""'(I-~)

2PnuJfM]Un + uJfClun n
o

Rer~n(l)un] = - Re ( u;lM]l uII e-{."",(r-~)
2Pnu~lMlun + uJ[C]Un n

o

X[COS}1 ~ ~;UJn(l- r) + iSin}1 - ~;Wn(t - r)] Ug(r)dr)

,
2,,(t) = - / e-{·",·(I-T)~ sin [}1 - ~;w,,(t - r)] iig(r)dr. (4.127)

o 1 ~"w"

Although as written, Ihe phl1~e HI\~le \1//" apI>cars in the convolution ill1cgral, it
is Ihe phase llllgle of N"u,,,. wllcl~' 11/" is thc 1'111 componellt of the vcctor II".

The tCl'm 2/1 l::;loI"N"II,,,. whirh cqulll~ 21111(p")IN"ltj,,l, Clm Ix: illtcrpreted as

•. . 2
2n + 2~nUJ"Zn + w,,2n = -iig(t).

The solution of this equation for zero initial conditions is

(4.126)

wherc

[
u;IM]1 ]

-Rc T T' IIj"
2/)"11,, jMlu" + Il" (Clun

[
u;:IMI1 ].

1m 'l' T IIj"
2"" II" 1M \11" + II" IClu"

(4.13Ib)

WWW.BEHSAZPOLRAZAN.COM



156 STRUCTURES WITH SEISMIC ISOLATION 4.2 LINEAR STRUcruRf.$ WITH LINEAR ISOLATION [57

giving the modulus of the jth component of the nIh pal1icipation factor vector
Wj,,1 with an associated phase J¥j"

f jn = i2J1 _1;"2UJn N"uj,,

= Ifj"lei'JoJ. (4.132)

Also

uTlqul = u7rColul + ur[De.lul

= 0 + CbU~1 0 + 0(£4).

This leads to

(4.139)

where *j" is as above.
For a classically damped system, this simplifies to the standard expression. For

classical damping, u" is real, and

2p"u~[Mlu" + u~[Clull = 2( -1;IlUJn + iJ1 -1;;w,,)11-1l + 21;"UJnlJ-n

= i2JI-1;;UJnlJ-n (4.133)

where

For the classically damped case, the jlh component of the nth participation factor
vector, fj", is real-valued, given by

(4.135)

For the general case, the vector of the moduli of the components of the nth-mode
participation factor are

(4.136)

\
For well isolated structures, this expression can be cvaluated from the frequen­

cies and mode shapes derivcd from the perturbation analysis. For the first-mode,

For the higher modes, n =f:. 1,

u~[M]1 = (Kb + iw"oCb)UbnO U
bl

.
0
2 MTUbl,O + 0(64

)

1J-1.0W"o

Again from the mode shape nonnalisation,

Also

u~([Co] + [O~])un = u~«CoJ)un + Ct>u~

= IJ-n021;nowno + 21;t>Wt>MTU~O + O(e4
)

= -2/1nO Re(Pn)

2PnuJ[Mjun + u~rC]un = i211-nO Im(Pn)'

Thus:

(4.140)

(4.141)

(4.142)

(4.143)

(4.144)

The ratio of moduli of the participation factor components, with and without damp­
ing. arc

(4.137)

since for uj~[Mll = 0 for j =f:. I the free-free case. The nonnalisation used in the
perturbation analysis gives

~----- (4.145)

= 11-1.0
(4.146)

(4.138)
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and

(4,152)

(4.151)

(4.150)= 2'

I+(~~b)

(
C )-'~b(Kc) = ~bRe 1 + i~~ b

~,

For ~b = 0.2 or 0.3 this gives a reduction of about 33% or 50% respectively, due
to Kc.

The reduction in the mode-I damping due to Kc is found by noting that the
damping of mode 1 is given by half the imaginary part of the impedance ratio,
with w" = %. Applied to (4.149) this gives:

The reduction in the mode-I damping can be limited to 20% by choosing a mini­
mum K~ given by Kc = 2t.>t,Cb which gives ~b(K~) = O.8~b from (4.150).

Since mode 2 has the largest higher-mode participation factor, and since Kc
is least effective for reducing thc participation factor for mode 2, the reduction in
participation factor is checked for mode 2. The reduction is increased for increasing
W21wt,. Taking W2/% = 6.0, this gives:

(4.147a)

(4.147b)

DUnlping h,lS no effect on the participation factor of the first mode for orders
Ic~, th;U1 £6, in agreement with our earlier interpretation that this mode is essen­
tililly re:.I. For the higher modes, the isolator damping enters into the leading term
for the parti~ipation faclor, which is of order £2. As the mh free-free frequency
may be considerably greater than the isolator frequency, the panicipation factors
of the higher modes with isolalOr damping can be considerably greater than their
participation factors in the absence of isolator damping. However, even with iso­
lator damping, the participation faclor is of the order £2, so is small in absolUie
terms. much smaller than the isolated fundamcmal-mode panicipation (aelOT or the
unisolatcd mh-mode participation faclor.

~~n .very small 800r spectra are imponant for design. the small higher-mode
panlclpatlOn factors may be further reduced by using an aUenuation spring, stiffness
K~, in series with the isolator damper, as shown in Figure 2.2(c). This spring will
also cause some reduction in the isolator damping, but this reduction can be kept
small, while achieving effective higher-mode attenuation, by using an appropriate
value for Kc .

The consequences of adding the stiffness K~ in series with the isolator damper
of coefficient Cb can be obtained by considering the mechanical impedance of the
isolator components. Since the participation factor ralio of (4.146) is the modulus of
the mtio of the isolator impedances with and withoul damping, it may be expressed
as follows:

since

(4.149)

(4.148)

~b = %Cb/Kb •

When Kc is connected in series with Cb their impedances can be used to express
the result as a complex damping coefficient:

CbKcliw~

Cb + Kc/iwlI

(
.w" "'C')-'=Cb 1+1---
'" K,

Substituting Cb(Kc) in (4.147b), and again noting that ~b = wt,Cb/Kb,

ICN.(K',C',K,)I_I' .U;W"( w."'C')-'1
I
r (K)I - +1 b- 1+1--- .

Nfl b % % K~

Comparing (4.149) with (4.147a) shows that the last f:lctor in (4.149) gives the
reduction in the higher-mOde p:1l1icipation factor duc to the attcnuating spring K

c
.

4.2.6 Studies using perturbations about fixed-base modes

Tsai and Kelly (1989) analysed the response of a structure on a linear isolation
system, modelled as a basc mass and linear base spring and damper, in tenns
of perturbations about the frequencies and mode-shapes of the fixed-base system.
They assumed that the isolated system had classical damping, which in general is
not the case even when the superstructure has cl:lssical damping. Tsai and Kelly
give closed-form expressions for the first-mode isolated periods and mode-~hapes.

Their geneml expression for the higher-mode frequencies is iterative, although
a closed-form approximation is given for the case where the fixed~base modes
are well separ"tcd ill frcqucncy. Their perturbation approach starts with the mode
shapes and frcqucncies of Ihe N-mass syslem. A base mass, spring and damper are
introduced, giving N + I lIlodes in all. The unperturbed shape of the extra mode is
th"1 of a rigid-body MII'lCrstl'llctul'C on the ba~e spring. esscntially the same as the
l;n;t-modc approximallon u,ed III OUI' rmalysis for the undamped casco

TS;li and Kelly (I9t1X) lIt'l'UIlill 1m Ihe gcner:ll1y non-cla',ic:llnaturc of lhe iso­
lated mode'. IloweVel, III 'ttllllhi Ythe perturbation expression.. and their derivation,
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Ihey consider only the first superstructure mode. giving two modes for the uniso­
Iillcd system. They again reprcsenl the structural response in terms of ils fixed-base
mode-shape. This paper goes on to compare the response of a five-mass isolated
structure with the EI Centro and Parkfield accelerograms as calculated using the
complex non-classical mode approach, and the classical mode approximation. For
practical purposes, Ihere is negligible difference in the results of the exact com­
plex mode response and the classical mode approXimation. However. Ihey illustrate
Ihat the classical mode approximation is not always appropriate by considering the
response of equipment in the isolated structure. The non-classical nature of the
'eqUipment mode' is importanl, as we discuss in Section 4.4.

4.3 BILINEAR ISOLATION OF LINEAR STRUCTURES

4.3.l Introduction

The discussion so far has dealt with linear isolation systems. However, as discussed
in Section 3.1 and Chapter 6, linear systems comprise only a small proponion of
the isolation systems used in practice. Linear systems include laminated-rubber
bearings, ncxible piles with viscous dampers, etc.

The analysis of non-linear isolation systems is made easier by the fact that almost
all of them can be approximated as bilinear systems, namely they can be represented
by parallellogram-shaped force-displacement hysteresis loops. For instance, the
isolation and damping devices developed at the DSIR can be regarded as bilinear.
These include lead-rubber bearings, steel energy dissipators and lead-exlrusion
dampers. Various systems utilising friction elements, which were compared by Su
et al. (1989), can also be represented by this type of model, including pure-friction
devices such as the sand-layer system used in China (Li, 1984), the resilient­
friction base isolator (Mostaghel and Khodaverdian, 1987), the Alexisismon system
(Ikonomou, 1984), and the Electricitt de France (EDF) system (Gueraud et al.
1985). 1be sliding-resilient friction system (Su et al. 1989) can be represented by
a trilinear loop, but except in extreme motions it is a bilinear device.

Our study of bilinear hysteretic isolation systcms begins with a simplc one-mass
model, with the structure representcd as a rigid mass mounted on a combination
of springs and a Coulomb damper, to give the required isolator characteristics.
Although inadequate for the study of higher-mode effects, this simplc model gives
a good approximation to the base-shear and displacement responses for an isolatcd
multi-degree-of-freedom structure, and provides a close approximation to the first­
mode response of thc isolated system.

The base shear and displacement are calculated using time.history analysis for
a scaled El Centro accelerogram, for a range of isolator and structural parameters.
This provides a basis for the initial design of bilinear isolation systems, as well
as providing a standard against which to compare the accuracy of the 'equiva­
lent Iinearisation' procedure in which the bilinear isolation system is described by
'effective' values of period and damping and then treated as a line:lr system.

Higher modes of vibration make insignificant contributions to seismic displace­
ments of the isolated structure, but may make substantial contributions to the
seismic loads. and dominant contributions to noor spectra for periods less than
1.0 s. A large measure of control of higher-mode contributions can be achieved
by an appropriate choice of isolalOJ' bilinear parametcrs, in relation to structural
pammeters.

The contributions of individual vibrational modes to seismic responses may be
calculated accurately using mode-sweeping techniques. Mode sweeping is used 10

build up a database for the modal responses of a wide range of representative com­
binations of linear structures with bilinear isolators. These data on modal responses
are presented in tenns of the isolator and Slructural paramcters, and also in temlS
of simple derived parameters.

The main isolation and structural parameters are the elastic and post-yield
periods Tbl and Tb2 of the isolator, its yield ratio Qr/ W, and the unisolated
fundamental-mode period TI(U) of the structure. The unisolated period TI(U) cor­
l'cslXlI1ds to that Of:l system for which the isolator is rigid, i.e. Kbl and K b2 arc
infinite. The main derived parametcrs are the effective period ('Ia) of the isolator
and either its damping (\0) or its non-linearity factor NL. These parameters have
all been defined in Chapter 2, ill Figure 2.3 and the associated tex!. The isolation
factor I defined above, for linear systems, is extended to the bilinear case. so that
the ratios Tbl/Tt(U) and Tb2lT1(U) respectively give the isolation factors, I(Kbl )

and I (Kb2), for the clastic and yielding phases of isolator response.
The presentation in lenns of the derived parameters gives a clear piclUre of

the imponant consequences of bilinear isolation in tenns of the trade-off between
reductions in base shear and increases in isolator displacements. The simplified
presentation also assists during the important preliminary design stage for struc­
tures with non-linear isolation. as outlined in Chapler 5. This discussion of bilinear
iwlation systems, and in particular the analysis of factors controlling higher-mode
clTects. also fonns a basis for the subsequent analysis of the seismic responses of
appendages.

4.3.2 Maximum bilinear responses

Thc 'spectral response' approach has been seen in Chapter 2 to be very useful
for linear isolalion systems. The maximum scismic responses, for a single mass
moun led on a linear isolation system and excited by a given design earthquake. are
c<ltculatcd by time-history an:l1ysis, a standard lechnique in engineering seismology
{tescribcd, for inslance, by Newmark and Rosenblueth (1971), Clough and Penzien
(1975) and Dowrick (19H7). Thc maximum I'CSI>onscs are then tabulated or plolted
a.~ functions of lhe fundamental period T and the fraction of critic:ll viscous damp.
ing t;. as shown in Fil:\ufC 2. I. A designer \Vi.~hing 10 usc a given linear isolation
sy:-.lelll C,m u~c lhe-.c ~pcClr:\ to arrive :It suitable v"lues of T and \ which will give
llll llPPl'Opri:lle 'lmdc-off" hetween reduced :-cismic shear and acceptable seismic
di~placcl1lcl\t.
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It is therefore of interest to produce plOls of maximum responses of a single rigid
mass mounted on a bioear isolator and excited by a given design earthquake. as a
function of the parameters of the bilinear system. Although unable to indicate any
higher~mode effects, Ihis model should give good approximations to me first-mode
responses, namely the base shear and overall displacement, of a linear structure
well isolated on a binear isolator.

To be useful for design purposes. me maximum bilinear response thus obtained
should present the maximum seismic displacements Xb and accelerations Xb. or
equivalent basc-shear-to-wcight ratio Sb/ W, for various values of the bilinear iso­
lator parameters 'fbi, 7i.2 and Qy/W or for an equivalent set such as Kbl , Kb2 ,
Qr and W. Here Qr is the yield force of [he isolator and W is the weight of the
single mass, representing the overall weight of the structure and isolation system.
The periods Tbl and Tb2 relate to the elastic and post-yield stiffnesses K bl and K b2
respectively. l1lcse isolator parameters, together with the velocity-damping param­
eter ~b2 which is usually of secondary imponance compared with the hysteretic
damping, have been defined in Chapter 2.

Since a change in earthquake amplitude or period docs not simply change the
amplitude or period scale of the bilinear responses, as would occur with linear
spectra, it is necessary to develop scaling procedures, as discussed in more detail
in Section 5.1.3.

Maximum displacement and acceleration bilinear responses are. given
in Figure 4.5 for the amplitude- and period-scaled accelerations ug(t) =
P~iiELc(r / Pp). where iiELC(t) are the accelerations for the earlhquake, El Centro
NS 1940. Note that 'b2 = 5% for this figure.

The smoothed maximum response plots of Figure 4.5 are based on values cal­
culated for a single mass mounted on a bilinear isolator, for 72 combinations of
isolator parameters, namely the twelve period combinations shown and six yield
ratios Qy/W, namely 1,2,3,5,7 and 10%. For the limit case of a zero yield ratio.
the system becomes linear and the maximum acceleration and displacement values
are given simply by linear response spectrum values, SA(Tb2 • ~b2) and SO(Tb2 . 'b2),

where ~b2 = 5%.
The maximum bilinear response plots of Figure 4.5 play the same role in the

seismic responses of a single-degrcc-of-freedom bilinear isolator, as that of the
linear spectra of Figure 2.1 for a single-degrce-of-freedom linear isolator. The
singlc-degree-of-freedom linear displacement spectra and bilinear maximum dis­
placements produce good approximations to the maximum displacements of multi­
degree-of-freedom isolated systems. since the first mode dominates the displace­
ment response of isolated structures. The maximum acceleration value multiplied
by the tOlal mass is a good approximation to the base shear. which is also dominated
by the first-mode response. Higher modes make significant contributions to the ac­
celeration responses away from the base. particularly for highly non-linear isolators.

There are several imponant fe,llures of the single-degrcc-of-freedom displace­
mem and acccler.:Ition diagrams of Figure 4.5_

'.3

Maximum seismic responses of II single mass mounlcd on a bilinear isolator
are shown as functions of the isolator parameters Tbl • Tb2 and Qy/ W. 'll1c
responses arc shown for El Centro N$ 1940 with amplitude- and period­
scaling factors p. and Pp respectively. as defined in the text. (a) Maximum
displacements Xb for values of Tbl = 1.5 x Pp s and various values of Tbl ·

(b) Maximum displacements Xb for values of Tb2 = 3.0 x Pp s and various
values of Tbl • (c) Maximum displacements Xb for values of Tbl = 6.0 x Pp s
and various values of Tb1 • (d) Maximum accelerations (i.e. base-sheaf-to­
weight ralios) fOT lhree values of T~ and various values of Tbl ,

(i) For a given Tbh Tb2 and earthquak.e scaling factor p. and Pp, there is an
optimal value of Qy/ W for minimum base shear. Base shear is conlTOlled
primarily by the fundamental-mode response (Section 4.3.5), so this result
holds for multi-dcgree-of-frcedom systems also.

(ii) For a given Tb2• the base shear and displacement decrease as Tbl decreases.
For 11l1lIti-degrce-of-frecdom systems. higher-mode accelerations generally
increase as "Iill decreascs (Section 4.3.6), so care should be taken in reducing
Till 10 achieve fcdllC~d base shcar and displacemcnt. Results by Andriono and
C,lrr (1991 a. b) for multi-dcgree-of-frcedom systcll1s indicate that base shear
and highcr-modc accclerations increase ,IS ·[bl decreases, although the results
for lhe systcms wc analysed did nOI show this.

(iii) For a givcn Q,// W. thc ha.';C ~hcar reduces as Tb2 increases. However. this
i, gener-llly lit the e:<pcll'\C of incrca'\Cd base di'placcmcnl.

(iv) -Ille opumal yield level. (Qy/W),'I'l_ for minimum h,l'\C ,he,lr sc,llcs directly

FiJ.:ure 4.5
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It should be noted that thc curves presented in Figure 4.5 represent smoothed trends
only and arc limited by the 72 choices of isolator and structural parameters.

with the amplitude scaling of the earthquake. Thus if Qr = 0.05 IV is optimal
for El Centro, Qr = O.IOW will be optimal for 2 limcs EI Cemro motions
if all other parameters are held fixed.

(v) Increasing the yield force parameter Qr beyond the optimal value for min­
imising base shear in a given earthquake motion generally produces a mod­
erate increase in the base shear and an increase in higher-mode responses,
but a reduction in the base displacement. Decreasing Q y below the opti.
mal value generally causes a rather rapid increase in base shear as well as
increasing the displacement. Taking the yield level larger than the optimal
value for the design earthquake scaling provides protection against a more
extremc event. Taking Q y less than the optimal value could place the system
in the rapidly increasing branch of the base shear curve obtained for small
(Qy/ W) when the earthquake scaling factor Pa is greater than the scaling
for the design-level earthquake.

165

4.3.3 Equivalent linearisation of bilinear hysteretic isolation systems

4.3 BILINEAR tSOLATION or LINEAR STRUCTURES

Unearised bilinear spectra

TIle discussion above has presented plots of maximum displacement and accelera­
tion for one-degree-of-freedom bilinear systems for a considerable range of isolator
parameters with scalings of the 1940 El Centro NS accelcrogram as excitation .
Similar calculations can be performed for othcr sets of paramcters and earthquake
ground motions. but the procedure of time-history analysis can be lengthy and time­
consuming. A simpler mcthod of estimating the displacements and base shears is
described in the section which follows. and the accuracy of the two methods is
compared in terms of a 'correction foctor' CF•

One method of obtaining estimates of the system response is by defining a linear
clastic system which is equivalent to the bilinear hysteretic system, and then using
tabulated linear response spectra to estimale the resulting maximum responses.

TIlere are a number of approaches to defining a linear system which is approxi­
mately equivalent to a given non-linear system. A simple linear system which gives
good agreement with the values obtained by time-history analysis, for EI Centro
excitations, for a wide range of commonly used bilinear parameters, is the 'equiv­
alent Iinearisation' approach. This is based on a closed bilinear force-displacement
loop with maximum seismic displacement Xb and corresponding shear force Sb, as
shown in Figure 2.3 and the associated text. The 'effective" or 'equivalent' period1" is defined by the system mass M and the secant stiffness KB = Sbl Xb. The
'cffective' or 'equivalent' viscous damping ~o is obtained by adding the actual
viscous damping to ~h, the damping associated with the hysteresis loop. A non­
linearity factor NL is defined in tenns of Ihe hysteresis loop and is proponional
to ~h' As well as being one of the parameters determining the base shear and dis­
placement, the non-linearity factor is an imponam parameter governing the ratio
of higher-mode to first-mode response, as is shown in Section 4.3.5.

Values of To, NL and ~h for the scaled El Centro eanhquake. as functions of
yield level Qy/ W for various combinations of Tbl and Tb2• arc shown in Figures 4.6
and 4.7. For long post-yield periods Tb2, the effective bilinear period To, as defined
from the secant stiffness, drops rapidly from 1b2 as Qy/ W increases from zero.
The equivalent viscous damping factor ~h, corresponding to Ihe hysteretic energy
dissipation, increases rapidly from 7,.ero as Qy/ W increases. For a given yield
level, the damping incrcases rapidly as a function of T1I2 , and also increases rapidly
as 7b1 is decreased. A small 'fbl and a large 'fb2 correspond to a hysleresis loop
approaching a rigid-plastic loop, which has the greatest ~h for a given (XII, SII)
combination. The theoretic:11 maximUIll of ~l'. as defined, is 2/Jf, i.e. 63%, for a
rigid-plastic, i.e. rectangular loop.

Oncc thcse 'effectivc' v:dtlCs of period and d,unping have been obtained, the
seismic resl>Ollses can be obtained hy trealing Ihis like any othcr linear system. The
displacemcnt SI)('Iit.l;"It) e:tIl he ohtuillcd from tllbulated valucs of line.... spectra.
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Variation, with bilinear isolator parameters Tbl , Tb2 and Qy/ W, of the non·
linearity factor NL and the hysteretic damping factor ;h = (2/71:) NL, for
El Centro NS 1940 with amplitude- and period-scaling factors p. and Pp
respectively
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. The maxi,mum bilinear displacements X b of Figure 4.5 can now be compared
with the eqUIvalent linear spectral displacements SD(TB, ~B) obtained from the ref­
erence tables for linear isolators with 'equivalent' values TB and ~B. It is convenient
10 relate them by a simplified correction factor Cr , to give, without scaling (i.e.
Pa=Pp =l) .

Figure 4.6

o 2 4 6 8 10xPQ

a,jvI%
Effective period T B of a bilinear isolator with the parameters Tbl , Tb2 and
Qy/W, for El Centro NS 1940 with amplitude- and period-scaling factors
p. and Pp respectively. Note that Tg is related to K IJ , the 'effective' (secant)

stiffness of the isolator, by TI'l := 2n j(MI Kg), where M is the total isolated
mass.

(4.153)

The Cr values obtained can then be plolted as a function of the isolator pa­
rameters to indicate the accuracy of the equivalent linearisation approach. Such
plots arc important because they indicate the errors involved in using the simpler
'cquivalent lincarisation' approach rather than the full time-history analysis. As
a rcsult the correction factor has been studied for a range of multi-mass systems
,IS well as for Ihe single-mass bilinear isolator. Figure 4.8 shows smoothed plots
of Ihe correclion factor, based on isolator seismic responses with a stiff five-mass
slruClure (with '1'1(U) = 0.25 s). Thc comparison X.... /SD was also made for a rigid
structurc and for five-mass structures with '1'1 (U) = 0.25, 0.5 and 0.75 s.

Changcs in C" due to changes in struClUral period were also examined. For a few
cases the changcs were considcrablc and thc grcatest changcs found are indicated
by thc dOllcd vcnic;d arrows in Figurc 4.8. Rcsults suggested that the noisc-Iike
charaCler of thc 131 Centro accclerogr;\11l confcrred eOllsi(tcrable irrcgularity 011 the
CI' vnlucs UpOIl which Figure ".K was b;lscd.

WWW.BEHSAZPOLRAZAN.COM



168 STRuCruRES WITH SEISMIC ISOLATION 4.3 BIONEAR ISOLATION OF LINEAR STRUCTURES 169

It is seen Ihal Cf is approximately unity, within about 10%. for a wide range of
bilinear isolator parameters, but excluding those linked by the dashed line where
Tb2 = 6x Pp s. This shows that the equivalent Iinearisation approach, with effective
values of period and damping, is a useful approximation.

Chapter 5 describes how this approach can be used in the preliminary stages
of the design of isolated systems. The procedure is to calculate So(TB , ~B) to
obtain an estimme of the maximum seismic displacemcnt Xb. The accelermion can
then be derived on the assumption that isolator velocity damping ~b2 makes lillie
contribution to the peak isolator force Sb, at least for ~b2 up to 0.15 or so. Hence

4,3.4 Modes of linear' stnH.;lurcs with bilinellr hysteretic isolation

(4.155)

since

The expressions which arise for the approximations to Xb and Xb are circular
because they involve Ta and ~B which are themselves dependent on the Xb and Xb
values. This may be dealt with in design situations by selecting target values for TB

and ~B and then selecting the required isolator parameter values and perfonning a
series of iterations. Selection of an appropriate target period and damping depend
on trial and error and on experience with bilinear spectra and isolator design.
Discussions and examples are given in Chapter 5.

When ~B, which is dominated by hysteretic damping, is large, then the approx­
imately correct values fOl" Xb given by Equation (4.155) are substantially lower
than the cOITCSjX)nding SA(TB, ~B) values. This is because velocity-damping forces
combine to increase the maximum elastic force, while the bilinear loop area does
not increase the maximum bilinear force, Sb.

Approximate bilinear spectra based on TB and \8 are imjX)rtant because they give
a simple method of obtaining the maximum displacement and acceleration for Ihe
single-mass representation of a bilinear isolation system. The single-mass responses
in lum largely govern the maximum values of base shear and displacement for well
isolated multimass structures and all the structural displacements which have at
most a moderate increase over the height of the structure. The displacement profile
is given ralher accurately by the static deflections under mass-proportional forces,
and with an isolator stillness of KB = Sb/ Xb.

Simplified earthquake spectra

Equations (4.153) and (4.155), and Figure 4.8 for approximate CF values, express
the bilinear displacement and acceleration in tenns of earthquake displacement
spectra. The analysis can be further simplified and somewhat generalised by using
simplified spectra for scaled El Centro-like ellrthquakes. or other stylised smoothed
spectra, as discussed in Chapter 5 and illustrated by Figure 5.1. This results in
useful analytical procedures for the design of isolation systems.

Substituting Equations (4.154) in (4.153) gives

Variation of the cOfTeClion factor CF = X.,,/So wilh the bilinear isolator
parameters r bh Tbl and Qr/iV, for EI Cenlro NS 1940 wilh amplilUde- and
period-scaling factors p. and Pp respectively. 11Ie two solid lines are for
Tw = 3.0Pp and Ttl: = 1.5Pp• while the dashed line is for Tw = 6.0Pp • TItese
curves were based on a stiff. rather than a rigid. Structure (T.(U) "" 0.25 s)

oL-----,.~.,----___c""~,".

Figu~ 4.8

This is the force which ,tccele.... tes the system mass M and hence

(4.154a)

(4. [54b)

Jlltrodllctioll
The rigid-mass model mounted 011 a bilillcar hystcrctic isolation system produces
it good approximation to somc fcltturcs of lhe seismic responses of 11 structure .
with bilille,lt' hysterelic bol;lliol1. Ilowcvcl', for other features of the responscs. it
is nccessal'y 10 model the ,~trllUllre Jl~ \evenl! ll1as~e~ and ~prillgs. and thell to
dcterminc the re\pOn\l'\ \11 Vltll(l\lI< 01 II .. modes.
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where ~~ and ld~ arc the l1l(klnl dlll1lplll£ and circular frccluCIlCY and cr~ =

where q,; is the ith mode shape and ~;(t) is the ith 'modal coordinate'.
For a classically damped linear system, the response of any natural mode (n)

to a ground acceleration ;i g (/) can be written in terms of a linear second-order
differential equation uncoupled from all thc othcr modes

For a linear vibrational system, the natural modes of vibration are well-defined.
However, for a non-linear system, such as a linear structure mounted on a non­
linear isolation system, there are a number of (X)SSible ways of defining the modes.
but the concept of the response consisting of the combination of a number of modal
rc...ponses remains a useful one. TIle various approaches 10 defining the modes of
the non-linear system assist in differenl ways in interpreting its response and in
obtaining estimates of its maximum response.

The allemative ways of defining the modes of a system consisting of a lin­
car structure with bilinear hysteretic isolation depend essentially on the definil:ion
adopted for lhe effective stiffness of the isolation system, the only non-linear el­
ement in the overall system. Once this stiffness has been defined, the mass and
stiffness matrices of Ihe overall system are defined, and modal properties and re­
sponses can be detcnnined using the standard melhods.

Three different candidates for the equivalent linear stiffness of the isolator
are considered below. (I) adopts the instantaneous tangent values of the bilinear
force-displacement relation, Kbl during clastic-phase motions and Kb2 during yield­
ing-phase motions. (2) adopts the yielding-phase stiffness Kb2 for both elastic­
phase and yielding-phase motions. (3) adopts a zero base stiffness for both elastic­
phase and yielding-phase motions and hence represents seismic responses in tenns
of free-free modes.

When selling up the equations of motion for each of the above three cases, (1),
(2) or (3), all force tenns are retained so that, for any particular case, the sum of
the modal responses at any time t is equal to the total response at time t. as given
by a time-history analysis.

Before investigating these various possibilities for defining the isolator stiffness,
and the modal properties and modal responses which result from these definitions,
it is appropriate to review some of the features which make modal analysis of linear
systems attractive, and the extent to which Ihey carry over to a modal treatment of
non-linear isolation systems. Also, we present a technique for extracting responses
of individual modes from the response histories of all masses of an N-dcgree-of­
freedom structure.

The first feature is that the total response u(t) of an N·mass system can be
written as the sum of the modal responses

(4.160)

Usually the participation factors be<:ome small for high modes, so only a few
modes need be retained in the summation. Thus a set of coupled differential equa­
tions of motion involving matrices of dimension N x N are reduced to a few
uncoupled equations for single-degree-of-freedom oscillators for which Ihe solu­
tions are well known.

For a non-linear isolation system, we can define the response as the sum of the
responses of a number of modes. However, the modal equations of motion will
be coupled, either directly in thc equation of motion at any time (I), or through
'initial conditions' at the onset of a particular phase of the response. In general, the
participation factors will be smaller for higher modes, but the importance of the
higher modes may be much greater than for linear isolation systems, because of
non-linear coupling effects feeding energy into them. Such important higher-mode
responses are clearly evident in Figure 2.7, cases (v) and (vi).

Swuping to obtain modal accelerations a~(I) from total accelerations aCt)

In order to find the contributions of individual modes to the total seismic responses
of a linear structure on a bilinear isolator, it is first necessary to compute the
time-history of these modal responses. For Ihis computation it is useful to have an
operation which extracts, or sweeps. the responses of individual modes from the
lime-histories of the overall responses of the system. This may be achieved readily
by the technique described below.

A complete set of modes which are orthogonal wilh respecl to the mass matrix
is defined. The mode sel would nonnally be the natural modes given by the system
masses and stiffnesses, or by simple modifications of the stiffnesses as described
laler. The system responses are then obtained in tenns of responses of this mode
set, with the overall responses given by summing the responses of the individual
modes. In linear algebra lenns, the modes provide a set of 'basis vectors' for the
system response. The tcchnique may be used to obtain the exact natural-mode
responses for a linear system which is undamped or classically damped. For other
linear systems, or nOll-linear systems, thc tcchnique can be used to extract modal
responses from the overall rcsponscs, whcn thc modes have been defined in tenns
of a sct of vectors which arc orthogonal to each other with respect to the mass
matrix. Such non-ll,LtUnllmodcs will be couplcd through the stiffness matrix and/or
through the damping matrix.

The natural-mode vectors of allY general undamped linear structuTC arc linearly
indepelldcl1l :lI1d arc orthogonal with respect to the mass and stiffncss distributions,
as di'>Cussed in Chnplcr 2. Any vlhmtional n.: ...pon'iC, for cXllmplc the absolutc
:lcccleration" (/ (t) of the nw""e', t,m Ihcrcforc he cXllrc"'oCd a... n Imear combirmtion

(li':rMU)/(Ii'J[M]Ii'II) is closely relatcd to Ihe modc-n participation factor f".
In tenns of the modal displacement vector u~(t) = Ii',,~,,{t).

ii,,(t) + '4~w"u~(t) + w;ulI(t) = -a"li'.ii.(t)

= -f~iil(')'

(4.159)

(4.158)
N N

U(I) ~ LUt(l) ~ L~tMt)
i_I i .. 1
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The absolute acceleration response aCt) of the N -mass system is wrillen in terms
of the modal relative acceleration responses un(t) and the modal decomposition
iig,,(t) of the ground acceleration excitation ug(t)l.

The modal decomposition of the relative acceleration response is given by

of 111011111 r~.~I}\lIlSCS :IS follows

N

a(t) = ii(t) + liig(t) = L (iin(t) + iign(t)).
n=1

(4.161)

mode-shape vectors have becn defined such that they are orthogonal with respect
to the mass matrix. As for linear system'S with classical modes, the total response
is the sum of the modal responses. Unlike linear systems with classical modes,
the equations governing the individual modal responses will be coupled with the
responses of the other IT)odes.

The following sections present the equations governing the modal responses of
systems with bilinear hysteretic dampers, with the modes defined in various ways.
The modal responscs are those which would be obtained by swccping the response
vectors with the appropriate mode-shape vectors.

Pre-multiplying by 4'~[Ml and using the orthogonality of the modes with respect
10 the mass matrix gives

N N

;;(1) ~ I>"(I) ~ L: ¢"i"(I).
" .. l ,,=1

T ... T ..
¢" IMju(l) ~ ¢" IM1¢","(t).

The modal relative acceleration vector un(t) is given by

ii,,(t) = rpn~n(t)

1jl~[MJii(t)

~ ¢" ¢,IM1¢" .

Pcrfomling the same operation on the excitation lUger) leads (0

(4.162)

(4.163)

(4.164)

Equations of motion of a linear chain structure on a bilinear hysteretic isolator

While the following discussion is illustmtcd by a chain structure for convenience
Hnd easy visualisation, it applies to a much wider range of linear structures. The
main constraints are that the dynamics are controlled by horizontal motions of the
masses in the direction of the ground acceleration, and that the only connection to
the ground is through the isolator components. The isolator allows no vertical or
tilting motion at its interfacc with the structure, and provides some resistance to
horizontal motion at the interface.

A linear chain structure, of masses m and stiffnesses k, mounted on a bilinear
hysteretic isolator, is shown in Figure 4.9. The Coulomb damper is represented as
a slider which yields at a force Q, thereby changing the stiffness of the system, An
alternative representation has been shown in Figure 1.3(b). As shown in Figure 4.9,
Cb is the isolator velocity-damping coefficient. FI) is the isolator force arising from
its bilinear resistance to displacement.

The equations of motion are:

(4.165)

(4.166)

(4.169)

where

lelFF and lK]FF arc the damping and stiffness malrices for the free-free system,
i.e. when the base isolator hus zero horizontal stiffness and damping coefficient.
These were denoted ICol and IKol in the perturbation expressions of Section 4.2
for linear isolation systems. In the clastic phasc,

(4.170)

(4.167)

(4.168)

an(t) = un(t) + Ugn(t)

= un(t) + fnug(t).

For interpretation of the modal absolutc acceleration, note that

Similarly, the absolute acceleration of mode II is given by

Thus the modal absolute accelcmtion is the modal relative acceleration plus the
participation factor vector limes the ground acceleration.

For other linear or non-linear syslems, thc modal responses can be eXlnicted by
sweeping the tolal responsc vector by 1>~'IMI in the same way. provided that the

(4.171 )

wilh Ii, rcmaining zcro, und ICKhl - K1dCIII - 11,)1 < Q, whcrc Q is the forcc
across Ihe C'oulollll) slider ul widell it yields. Ilcn:: II, is thc di.~placC)llcllt of lhc
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'slider'. In the yielding phase, In the elastic phase, Fb is replaced by its residual after KblUI has been subtracted

(4.172) (4.175)

unlilli = O. Also Us = til.
Let us consider next the modal ronns of these equations and estimates of the

peak modal response quantities for modes defined in (enns of the various candidates
which have been proposed for the effective base stiffness.

This has a constant value during any particular elastic phase, since u$ = 0 during
clastic phases, but its value will be different in different elastic phases, since u.
changes during the intervening yielding phases.

In the yielding phase, Fb is replaced by

(1) Modes based on instantaneous isolator stiffnesses K bl and K b2

A candidate for the effective stiffness, which can be defined for an isolator with
any non-linear force-displacemenl relation, is the instantaneous tangent stiffness
of the force-dispiacemcni relation. For a general non-linear relation, this must be
redetennined for every instant of the response. However, for bilinear hysteretic
isolation, it alternates between two values, Kbl and Kb2, as defined in Figure 4.9.
The mode shapes and frequencies associated with these stiffnesses are effective for
the elastic and yielding phases of the response respectively. 'Initial conditions' in
terms of the co-ordinates of the new phase need to be determined at changes from
the elastic to yielding phase of response, and vice versa.

The stiffness matrices for each of the two phases may be expressed, as for linear
isolation, by

(ii) yielding phase

(4.180)

(4.179)

(4.176)

(4.177)

(4.178)

[K]e4>e,n = w;.nlM]4>e,n

[Kh4>y,n = w;,nfMl4>y.n.

Equations (4.177) and (4.178) define a set of normal modes for each response
phase. The equations of motion become:

(i) elastic phase

This has the same value, apart from its sign, during all yielding phases of response.
The natural frequencies and mode shapes are defined by

(4.173)

(4.174)

[K), ~ [K)" + [0 ]
K"

fKh = lKJFF + [0 ]
K"

/I

/I

I
" "

with y rcpla(,;illl,\ e ill a corresponding expression for f y,,.,,. The modal absolute
ac(,;cler;lliOll,~ <II l)ositiC)Il r, uhlHillc<I hy sweeping with 4>c,,, and 4>y,,, respectively,
arc (ii e,,'" + rc.,,,ii~) lIud (ii y"" I ['y""ii ll ), as they appear ill Ihe above equations,

The dUlllpillg ll:rll\~ 111(' llk~'ly til he couplcd bel ween modes, but the coupling
lenns COlli gcncrally h(' Ill'.~ll'~'I{'tl 'I'lw /.~ llild I'; lerms eSSl:lltiHlIy change Ihe

" "I, "

m __r:---'i
l;;------,.;J

k __ ~ ~

" I'

K b' - K b2 _7z:C:-:-"',J
Kb2--

-0

Figure 4.9 Model of a linear chain slrucCllre
comprising masses /II and inlermass
stiffnesscs k, mounted on a bilinear
isolalOr of sliffnesscs Kbl lllld Kbl ,
with viscous damping coefficienl Cb
and Coulomb-dlllllper force Q.

where
r _ ¢e,r,,4>J.II[M)1

e,"It - J.T IM[..!>
'l'e." 'f'c,"

(4.181)
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effective excitation, but can be handled without difficulty, as they arc constant
within Ii given phase of the response. The participation factors vary between the
two phases, making interpretation of modal responses in tenns of the response of
a singlc-dcgree-or·rreedom oscillator difficull. Non-linear coupling arises through
the initial conditions of the new phase of response at changes from the elastic to
(he yielding phase and vice versa.

For a change of response phase al time Ie.

Analogous expressions exist between the modal velocities "y,,.(te) and lie.m(td.
These expressions show that a response which is purely in one mode in the elastic
phase excites all yielding-phase modes at the change of phase of the response.
and similarly a single-mode yielding-phase response induces responses in all elas­
tic modes when the velocity reverses. Examples of the decomposition of elastic­
phase modal responses to multiple yielding-phase modal responses are shown in
Figure 4.10, discussed later. Through this non-linear modal coupling, thc energy
of the response is transferred between various frequency bands around the natural
frequencies for the two phases of the response.

As indicated by the high-frequency content in the seismic responses of cases (v)
<lnd (vi) in Figure 2.7, higher-mode accelerations may play an important role ill the
design of stmctures which have bilinear isolators. Equations (4.185) and (4,186),
.md the corresponding relationships for modal velocities and accelerations, may
be used to study thc lllech;LIIi.~ms by which higher-mode accelerations arc excited
when the isolator is bilinear. Such Mudies help in identifying simple p<ll'amctcrs,

U(le) = LUe,i{lc) = LUy,j(tc)
i j

L t;eAe.,{tc) = L~yAy.j(/c).
; j

From the use of orthogonality conditions with respect (0 the mass matrix

0'

similarly

(4.182)

(4.183)

(4.184)

(4.185)

(4.186)

such as the non-linearity factor and the clastic-phase isolation factor, which play
an important role in controlling the severity of higher-mode acceleration responses.
These parameter studies then assist the designer in balancing the benefits of mod­
erate higher-mode accelerations against the benefits of other features of the seismic
responses, such as low base-level shear forces or moderate overall displacements.

When the isolation factors. I(Kbl ) and I(Kb2 ), as defined in Section 4.2, for
the elastic-phase and the yielding-phase responses arc both large (i.e. Tbd T] (U) >

Tbl / T1(U) > 2), then the period and shape of any elastic-phase mode n is close to
the period and shape of the corresponding yielding-phase mode n, with each being
dose to the period and shape of free-free mode n, as indicated by Figure 4.3. The
greatest departure from the free-free period and shape is for elastic-phase mode I,
since I (Kbl ) is often substantially less than I (Kb2) with effective bilinear isolation.

Since all modes have nearly free-free shapes when the isolation factors are
large. mode I has a participation factor near unity. and all higher modes have small
participation factors for both phases of the response, as indicated by Figure 4.3.
Hence direct earthquake excitation is largely confined to mode I for both response
phases.

Since elastic-phase mode n has almost the same shape as yielding-phase mode
n, the mode-n accelerations change lillie at a phase transition. as shown by the
acceleration version of Equation (4.186) which gives,

Again, since the elastic-phase mode m is almost orthogonal (with respect to
the mass matrix) to Ihe yielding-phase mode" for m =f:: n and vice versa, Equa­
lions (4.185) and (4.186) show that there is Iinle transfer of motion between modes
of different number at either phase transition. 1lle most significant, but still small,
transfers of motion are accelerations from the first mode 10 the second mode and,
to a lesser extent. to the third mode. Hence with small higher-mode participation
factors, and small or moderate transfers of motion to higher modes, the higher­
mode accelerations resulting either from direci excitation or by transfer of energy
al yielding remain moderate. The only othcr source of excitation is from the F;
teon in Equation (4.180b). which involves the Coulomb damper force Q, Thistenn
is usually of order (1/2)(Q/ W)g or less, so for small yield ratios Q/W contributes.
at most small accelerations. Thus when the structure is well isolated in both the
elastic and yielding phases of the motion, the higher-mode contributions to seismic
loads are moderate and their contributions 10 noor spectra are not severe.

For any well isohlted structure the yielding-phase isolation factor I (Kb2) is large.
When the unisolaled first period "l'1(U) is small or moderate, the elastic-phase iso­
lation factor I (Kbl ) = '/i'I/"I'I(U) Ciln also be made large while retaining a value
of 'fbI which is also COlllp:ltihle with bilinear loops which give high hysteretic
damping. While the high lJ()ll lillc;uily f:tClor' which is unavoidable with high hys­
terelic damping (since Nt (JI/2lt,,) tcnd~ til promote higher-mode respol\sc,~, as
di"Cll~scd in Sectioll 4,.I,.'i '1Iltllll'I lI1tl(lc mnxi1llulll accclcnllioll fe~I)()Il'\Cs', these
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a system with a low elastic-phase isolation factor I(K b1 ) =0.6, corresponding to TI(U) =0.5 S, Tbl =0.3 sand Tb2 = 3.0 s,
which has the potential for relatively strong higher-mode response from both direct excitation of higher modes and non-linear
interaction. <i
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responses are progressively suppressed by increasing values of the elastic-phase
isolation factor I (Kb]), as illustrated by the curves of Figure 4.12.

It is desirable to keep the elastic-phase isolation factor I(Kbl ) = TbJ/T1(U)
relatively large 10 ensure small higher-mode accelerations. However, there may be
design constraints, such as a need for high hysteretic damping or limitations on the
type of isolator which can be provided (for example, simple frictional supports),
which may result in a relatively low (or even zero) value for I(Kbd, particularly
when the first unisolated period TI(U) approaches 1.0 s or morc. When l(Kbl )

is small, say 0.5 or less, then the elastic-phase mode-I shape is closer to that
for a fixed-base structure than that for a free-free structure. Moreover, mode 2
(and to a lesser extent mode 3) may also be somewhat closer to a fixed-base than
free-free shape, and its participation factor is increased from the zero free-free
value towards the fixed-base value. Hence elastic-phase mode 2 (and sometimes
mode 3) may have significant direct earthquake excitation .

With substantial contrasts in the shapes of the first few elastic-phase modes
and the shapes of corresponding yielding-phase modes, elastic-phase mode /l is no
longer approximately orthogonal to yielding-phase mode m for n i= m, at least for
the first few modes, and there is considerable transfer of motion between modes of
different numbers at phase transitions, as given by Equations (4.185) and (4.186)
and the corresponding equations for velocities and accelerations. The combination
of significant direct excitation of the elastic-phase higher modes, the transfer of
these motions to corresponding and near-corresponding higher modes, and also
a transfer of considerable motion from mode I to higher modes at each phase
transition, may produce considerable excitation of higher-mode motions when the
elastic-phase isolation factor is small. Higher modes are also driven in both phases
of the seismic responses by the off-set forces, F~ or F;, arising from the non­
linearity of the isolator.

While the increases in the small higher-mode displacements have little design
significance; the increased higher-mode accelerations may cause serious increases
in loads, and may result in rather severe floor spectra at shorter periods, as illus­
trated by cases (v) and (vi) of Figure 2.7. The full potential for large higher-mode
accelerations, which arises when there is a small elastic-phase isolation factor, is
realised when this is combined with a high non-linearity factor which may be
adopted to achieve the benefits of high hysteretic damping. The combined effect
of high non-linearity NL and a low elastic-phase isolation factor I(Kbl ) is again
illustrated by the curves of Figure 4.12 (see below).

The phase-2 modes play the dominant role in describing the peak seismic. re­
sponses of an isolated structure, since the maximum base displacement and base
shear occur during the isolator phase-2 response. The maximum responses of the
first mode arc likely to occur at <I time similar 10 that of the maximum isolator
displacement. since this is made up very largely of first-mode displacement. Max­
imum higher-modc acceleration responses may tend to occur 50011 aftcr yielding
in lhe largest bnsc-displacel1lclil cycle. Thi:; is bec:luse Iheir ncar-zero I)anicipation
(;I(;tor:; resull ill lililc direct fordll~ or Ihl,; Ilighcr 1ll0(lc:; rrOlil ~rollll{t cxCit:ltioll
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during the yielding phase, and SO their energy is at a maximum soon after yield­
ing before it is dissipated by viscous damping. This is illustrated by the mode·2
accelerations shown in Figure 4.11, where the strongest response occurs when the
modal acceleration next reaches its maximum after yielding.

The higher-mode energy is gradually dissipated during the remainder of the
yielding phase, which may occupy several cycles of a higher-mode response be­
cause the period of the fundamental mode is much longer than the periods of the
higher modes. During Ihe yielding phase, the higher modes respond with essentially
damped sinusoidal mOlions at their damped natural frequencies, with a ratc of de­
CilY depending on their damping, which is mainly contributed by viscous damping
in the superstructure.

The transfer of energy from mode I 10 higher modes during phase transitions,
together with the direct excitation of higher-mode accelerations during elastic­
phase responses, may result in higher-mode accelerations and forces which are
substantially greater than those of modc I. However, the energy in mode I is
usually much larger than the energies of higher modes since the square of the modal
forces must be weighted by the square of the modal periods if modal energies are
to be compared. Hence even if most of the excitation of higher modes is due to
energy transfer from the elastic-phase mode I, this would give little change in the
mode-I energy at a phase transition.

The small influence of higher modes on the responses of mode I may be demon-

-w

Figure 4.11 Sample time-history of modally swept acceleration response to El Centro
NS 1940 for the top of a uniform 3-mass shear structure mounted on a
bilinellr isolalor with par:lllletcrs given in the text. During the time i11ler­
v,ll from 10 12.5 s Ihe i.~ol:llor W;IS in the yielding- mul elaslic-ph;lses al
Ihe limes .,!town. Yielding.phase modc-2 W,IS ,lpproxinmted by sweeping
for frcc (l'ce lll\}\k 2. The llvcrugc logarithmic dccremClll corrcsponds to a
dumpinll fncl\lf Ilf (J(l~·1

strated for a structure and bilinear isolator combination which gives severe higher­
mode responses. If the higher modes are suppressed, by modelling the slructure as
rigid, it is found that there is little change in the mode-I responses, as can be seen
by comparing base shear for corresponding single-mass and multi~mass systems in
Tables 2.1 and 4.1.

The equations of motion, (4.179) to (4.181), can be used for response-history
analysis, leading to a significant reduction in the amount of computation if the
number of modes required is much less than the number of degrees of freedom
in the system. The modal approach also throws light on the non-linear response
mechanisms which may not be provided as clearly by the step-by-step solution of
the matrix equations of motion. It explains some of the features of the response
which will be illustrated later by applying modal sweeping to the response-history
results.

The transfer of motion between modes at transitions from elastic 10 yielding­
phase responses, as given by Equations (4.185) and (4.186), is illustrated in
Figure 4.10 for two contrasting cases. Both cases have a five-mass unifonn shear
structure with TI (U) = 0.5 s, and an isolator with Tb2 = 3.0 s, so Ihat both have
yielding-phase isolation factors I(K b2) = 6.0. For case (a), the isolator elastic
period Tbl = 0.3 s, so that the elastic~phase isolation factor I(Kbd = 0.6, and
hence there is good isolation only in the yielding phase. For case (b), Tbl = 1.2 s,
and hence I (Kbl ) = 2.4 and there is good isolation for both the elastic and yielding
phases of the responses.

Figures 4.1 O(a) and (b) illustrate the first few elastic-phase mode shapes, and rep­
resent them in tenns of the yielding-phase mode shapes. The figures show to scale
the decomposition of the elastic-phase mode shapes (for displacements, velocities
and accelerations) to their yielding-phase components. The elastic-phase modes are
scaled such that tPe.n T[M]tPc.n are the same for all modes. The relative strengths of
the motion in the various elastic-phase modes vary from instant to instant within
an earthquake response. The figures also summarise the periods associated with the
various modes and their top-mass participation factors. The elastic-phase partici­
pation factors provide some indication of whether various modes are likely to be
strongly excited.

For the first example, the elastic-phase first-mode decomposition in terms of the
yielding modes produces a significant contribution to the second post-yield mode,
which is thus excited by the first elastic mode on yielding. On yielding, 15% of
the first-mode elastic-phase kinetic energy is transferred to the post-yield second
mode. Also, the higher elastic-phase modes have significant participation factors,
so Hre likely to make sizeable contributions to the total elastic-phase response.
When significant mode-2 !>ost-yicld response is set up by the first-mode elastic
response, in most cases mode 2 will be excited directly in the elastic phase also.
The second clastic-phase mode produces response in mainly the second and third
post-yield modes on yielding, with" lesser proportion of mode-l response. The
third ctilslic-pllllse mode, which lias n participation factor of 0.2, produces sizeable
proporliolls of Illode 3, lliotte II fUll! Ill()(te 2 on yielding.
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(2) Modes ba.~ed on post-yield isolator stiffness Kb2
In this case the stiffness matrix for both phases of response is the same as lK]y in
the previous section.

For the second case, with Tbll T1(U) = 2.4, i.e. well isolated even in the elastic
phase, the elastic-phase modes arc very similar 10 the corresponding yielding-phase
mode. Thus on yielding, very little energy is transferred from elastic-phase modes
to higher yielding-phase modes. For both the first and second elastic-phase modes,
over 99% of their kinetic energy is transferred 10 the corresponding post-yield mode
on yielding. Only the first and second elastic-phase modes are shown, as the higher
modes have insignificant panicipation factors even in the elastic phase (0.019 for
the third mode).

[K]y = fK1 FF + [0 ]K b2 .

In the elastic phase, Fb in the equation of motion is replaced by F;(e)

(4.187)

(4.188)

of the response, so the phase-2 mode shapes are more appropriate than the phase-I
mode shapes for interpreting the maximum responses through modal sweeping.

(3) Free~free modes

A further candidate for the appropriate set of mode shapes to represent the response
of an isolated structure is the set of free-free modes. These mode shapes deserve
consideration because of the low stiffness of the isolation system relative to the
structure, at least in the post-yield phase, and by analogy with the free-free modes
used in the perturbation analysis of a structure with a linear isolation system which
was studied earlier in this chapter (Section 4.2). It turns out that this characterisation
of the modes produces a convenient method of representing the first-mode response
and the base shear, in tenns of a rigid~mass representation of the superstructure on
the bilinear isolator, with linear higher modes driven by the base shear.

For the free-free mode-shape representation, the stiffness matrix is [KlrF, and
the offset force Fb is as defined for the equation of motion in (4.171) and (4.172).
It is convenient to add the isolator damping force CbUl to the isolator offset force
F•.

The mode shapes and frequencies are defined by

In the yielding phase, Fb becomes (4.192)

(4.189) The equations of motion become

where the appropriate fonn of F; is used for the two phases of the response.
[n the elastic phase, the modes defined in this way are coupled through the

P; teml. In the yielding phase, the modes are coupled only through the viscous

damping matrix, for which the coupling can usually be neglected, with the F; tenn
modifying the excitation but not coupling the modes.

Similar comments apply to this choice of mode shape as were made in the
previous section. This sekctiOIl of base sliffness has becn included as a separatc
case bec;llIsc it leads to the 'I\JllUrlll' l1\odes for the strongest amplitude portion of
the response. Tlie Illaxillllllll 1lI()\11I1 n,:sJlOII,SCS usually occur ill the yielding phase

/I > I.

(4.193)

(4.194)
1

UFF.rl +ug = - M
T

(Fb + CbUl).

The right~hand side of this equation is simply the negative of the base shear di­
vided by the total mass MT of the system. This corresponds to the first-mode base
acceleration, for the selected mode shapes. This result can be arrived at in another
way. The base shear is the sum of the inertia forces over all masses. Summing the
inertia forces is the same process as sweeping the inertia forces with the first-mode
shape, which consists of unity, at each degree of freedom.

For higher modes (II> I), the participation factors r FF.fN = O. The equations
of motion becomc

(4.195)

For the fundamental mode n = I, the frequency WFF.I = 0, the participation
factor rFF,rl = I and

(4.190)

(4.191)

The mode shapes and frequencies are defined by

The equations of motion become
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Thus the higher-mode responses are excited by accelerations defined by scalings
of the base shear divided by the total mass, which we have already shown is
the negative of the first-mode absolute acceleration. Thus the fundamental-mode
response, (kilned ill terms of the free-free modes, drives the higher-mode responses.

In pmcticc, the first-mode acceleration response will not be known unless the
complete response-history of the structure has been calculated. The first-mode re­
~P()IlSC can then be extracted by sweeping with the firsl free-free mode shape. The
maximum values of the first-mode acceleration, the first-mode and total displace­
ments, and the base shear can be estimated accurately by using a one-mass model
of the superstructure. However, this model does not produce the higher-frequency
coment of the response well enough for its base shear to be used as the excitation
in Equation (4.195) for calculating the higher-mode responses.

A typical yielding-phase higher-mode acceleration response-history, fo~ a bi­
linear isolator which gives a small elastic-phase isolation factor, is shown in
Figure 4.11. A uniform three-mass isolated shear structure has a bilinear isola­
tor with Tbl = 0.3 s, Tb2 = 1.5 s, Q/W = 0.05 (Qy/W = 0.052), and ~b2 = 0.05.
Its unisolated period is TI (U) = 0.43 s and it has free-free modal damping factors
of 0.05. Hence I(KbJl = 0.7 and I(Kb2 ) = 3.5. Also, since Xb = 0.053 m
and Sb = 4.30 N, for M = 3 kg, Ta = 1.21 s, NL = 0.334, ~h = 0.21,
~a =~h + ~b2 =0.26.

Figure 4.11 shows the top acceleration for yielding-phase mode 2 of the three­
mass structure. The mode-2 acceleration was computed using Equation (4.164)
with 4>2 given by the shape of free-free mode 2, which approximates the shape
of yielding-phase mode 2. The modal sweeping removed the orthogonal free-free
modes I and 3. The true modes in the elastic-phase response are far different from
the free-free modes, so the net result is a modified top acceleration during elastic­
phase responses, and the top acceleration of mode 2 during yielding-phase re­
sl>onscs. Yielding-phase mode-2 accelerations have been excited during transitions
to Ihe yielding-phase responses. The mode-2 yielding-phase accelerations closely
approximatc a decaying sinusoidal curve. The average logarithmic decrement cor­
responds to a damping factor of 0.054, showing that the decay rate is controlled
by thc structural damping factor, 0.05 in this case. The figure clearly indicates the
low excitation given to higher modes during the yielding-phase response.

Since lhe most severe higher-mode accelerations are approximately sinusoidal,
and typically persist for several cycles, they may result in quite severe responses
for moderately damped appendages when they are tuned to yielding-phase higher
modes, as discussed later.

4,3.5 Higher~mode acceleration responses of linear structures with
bilinear isolation

SYlitematic case st"dies

III this section wc show that higher-mode accelerations Illay make large contri­
butions to Ihe seismic loads and the IInol' aeecler;ltioll spectra for linear structures

with bilinear isolation. A systematic study was undertaken to establish broad trends
for these higher-mode contributions, to clarify the mechanisms involved and to es­
tablish guide-lines for preliminary design.

Modal and overall seismic responses to the EI Centro N$ 1940 earthquake
accelcrogram were studied for 81 different combinations of structural and isolator
parameters. The results are presented in Table 4.1, which shows the maximum
responses of three unifonn five-mass shear structures, each isolated on 27 different
bilinear isolators.

A five-mass unifonn shear structure, as shown in Figure 4.9 with N = 5, was
given one of three 'unisolated' periods

• T] (U) = 0.25, 0.5, 0.75 s.
Each of the major bilinear isolator parameters were given three values:

• Tbt = 0.3, 0.6, 0.9 s
• Tb2 = 1.5, 3.0, 6.0 s
• Qy/W = 0.02, 0.05, 0.10.

For typical structures with bilinear isolation involving energy dissipation through
hysteresis of lead or steel, these parameter values tend to represent low, medium
and high values. Responses for some other limiting cases may be evaluated readily.
For example, QylW = a gives a linear isolator, and TI(U) = 0 s gives a rigid
structure with seismic responses simply related to the maximum responses of one­
mass bilinear systems (Figure 4.5). Designs using other types of bilinear isolation
systems may have parameter values well outside these ranges; for example, a sliding
isolator may have Tb] = 0 s, h2 :::::: 00 and Qy/ W :::::: 0.2.

The structure was provided with a sct of intennass velocity dampers which
gave to each of the 4 higher free-free modes a damping factor of 0.05. The iso­
lator velocity-damping coefficient Cb was chosen to give a yielding-phase isolator
damping of ~b2 = 0.05, where ~b2 = CbTb2l(4;rM).

T1(U) is intended to be representative of the flexibility of the structural compo­
nent of the overall isolated system, and has been defined as the first-mode period
when the isolator stiffness is infinite. The maximum responses presented are the
base displacement Xb, the top-mass modal accelerations XS. 1, Xu, and XS.3 and
the approximate mid-height shear Sav(3. 4) given by the average of the shears for
springs 3 and 4. The modal responses are defined in tenns of the free-free modes.
Also shown, at the side of the first set of results. arc the base displacements and
base accelerations of a rigid structure, T1CU) = O. mounted on the various isolators.

Higher-mode maximum acceleration responses, Xr.n, n > 1

The maximum .\cceleration response of the top nwss, number 5, was calculated
for each mode llsing the modal sweeping technique (Section 4.3.4) with free-free
mode shapes. These free-frec mode shapes were only a fair approximation to the
mode shapes with an isolator stiffness K b2 for the nine cases with Tb2 = 1.5 s
and "f1(U) = 0.75 s. since {(Kb2 ) = 2.0. For the remainder of the 81 cases,
{(KII2) ::: 3, and hellce Ihe fl'('e fl'ce mode shapes were 'Illite close to the shapes
with an isolator ~tiffne.~,~ Kb2 ,
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Table 4.1 Maximum responses of unifonn 5-mass shear structures isolated on various Table 4.1 (COlllinued)

bilinear isolators when excited by the El Centro NS 1940 accclerogram. ~b =
(b) T,(U) 0.550.05. ~FF... = 0.05. m, = I kg

(a) T1(U) = 0.25 s T1(0) = 0
No. T.. T.. Q,/W X. X,.1 Xu Xu NL S..(3.4)

(s) (s) (%) (m) (m 5-2) (m $-2) (m $_2) (N)
No. T.. T.. Qr/W x. X,.• Xu is.J NL 5..(3,4) X. X.

0.074 1.495 0.991 0.839 0.13 4.29(m $-2) (m $-2) i 0.3 1.5 2(s) (sj (%) (mj (m 5-2) (m $-2) (N) (m)
0.050 1.363 2.049 1.139 0.34 5.462 5

i 0.3 1.5 2 0.079 1.574 0.692 0.448 0.12 4.19 0.079 1.579
3 10 0.043 1.699 2.810 2.154 0.53 7.05

2 5 0.052 1.388 1.929 0.768 0.33 4.79 0.053 1.412
4 3.0 2 0.122 0.736 1.136 0.629 0.26 2.38

3 10 0.040 1.653 2.957 0.850 0.54 6.83 0.043 1.717
5 5 0.067 0.789 2.017 1.313 0.61 4.39

4 3.0 2 0.125 0.751 0.820 0.476 0.26 2.17 0.126 0.154
6 10 0.066 1.265 2.516 2.062 0.75 7.01

5 5 0.072 0.810 1.922 0.713 0.59 4.41 0.075 0.822
7 6.0 2 0.084 0.2% 1.266 0.869 0.66 2.37

6 iO 0.051 1.205 2.993 0.985 0.77 7.32 0.056 1.221
8 5 0.067 0.567 1.908 1.513 0.85 4.18

7 6.0 2 0.090 0.296 1.020 0.461 0.66 2.20 0.091 0.298
9 iO 0.Q75 1.067 2.382 2.068 0.89 7.02, 5 0.087 0.590 1.995 0.704 0.82 4.50 0.Q78 0.591
iO 0.6 1.5 2 0.079 1.564 0.880 0.424 0.10 4.42

9 iO 0.061 1.054 3.139 1.013 0.90 7.81 0.079 1.070
II 5 0.059 1.46\ \.639 0.961 0.27 4.92

10 0.6 1.5 2 0.08\ 1.594 0.478 0.261 0.10 4.14 0.082 \.61 I
12 10 0.049 1.683 2.489 0.872 0.40 6.75

II 5 0.060 1.468 1.024 0.253 0.27 4.28 0.061 \.492
13 3.0 2 0.13\ 0.767 1.047 0.52\ 0.24 2.45

12 iO 0.053 \.759 1.661 0.466 0.39 5.22 0.053 1.753
i4 5 0.075 0.812 1.653 1.055 0.55 4.06

13 3.0 2 0.134 0.784 0.614 0.24\ 0.24 2.07 0.135 0.787
IS 10 0.055 J.J86 2.676 1.202 0.66 6.78

14 5 0.081 0.835 1.289 0.508 0.54 3.37 0.087 0.841
16 6.0 2 0.099 0.311 1.273 0.418 0.61 2.41

15 10 0.062 1.222 1.833 0.466 0.66 5.57 0.068 1.248
17 5 0.... 0.589 1.511 1.068 0.79 3.99

16 6.0 2 0.096 0.307 0.636 0.304 0.62 1.70 0.100 0.312 18 10 0.076 1.059 2.696 1.182 0.81 7.04
17 5 0.082 0582 1.450 0.317 0.79 3.69 0.076 0574

i. 0.' 1.5 2 0.... 1.676 0.832 0.269 0.07 4.56
18 10 0.072 1.058 1.822 0.488 0.80 5.61 0.085 1.072

20 5 0.069 1.525 1.460 0.508 0.18 4.53
19 0.9 1.5 2 0.087 1.664 0.348 0.135 0.G7 4.20 0.087 1.663

21 10 0.070 1.866 1.926 0.518 0.24 6.07
20 5 0.071 1.560 0.723 0.138 0.17 4.17 0.072 1.588

22 3.0 2 0.142 0.806 0.821 0.441 0.22 2.48
21 10 0.075 1.953 0.780 0.264 0.24 5.48 0.G75 1.963

23 5 0.088 0.841 1.497 0.635 0.47 3.62
22 3.0 2 0.145 0.819 0.522 0.118 0.21 0.211 NA NA

24 10 0.074 1.219 2.253 0.544 0.53 6.00
23 5 0.089 0.840 0.780 0.215 0.47 258 0.087 0.834

25 6.0 2 0.103 0.312 0.759 0.288 0.59 1.68
24 10 0.079 1.247 0.960 0.254 0.53 3.99 0.080 1.253

26 5 0.133 0.635 1.501 0.691 0.70 3.99
25 6.0 2 0.103 0.313 0.516 0.169 0.59 1.56 0.105 0.315

27 iO 0.095 1.068 2.369 0.626 0.71 6.31
26 5 0.127 0.627 0.793 0.200 0.70 2.54 0.122 0.621

continued overleaf27 iO 0.101 1.075 0.947 0.212 0.7\ 4.18 0.104 1.076

since sweeping wilh free-free mode shapes assumcs an undeformed or rigid slruc-
It was found that in all cases, '~\1' the maximum acceleration of mode \ at lure for mode 1. The mode-I accelerations wcre reduced from the values for lhe

level 5, was close 10 the isolalor bilinear spectral accelerations with lhe Slruc- rigid SUI>crslructurc model, presumably because a major source of higher-mode
lure treated as rigid. wilh mode-\ accelerations being modenllely less when there energy is due 10 tr"mfel' from mode I by non-lincM mechanisms, as discussed ellr-
was ;1 large excitation of higher mode llccelerations. Wilhoul energy loss from lieI'. The Ir:lll\fer. 10 higher lIlode\, of energy ;Moch,ted with a small reduction in
mode I, there should be llW~CII1Cnl hclwL"e1l 1Jlode-1 and s!>cctral acceleralions. mode-I accelerallOIl\ b ahlc In I)f()dllce relatively large highcr'lllcxle ;lCcclcralion~,
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Table 4.1 (continued) of isolator non-linearity NL, the level of excitation of mode 1, and the size of

(0) T,(U) =O.7~ s the elastic-phase isolation factor I(Kb1 ). The firsllwo factors are discussed below,
while the role of I(Kb1 ) has been described in Section 4.3.4.

No. T" T" Qy/W X. X~.l Xu Xu NL S'v(3,4)
Some convenient generalisations follow from the results of the systematic study

summarised in Table 4.1 and discussed below. The non-linearity factor NL may
(s) (s) (%) (m) (m S-2) (m S-2) (m S-2) (N) be regarded as a simplistic measure of the non-linearity which gives the contrasts

I 0.3 1.5 2 0.Q75 1.507 1.201 0.779 0.12 4.38 between the seismic responses of structures wilh bilinear and with linear isolation.

2 5 0.046 1.291 1.711 1.615 0.36 4.87 Other factors, such as the degree of excitation of mode I, Ihe elastic-phase isolafion

3 10 0.037 1.604 2.924 2.221 0.56 7.88 factor and bilinear loops of extreme shape, may then be regarded as features which

4 3.0 2 0.t20 0.727 1.008 0.622 0.27 2.47 modify the consequences of a given degree of non-linearity. Although simplistic in

5 5 0.055 0.738 1.764 1.514 0.65 4.76 definition, the non-linearity factor gives simple approximate response relationships

6 10 0.040 1.160 2.929 2.258 0.80 7.75 for a surprisingly large range of system parameters.

7 6.0 2 0.089 0.300 1.143 0.752 0.65 2.22
In quite general teons, as a result of trends towards equipartition of energy

8 5 0.077 0.578 1.787 1.554 0.84 4.77
between rhe modes, a moderate degree of non-linear coupling between a high-
energy vibration and other low-energy vibrations should tend to transfer energy to

9 10 0.041 1.036 3.000 2.231 0.90 7.71 the low-energy vibrations at a rate which increases with the degree of non-linearity.
10 0.6 1.5 2 0.079 1.554 1.349 0.643 0.10 4.56 The maximum mode-I acceleration X5,1 gives some measure of the capacity of
II 5 0.053 1.353 1.635 1.054 0.29 4.88 mode I to contribute to higher-mode accelerations X5.", for n > I. We have found
12 10 0.055 1.810 2.290 1.655 0.38 6.88 from the range of cases outlined in Table 4.1 that generally the ratios X5.,,/X5.1
13 3.0 2 0.127 0.751 0.718 0.521 0.25 2.56 are more simply related to system parameters than is X5.,,' An exception is when
14 5 0.073 0.798 1.717 1.202 0.56 4.44 Tb2 = 6.0 s, when the large changes of X5.1 with the yield ratio Qy/ W (Figure 4.5)
15 10 0.057 1.203 2.283 1.874 0.66 6.44

are accompanied by substantially smaller changes in X5.", and the ratio X5.,,/X5.1
16 6.0 2 0.101 0.312 0.819 0.651 0.61 2.30

masks the direction of changes in X5.". However, it is still convenient to present
17 5 0.109 0.609 1.687 1.242 0.77 4.29 maximum higher-mode accelerations as a fraclion of the maximum mode-I accel-
IS 10 0.064 1.054 2.261 1.872 0.79 6.33 eration with the same system parameters TI(U), Tb1 , Tb2 and Qy/W. Moreover,
19 0.' J5 2 0.085 1.616 1.310 0.376 0.07 4.77 approximate values for X5•1 can be obtained from the responses of one-degree-of-
20 5 0.061 1.385 1.763 0.703 0.19 4.74 freedom systems. As shown by Equation (4.195), the higher-mode responses are
21 10 0.066 1.806 2.183 0.876 0.24 6.31 driven by the base shear, which is proportional to the first-mode acceleration, so
22 3.0 2 0.136 0.784 0.655 0.456 0.22 2.59 it is physically reasonable Ihat the strength of the first-mode response affects the
23 5 0.091 0.853 1.472 0.694 0.47 3.78 strength of the higher-mode responses.
24 10 0.08t 1.261 2.292 0.835 0.53 6.04 The elastic-phase isolation factor I(Kbd plays an important role in the exci-
25 6.0 2 0.102 0.315 0.851 0.597 0.58 2.31 tation of higher modes, as discussed in Section 4.3.4. Small I(Kbl ) values give
26 5 0.146 0.648 1.587 0.687 0.69 4.04 the contrast between the shapes of elastic-phase and yielding-phase mode 1, which

27 10 0.112 1.093 2.049 0.817 0.72 5.83 is the basis of the transfer of mode-I motions to higher-mode motions. A small
elastic-phase isolation factor is also associated with increased elastic-phase partic-
ipation factors of higher modes and hence increases their direct seismic excitation.

because higher modes require much smaller energies to achieve a given maximum Such motions are then transferred to yielding-phase modes, mostly to those of the

acceleration. This ensures that nlthough higher-mode responses may be scvere, samc or similar modc number.

which is important for lhe overall distribution of shear and floor-response acceler- The maximum accelerations for highcr modes 2 and 3, namely X 5.2 and X 5.3

ation spectra. the mode-I response which governs base shear and displacements is lisled in Table 4.1, howe heen plotle<l as fractions of mode-I accelerations X5.1

lillie "ffected by the illl..:melioll with higher modes, as observcd. in Figlll'e 4.12. as fllllctiot1s of th..: lIOn-linearity factor NL ,1Il<1 the clastic-phase

We have foulld thaI three fnl'll1lS 1.:1111 be expectc<l to contribute to the sometimes isolalion factor I (Khl ). It is .~eCII lhal I()t· IHost cases lhe ralios X~.,,/ X~, I increase
large maximum hil,:hcl' Illod~' lIe('('ll'f(lliolls ,i(~.", for Ii > I. Thcse are the degree approximatcly linelll'ly with NI. 1\\1" 1I givell vullle of !(Kld ), ,i1though lhere i.~
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Figure 4.12 (continued)

02 o.

a fair degree of scauer. Notable exceptions occur when T b2 = 6.0 s, when the
exceptionally small values of XS,l for Qy/ W = 0.02 give ratio values well above

the linear trend lines. Again the rapid increase in XS,l as Qy/W is increased from
0.05 to 0.10 tends to give ratio values below the trend line. Some of the more
c"treme values for Tb2 = 6 s have been excluded from the plots of Figure 4.12,
but results for all cases arc given in Table 4.1. Hence, where the trend curves are
used as a design guide (Figure 5.3(iI», lhey should not be used to estimate the
maximum higher-modc IlCcr.:!erllliolls lor the parameter combination of Tb2 > 3.0 s
and Qy/W < 0.05. I\lso, c.~lhlll1ll'S of Ihe higher-mode responses for cases where
Qy/ W ::;::: 0.10 may be qlli1\' nlll~{'IVl1llvc.

Figure 4.12 Ratios of higher-mode to first-mode acceleration responses to El Centro NS
1940 for 63 of the bilinear isolation systems given in Table 4.1. The top
acceleralion ratios are ploned against thc isolator non-linearity factor NL,
and grouped in tenns of the elastic-phase isolation factor Tbl/T1(U). For
later design-guide purposes, groups of responses are approximated by the
near upper envelope lines shown. (a) Second-mode acceleration responses.
(b) Second-mode acceleration responses. (c) Third-mode acceleration re­
sponses. (d) Third-mode acceleration responses

Distribution of seismic shears

For linear isolation systems with isolation factors I = Ji,/T1(U) of about 2 or
greater, the overall seismic response can be approximated very well by the first~

mode response, since the higher~mode participation factors are near zero. For a
uniform structure, the first-mode shear distribution is approximately triangular,
from zero at the top to a maximum value at the base. Also, the base shear ean
be found approximately by using a simple one-mass model, with the structure
represented as a rigid mass supported on the isolator.

For non-linear isolation systems, the base shear can be found approximately
from a one-mass rigid structure model, but the shear dislribution is generally more
complicated than a triangular distribution. We have shown in the previous section
that the maximum acceleration responses in the higher modes can be up to several
times the maximum first-mode responses, with the mtio of the higher-mode to first­
mode responses depending prinwr;ly 011 Ihe isolation ratio in the unyielded phase of
the response. i.e. 'fi,1 /"1'1 (U). and the non-linear;ty factor NL. Thus the conlribUlions
of lhe higher modes to Ihe shears may be significant at various positions in the
structure.

For IllOtJcs defille{l in lerms of Ihe post~yicld stiffness K h2 of the isolator, Ihe
shapes of thc shelli' {lisll'ihlltiollS for all modes arc the S,1Il1C ilS for;l lineal' system
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I"igure 4.12 (continued)

with an isolation factor corresponding to Tb2/T1(U). Typical diSlributions are as
plolted for a linear isolation system in Figure 4.3. In common with structures with
linear isolation systems, siructures with non-linear isolation have shear distributions
for modes higher than the first with a zero just above the base, giving higher-mode
base shears generally much smaller than the first-mode base shear. Thus the base
shears for systems with non-linear isolators are essentially the same as the first­
mode shears, as for well isolated linear systems. However, this result arises because
of the near-nodal nature of the shear distributions at the base, rather than because
the shear distributions in the higher modes are negligible. At positions other than
the base, the contributions of the higher modes must usually be taken into account
to obtain adequate estimates of the shears.

The contributions of the higher-mode shears will be most important lIt the ant in­
odes of the higher-mode shellr distributions. Since the shear is proportional to an
integration of the acccleration or displacement profile from the lOp of the struc­
ture to the point of intcre~t, the alltinodes of the mod..l shear distributions occur
;It the nodes of the accclcl'lItion or di.~placelllent mod,,1 profiles. For :1 uniform
structure, thc seCOll(l-lllOUC ~'1l.'11i (tl~lrihution has a maximum ncar mid-height (ex­
:u:.:tly at mid-heigh I for 11 1'1\.'(' 11\'(' ~y~lt'lIl wilh I.ero basc stillncss). It is thus to be

expected that the shear profile for a structure with non-linear isolation, in which
higher-mode effects are important, will depart significantly from the triangular dis­
tribution expected for a system with a high degree of linear isolation, with a bulge
in the shear distribution in the mid-height region of the structure. Such bulged
shear distributions are shown for cases (iv) to (vii) of Figure 2.7.

Lee and Medland (l978a, b) pointed out the bulge in the shear distributions
for structures on non-lincar isolators, recognised that it was caused by higher­
mode contributions, and quantified it in terms of a 'bulge defining parameter'.
They discussed the relative importance of modes higher than the first in unisolated
structures and in structures with bilinear isolation. They also considered the effects
of higher modes on the responses of appendages.

Andriano and Carr (199Ia, b) recently performed a systematic study of the
lateral force distribution in structures with non-linear isolation. They found that
the non-linearity factor NL (which they described as the hysteresis loop ratio 'R'),
the fundamentul period of the structure when un isolated, and the amount of frame
action in the sllpcrslruClUre were the three factors which huve the major influences
on lhc shape of the shear distribution. These results arc in line with our own. We
have presentc(t thc nOIl-lincarity (Ictor as being <l major parametcr govcrning the
higher-Illode response, which in turn (tetermilles Ihe sh"l)C of the she:lr (listribution.
Wc havc prefcrrcd to usc Ihe ratio of the first-Illode isol:lled and unisolatcd pcri()(ts
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For a purely first-mode response, the bulge factor is I.
U~ually, the most significant contribution to the variation from the first-mode

shear distribution would be expected from the second mode, particularly at mid­
height where the mode-2 shear distribution has a maximum. The mid-height shear
could be estimated from a SRSS combination of the first- and second-mode con­
tributions, but the SRSS approach using all modes appears to give poor results for
structures with bilinear isolation. Also, modes higher than the second also contribute.

As a generalisation of the SRSS combination of the first two modes to estimate
the shear at mid-height, we have sought a correlation between the bulge factor BF
and the ratio of the first-mode to second mode top-mass accelerations of the form

The relationship between the mid-height bulge factor BF and the ratio of second­
to first-mode top acceleration Xs.21Xs,1 was examined for the 81 case studies of
uniform shear structures with bilinear isolation (Table 4.1).

As shown in Figure 4.13, it was found that, when most isolators with T b2 = 6.0 s
were excluded, then Equation (4.197) with a = 0.85 gave a good fit for the bulge
factors for Tl (U) = 0.25 s or 0.75 s. However, it somewhat overestimated the
bulge factors for 7"1 (U) = 0.5 s, when the bulge factor was approximated betler by
taking a = 0.6.

For cases with T b2 = 6.0 s, a number of mid-height bulge factors were consid­
erably less than given by Equation (4.197), while some were moderately greater
(when Qy/W = 0.02). This approa{;h is lh{;refore qualitative only, but useful in
many {;'lses.

For thc 81 cascs Ihc bulgc t";l{;tors were c<llcuhlted in two ways. Pirsl the bulge
faelUrs were cak:lllatcd ,II the exact mid-heighl, lhal is with half of Ille mass-3 forces

Estimation of the shear distribution using the mid-height bulge factor

For the design of structures with bilinear'isolation, it is often imponant to estimate
the maximum seismic shellrs over the height of the structure. It is useful to relate
the profile for overall shears to the profile for mode-l shears, which may be derived
approximately from the structural masses M r and the base level shear for mode 1,
as given by bilinear acceleration spectra and the total mass.

Since the top-level shear is given by the top acceleration and mass, knowledge
of the top-mass acceleration provides a shear value at this level. Also the base
shear is approximated by shear due to mode I alone. Hence if a mid-height shear
is obtained, the shears al three levels give some indication of the shear profile. (For
moderately non-uniform structures it may be appropriate to find the intennediate­
level shear at about the level of the node of mode 2.)

The mid-height shear may be given by a bulge factor BF defined as the ratio of
total mid-height shear S(O.5h) to the first-mode mid-height shear SI(O.5h).

(4.197)

(4.196)BF~ S(O.5h)/S, (O.5h).

rather than the unisolated period on its own as our second parameter. We restricted
OUf analysis to shear structures so the third parameter did not occur in our studies.
The comments of Andriano and Carr (l99[a, b), on the dependence of higher­
mode response on various parameters of the isolation system, arc consistent with
OUf observations and interpretations.

When the initial stiffness of the isolator is low so thai the structure is well
isolated even in the elastic range orthe isolator, the nature of the response is similar
to that with good linear isolation. The higher modes are virtually orthogonal to some
distribution of the inertia force excitation resulting from the ground motion, so are
not strongly excited. Only the fundamental mode will be excited to any extent, and
its low natural frequency will provide isolation against high-frequency excitation.
The response will be dominated by low-frequency fundamental-mode motions. A
rigid-structure-like response will occur, with the accelerations nearly uniform over
the height of the structurc.

Higher initial stiffnesses of the isolator will increase the 'fatness' of the hys­
teresis loops (i.e. the non-linearity factor t:!!J, which we have just shown to be
correlated with a larger ratio of higher~modeto first-mode accelerations. The higher
modes will have increased participation factors in the clastic phases of the re­
sponse, and there will be stronger coupling from the first-mode elastic response
10 the higher-mode post-yield responses. The higher modes will make important
contributions to the response, resulting in a bulged shear distribution.

Increasing the yield strength or decreasing the post-yield stiffness also leads
to f:lller hysteresis loops with larger non-linearity factors, and hence to stronger
higher-mode responses.

As the sha~s for the modal shear distributions can be approximated by half­
cycle sine-waves, maximum shear envelopes can be estimated if the strength of
the individual modal components and appropriate modal combination rules can be
established.

The traditional modal combination rule is the square-root-of-sum-of-squares
(SRSS) (Ocr Kiureghian, 1980a, b). This rule is based on uncorrclated modal
responses, which are often obtained with well separated modal frequencies. Al­
Ihough structures with non-linear isolation have well separated frequencies, the
higher-mode responses may be correlated, in that the post-yield mode shapes arc
very similar to the free-free mode shapes, and we have shown in Section 4.3.4 that
Ihc higher-mode free~free responses arc driven by the first-mode acceleration.

The SRSS modal combination method has been tested for the top mass accel­
cration for the 27 cases with 1'1 (U) = 0.5 s in Table 4.1. It was found that the
true peak accelerations exceeded the SRSS values by a factor which increased with
bOlh the non-linearity factor NL and the yield-ratio Qy/W, with typical but by
no mcans constant acceleration ratios of 1.13, 1.3 and 1.4 for Qy/W values of
0.02,0.05 and 0.10, when NL excceds 0.5. Problems with selecting an appropriatc
modal combination rule have Ic(1 10 attempts to estimate the shear envelopes by
uth,,;r rn,,;thod.~ as dcscribed below.
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•

(4.198.)

where F, is the inertia force at level;, V is the base shear, Wi the floor weight
and hi the height of the floor from the base.

For a constant acceleration distribution, corresponding to a structure with a
high degree of linear isolation, p = O. With non-linear isolation, the accelerations
usually increase lowards the top of the structure, corresponding to a positive value
of p. 11le exponent p was found to be highly correlated with the hysteretic shape
ratio R (non-linearity factor) for a given unisolated first-mode period. Regression
analyses were perfonned to obtain p as a linear function of R

ESlimalion of the shear distribulion in terms of exponenl p and non.linearity
factor NL

Use, in design, of the method based on the mid-height bulge factor requires an esti­
mate of XN .21XN •1 from the non-linearity factor NL and the elastic-phase isolation
factor I (Kbd = TbI/TI.~U). 3?d then the use of an equation of the fonn (4.197) to
obtain BF in tenns of XN •2/XN.I.

Andriono and Carr (l99la) give an approach for obtaining the shear distribution
directly from the non-linearity faclor NL (which they call the hysteretic shape ratio
, R') and the unisolated period T1(U). They quantified the shear distribution in tenns
of an exponent p describing a power-law variation of acceleration with height in the
structure. Tbey enveloped the equivalent lateral force distribution by a distribution
given by
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induded in the shear values. Since modal shears were based on free-free values.
modes 3 and 5 had shear nodes at the mid-height and therefore did not contribute
to the computed mid-height bulge factor. Secondly, the mid-height bulge factors
were computed using the mean of the shears just above and below mass 3. This is
delloted Sav(3,4) in Table 4.1. This approach has some contribution from all five
modes. The two approaches gave much the same relationship between lhe mid­
height bulgc factors and lllc top accelerations as expressed by Equation (4.197).
The second approach using Hver,lgc Ilcar-mid-height shears showed somcwhat less
scalier from thc trend lines given by Equation (4.197).

"Illis ,1pproach of estillllltiH~ lllc (lvcl'all shear distribution in terms of thc mid­
heighl hulge fHCtOr, with ttw lnp 1I1ld hu\e shear already known, has been used in
lhc preliminary dc\igll rUO/'l'(IUI\' 1l1('\j,'lltcd in Chaptcr 5.

Mid.height shear bulge factor BF as a function of the lop-level acccleration

ratio Xj,zlX',1 for 63 of the bilinear isolation systems shown in Table 4.1,

together with the: relationship SF = .; (1 + a(Xj,dX'.1 )2) and the best-lit
values of 'a'

4.4.1 Introduction

(4. 198b)p=A+BR.

This expression was usually fitted with a high correlation coefficicnl. For a given
value of R, the exponent p was found to be larger for greater values of T](U), in
tine wilh the general conclusion that higher-mode effects are more important when
the structure is more flexible with respect 10 the isolation system. The correlations
were found 10 be earthquake dependenl (Andriono and Carr, 1991a, Figure 14).
The approach is used as part of a design procedure recommended by Andriono
and Carr (1991b), to find the overall shear distribution once the base shear and
displacement have been estimated.

llllf}Qrltlllce of .~ec(JI/(lttry-.~trltclllre.\·ei.wu;c re.\'IJ(JIt.~e.\'

Many structurcs contain sllbsy.~tcms. or secondary structures, which arc essenlial
for their design fUliclion,,: in somc cases lhc 1ll.,in role of a slruClUre is to pro­
tect lhe ~y:-.tCIll.\ which it cOllt[lill~. The\C :-.ccondllry ~y:-.tell1\ can pose :-.ignificant

4.4 SEISMIC RESPONSES OF LOW·MASS SECONDARY
STRUCTURES

30"
•

•
Figure 4.13
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m,

of a secondary mode to that of the primary structurc, the tuned responses of the
secondary system are reduced by interaction between the tuned primary and sec­
ondary modcs. Finally, when the damping of a primary mode is different from
the damping of a tuned secondary mode, the pair of natural modes, given by the
composite action of the primary and secondary 'modes', are non-classical. These
non-classical mode shapes influence the extent to which a secondary mass reduces
a tuned secondary-mode response, In its simplest fonn, a secondary structure sup­
ported by a primary structure can be modelled as a two-mass structural system
with a very small mass ratio, as shown in Figure 4.14. For small mass ratios, it
is convenient 10 express seismic responses, to a good approximalion, in tenns of
the independent modal features which the primary and secondary structures would
have if they were separately mounted on the ground. These independent modal
features are given in Figure 4.14 for the simple two-mass system.

The main features of the scismic responses of a secondary structure are most
easily derived and understood in tenns of Ihe responses of this simple two-mass
system. The above faclOrs of luning, interaction and non-classical mode shapes
arc included in the derivation of the two-mass responses, for which the results are
given below.

The effects of a significant mass-ratio on a secondary-mode response may be
provided for by using the mass ratio as one of the parameters in the floor spectra
defined by the seismic responses of a two-mass primary and secondary slructure.
The floor spectra for a particular design earthquake may be found by computing the
peak accelerations of the secondary mass when the two-mass system responds 10

the earthquake accclerogram. Alternatively, floor spectra may be related to ground
spectra by factors which are derived using a statistically defined approximation
to the accelerogram, as described below, or by modal combination rules which
account for closely tuned, non-classical, interacting modes.

seismic design problems, in thai they may suffer much more severe seismic attack
when mounled (above ground level) in a structure Ihan they would experience if
mounted on the ground. Greatly increased responses can occur when a secondary
system has a natural frequency tuned to a natural frequency of the primary system,
so that it is excited by a nearly sinusoidal support motion to which it responds
resonantly. On the other hand, those secondary structures which are within ap­
propriately isolated primary structures may experience much lower seismic attack
than Ihey would if ground mounted, because Ihe support motions have both their
amplitudes reduced and their dominant frequencies milch lower than the natural
frequencies of the secondary systems. Some types of seismic isolation system can
reduce the earthquake response of secondary structures by an even greater factor
Ihan that by which they reduce the response of the primary supporting structure.
For some important systems which are seismically vulnerable, installation within an
appropriately isolated structure may be the only really effective means of providing
proleclion from seismic attack.

Jo'e(lfljres of secondary-structure seismic responses

The general features of the seismic responses of a secondary structure may be
oullined as follows. A secondary structure with very low mass compared with
Ihat of its supporting structure responds to the accclerations of its supporting floor
ill the same way that the structure itself responds to the seismic accelerations
of the ground. However, floor accelerations differ in severity and character from
Ihe typical noise-like ground accelerations which generate them. For first-mode
struClur;lf periods up to about 1.0 s, floor accelerations are typically more severe
and of longer duration than ground accelerations. Also, floor accelerations are more
periodic, being concentrated within frequency bands centred on the frequencies of
pl'Omincnt slructural modes. As a result, the seismic attack on secondary structures
is frc<lucncy selective, with more severe attacks on those secondary structures that
have a I"requency close to that of a prominent primary mode.

The traditional approach to detennining the maximum response of secondary
systems with a single attachment point is through floor-response spectra caJcu­
1;lled by neglccting any interaction between the primary and secondary structure,
us discussed in Section 2. 1. These spectra provide a convenient summary of the
frequcncy charact~ristics of the support-point motion, and such spectra are com­
pared for different isolation systems in Section 4.4.5, but the neglected interaction
crfecls can be importanl evcn when the ratio of the mass of the secondary system
10 lhal of Ihe primary structure is low.

Three imf>ortall1 factors which determine the responses of secondary structures
10 11001' ;lCcclcraliOIlS have becn highlighled (Igusa and Del' Kiurcghian, 1985a).
Tllcsc factors arc tuning, interaction ;md nOll-classical composite modcs. When
II sccolldary mode ll;l,~ its l"rellucllCY IIIIlC<t to a prim<lry-mode frequency, its rc­
SPOIlSC~ 10 Ihe ilcCelcl'ali\lll~ \11' thill prilHilI'y mo(tc arc much more severe lhan thc
prim,lI'y-modc llloliOll\ of lt~ ~1I1')l1ll1. I,'or il1crea~illg ralios of Ihe cffc:clive mass

Figlll'C 4.14

11">/1,,>1/">">1111">11,,>11">1.
11">1//1">/1">1/">">">1/1111">,,>1

Model delining lhe par;lIlleters of a linear 2-mass primary-secondary sys­
tem. The rrcqllcllCY ;lIld d:unlling paral11C1CrS appl)' whcn thc systems arc
mountcd :>cparntcly on rigid gl'Olind
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(4.20Ia)

(4.201b)

1
w'

4>2 = ~ w~ f3 - i8d + sgn(f3)

The first and second elements of the mode-shape vectors correspond to the
primary and secondary degrees of freedom respectively. 4>1 is related to the pri­
mary structure, (the 'structural' mode shape), and 4>2 is the secondary structure, or
'equipment', mode shape.

When the secondary system is detuned from the primary system, i.e. where there
is a large separation between their natural frequencies so that f3 is large compared
with the mass ratio y and dampings ~p and ~S> the frequencies and damping ratios
of the two modes of the combined system are essentially those of the individual
systems. Both modes of the combined system are also (almost) real, i.e. the overall
system is (almost) classically damped.

~a=~P+~s
2

and damping difference

where f3 = (wp - ws)/wa is the tuning parameter, y = ms/m p is the interaction

parameter and 8d = (~p - (Wp/ws)~s) Wp/ws is the non-classical damping parameter
with
average frequency

De/lined modes
The detuncd mode with the primary system frequency (the 'structural mode') has
a mode shape in which the secondary system displacement is a factor of w;/(w;­
w~) times the primary system displacement. The 'equipment mode', which has

the frequency of the secondary system, has a structural displacement a factor of
yW;/(w~ - w;) timcs thc cquipment displ:\cemenl.

The ,1l11011llt of excitation of the struCturc and the equipmcnt in each of the
detllilcd modes is proporlional to the participation-factor vcctor. The nature of
these vcctors depcnds 011 whClher the secondary syslem is stiff with respect 10 the
primary systcm (IV, » wI') or whether it is flexible (ws «wl'). Thc mode shapes
produce the pnrticipmion rllctors summarised below. where the slructllral degree of
fl'ccdolll is the iirsl c1emcnl of Clll:1i veCIOI'.

average damping

I
I

,

(4.199)

Y+ [i (W'" _W, ,,) + #]'1 (4.200)
W" W a

Problems wilh Juned secondary·structure modes

For a near-tuned secondary structure with a very low mass ralio it is nol satisfactory
10 derive the maximum responses of the secondary structure using a square-root­
sum-or-squares (SRSS) combination of the response spectrum values for the modes,
as described in Section 2.4.4. Each of the two modes includes both secondary and
primary mass motions. For a tuned secondary structure the mode shapes become
extreme, with the secondary mass displacements very much greater than the primary
mass displacements. The correlation between the appendage-mass responses for the
two modes approaches -I. Moreover, these extreme mode shapes are generally
non-classical.

A response spectrum approach can be restored by deriving floor spectra based
on a two-degree-of-freedom, 'lOOF', model of the mode and the near-tuned ap­
pendage. For particular earthquake accelcrograms, time-history analysis may be
used to find the responses of the 2DOF model as described by Penzien and Chopra
(1965) and Skinner et al. (1965). Such 200F spectra are difficult to apply in prac­
tice. For a given earthquake, they have five parameters, including the mass ratio.
They call for time-history analysis for each design earthquake, since they cannot be
derived from individual or average earthquake response spectra. These difficulties
may be avoided by using an approach based on statistically-defined earthquake
accelerations (lgusa and Der Kiureghian, 1985a) as described below.

4.4.2 Seismic responses of two-degree-of-freedom secondary and
primary structural systems

General modal features of 2-mass primary-secondary systems

The peak responses of a secondary-structure mode, to the seismic motions of a
primary-structure mode, follow simply from the seismic responses of an equivalent
2DOF system, as shown in Figure 4.14, with a secondary mass ms of frequency
«\ and damping ~s mounted on a primary mass m p of frequency Wp and damp­
ing ~p. The peak responses of the I-mass secondary structure or appendage, as
a function of W s and ~s, are given by the floor spectra of the one-mass primary
structure.

Igusa and Der Kiureghian (1985a) show that the modal shapes, frequencies
and dumping ratios of the combined primary-secondary system can be expressed
as
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Am)l'("lilll~IICpanicipalion faclors for dcluned primary-secondary
systems

'1\lblc 4.2

Primary (Structural) mode

WI :::.:: l.Vp, ~I :::.:: SP

Secondary (Equipment) mode

W! ~W"~2 ::l::lS.

(

yw~

r,~ _:~)
wi

the same response as its suppor1 point. Damping in Ihe equipment has little effect
on its absolute acceleration response. THe ratio of Ihe slructure-mounted equipmenl
response to ilS responsc if ground mounted is approximately SA(Wp, Sp)/SA(W.. so),

This is the usual siluation for equipment mounled in seismically isolated structures.
As Wp « Ws and usually ~p » ~.' the equipment response can tx: significanlly less
than when il is ground mounted. If lhe equipment was tuned to the first mode
of the unisolaled structure, ils response would have been much slronger than ilS
ground-mounted response.

For a ftexible appendage, Ws « CUp

As seen in Table 4.2, for a stiff secondary system detuned from the primary
~ystem Ws » ~. In Ihe slructural mode the secondary system moves virtually with
Its ~upport POlOt, with a participation factor of slightly greater than unity. while the
equipment mode has low participation factors for both the primary and secondary
syslem masses, For a ftexible secondary system (Ws « COp), the slruclUral mode
involves liule displacement of the equipmenl with respect to Ihe ground, with lhe
s.truetu.re having a participation factor of unity, while the equipment mode involves
little dl~pla~menl of Ihe slruclure. with the equipment having a par1icipation factor
m:ar um~y, Le. the slructure and equipment respond directly to the ground motion
wllh their own nmural frequencies and dampings, For detuned systems, none of
lhe p;.l~icipation f"clors substantially exceeds unity. and some are considerably less
than this. As lhe mode shapes are (almost) real for these dctuned systems. and their
nalural frequencies are well separated, lheir responses can be calculated by standard
reSI)()IlSC slx:clrum methods with SRSS combination of modal responses. The nalure
?f thc results differs, depending on whether the frequency of the secondary system
IS much gre.ller or much smaller than that of the primary Structure.
. For the relatively 'stiff' appendage, with w. » Wp, using the above expres­

SIOnS .for Ihe participalion factors leads to the following SRSS expression (Der Ki­
ureghlan, 1980) for the peak acceleration response of the secondary system mounled
on the primary system;

In this C<lSC. lhe CqUiplIH,'1l1 re~[lolld\ rigidly with thc slmclUre. so has e\scnlial1y

(4.203)

The maximum absolute acceleration response is essentially the same as that of
the ground-mounted equipment. The effect on flexible equipment of inlroducing
isolation to the structure would be to move from the case of Ws « CUp for the
unisolated structure to Ws = COp for the isolated structure. As has been shown in a
discussion of perfectly tuned systems (Skinner and McVerry. 1992), the equipmenl
tuned to the isolated structure would have two to three times its ground-mounled
response, so also two to three times its response in an unisolated structure. However,
for an isolaled structure, Ws is small and hence SA(W., ~.) is generally small in
absolute tenns. The floor-response spectra of Figure 2.7 show the reduction in
appendage responses in isolated struclures compared with those in an unisolated
structure.

Features of tuned modes

For well tuned primary and secondary systems, in which the tuning parameter
f3 = (wp ~ w.)/w. is sufficiently small, the nature of the response is considerably
differcnt. The complex frequencies of Ihe two modes of the system are located
close to, and symmetrically llbout, the average complex frequency of Ihe primary
and secondary systems.

For small mass ratios y. the complex frequencies of the two modes are close to
lhose of lhe primary and secondary syslcllls, divcrging from Ihese values for larger
y. For small y, the cquipmcnl mode involves little structural mOlion.

For Ix:rfectly Iuncd systcms, in which /1 = 0, the nalure of the complex fre­
qucncies depends on the relalivc sizc of Ihe mass ratio y and the squllre of the
damping ditTcrcnce ~(r. For fJ = 0 ;lIld ~J < y, Ihe IwO modes l);lve equal damping
fillios~" but diffcrcllt lI:llur:.1 frc<jllClicics. For /1 = 0 :md ~,r > y. Ihe fre<juencies
;II'C bOlh C<1111I1 10 IV" hut Ihc d:lIllping l':,ti()~ IlI'C {tiffercn!. and lherc is;1 90 phase
diffc ....:ncc Ix:lwccli the Illolillll\ of lhc cquipmcnl alld thc ~1l'Ucturc in hOlh modcs.
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(4.204)

equipment-structure systems to a secondary system wilh m degrees of freedom.
mounted with multiple support points_on a primary system with II degrees of
freedom. The combined system has four key parameters linking the characteristics
of mode j of the primary system and mode j of the secondary system. Three of
these are analogues of the two-degree-of-freedom syslem parameters:
Tuning parameters:

The imaginary components of the mode shapes for tuned systems are significant
unless the damping difference (d is zero, which is the only case where the mode
shapes a~ real-valued, corresponding to classical damping. If the damping ratios
of the pnmary and secondary systems are equal, the damping for the two combined
modes takes the same value.

T~ illustrate th.e .pot~ntial for high amplification with a tuned secondary system,
conSIder the partIcIpatIOn factors when ~ is zero. For this case the tuned mode

shapes are (ai, I)T where ai = -fJ =j= jy + fJ2. The participation factor vectors
an:

r,=~(·,).
al+y I

For the completely tuned case. fJ = 0, ai = =F.jY and the participation factors are

Wpi - IDsj
fJij = .

w".ij

Interaction parameter:
2 /-lsj

Yij =aij-·".
Non-classical damping parameter:

(4.206a)

(4.206b)

4.4.3 Seismic response of a multimode secondary structure on a
multimode primary structure

Parameters of multi-mode primary-secolldary systems

Igusa and Dcr Kiureghian (1985b) extcndcd the analysis of two-degrce-of-frccdom

For low mass ratios y, the equipment participation factor is very high in both
modes and of almost equal amplitudes but opposite signs.

The effect of the degree of tuning on the paJticipation factors can also be in­
~~tig~ted for ~d = 0 as.the mass ratio y goes to zero. The structural-mode par­
llClpatlon factor vector IS (I, -If(2fJ))T while thaI for the equipment mode is
(0, .1 + .If(2fJ)?. For small fJ. but fJ2 » y, the equipment paJticipation factor is
agam hIgh but of almost equal amplitude and opposite sign in the two modes.

For equal damping ~p = ~$ so that ~d = 0, and for very small y and fJ, there is
a largc measure of cancellation between the secondary-mass responses of the IwO
mode~. A.s shown below. the response for the combined modes is limited by the
dampmg m the system. for fJ and y sufficienlly small. Moreover. if the parameters
a.re.fJ = y = 0 with the dampings ~p = ~s = 0 also. the peak response is still
hmlled, usually at a very high value. by the duration of the excitation.

The nearly tuned systems have close modal frequencies and. e)l;eept for the case
~d = O. have non-classical modes. Hence their responses cannot be calculated by
the standard response-spectrum methods.

(4.207.)

(4.206c)

c 4>~[M.]r• - • ·-r···,j - .l.T.[M J.I. .'1'1""' - SJ'I'J"'''
'l'SJ S 'l'SJ

(f/l~IIM,lr)2 .
'1llC product II,,":} I 1\ the ·cffective modal m:,..~: (Clough

4>./11\1,14>./
lIlld Pen/jcll. It)7.li) 01 IllUt!l' I (II 11l{' \CI,.·(IIl(l:lry \y\tCHI, Thc llpproprill1C Ill:! ....

For the multi-mass secondary system wi1h a single suppor1 point. the interaction
p"nllllC1cr becomcs

where Wa,i) = (Wp; +wsj)f2 is the average frequency of the primary and secondary
modes. Here W denotes frequency. ~ damping, the subscripts p and s refer to the
primary and secondary system respectively, and i and j refer to the modes. Jisj

imd J-Lpi are the modal masses 4>~[Ms]4>sj and 4>~fMpJ4>pi where 4>sj and 4>pi are
the mode shape vectors for the secondary and primary systems on their own.

The fourth key parameter aij is a spatial coupling parameter between the two
subsystems. For the case where there is a single support point at degree-of-freedom
c of the primary system. referred to as the coupling point. the coupling parameter
a;j between the ith primary mode and jth secondary mode is given by

Here r is the influence vector, a vector of unity for a simple chain primary or
secondary structure.

When the secondary system is a single mass oscillator. this further simplifies to

afj = ¢!"";. (4.207b)

(4.205)

r,=Y'fy'Y('fy'Y)~~( 1~y'Y)
2y I 2 =j=- + Iy'Y

~~ ('1'_11 ).y'Y
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of the primary system for calculating the inleraction coefficienl is IJ-pi/¢~i =

¢~[Mpl¢p;/¢~i' which is dependent on the coupling point c. Both effective masses
are independent of the nonnalisation of the mode shape.

The criterion for <l primary mode i and a secondary mode j to be considered
tuned is ,lIlalogous to that for the two-degree-of-freedom system. The modes are
modified by tuning if

(4.210b)

(4.2IOc)

where e is the acceptable relative error in the secondary syslem mean-square re­
sponse from Ihe detuned approximation

Here ';a,;1' is the average damping (l;pi + ';$1')/2.
Igusa and Ocr Kiureghian (1985b) consider several categories of tuning. When

one primary mode is tuned 10 one secondary mode, this pair of modes is defined as
singly tuned. There may be several pairs of singly tuned modes. When there is a
cluster of several primary and secondary modes with closely spaced frequencies so
that they are tuned to each OIher, the situation is referred to as multiply tuned modes.
Finally, primary modes which are not tuned to secondary modes, and secondary
modes which are not tuned 10 primary modes, are called dCluned. In gencral a
combined primary-secondary system may consist of a combination of several pairs
of singly tuned modes and several clusters of multiply tuned modes, with the
remainder of the modes detuned.

(4.212)

(4.211)

(4.210<1)

(
1 )2W, .

w; - w~

1';T[Mjl *
1';T[Ml¢;1'k =

For a single support location this becomes

The mode shape is real, so its participation factor can be found by the standard
means. Dropping tenns of order Yk1" the participation factor for the mode corre­
sponding to the detuned primary mode k is

This compares with the two-mass expression

(4.209a)

(4.209b)
£(x;) (detuned) - E(x;)

£(x;) < e.

Modal features of primary-secondary systems

Expressions are given by Igusa and Der Kiureghian (1985b) for the mode shapes,
frequencies and dampings of detuned primary and secondary modes, and for singly
tuned modes, with a low-order eigenvalue problem Cannulated to detennine the
properties of multiply tuned modes.

The results for the detuned and singly tuned cases are summarised below. Pa­
rameters of mode k of the overall system are denoted by an asterisk superscript and
a k subscript. Parameters of the primary system and secondary system modes have
a subscript par s before the mode or position subscript. The superscript c denoting
the coupling poillt is dropped in aij. The n +m modes are numbered with the first
fI corresponding to structural modes and the remaining m to secondary modes. In
the mode shape vector, the first n elements correspond to primary system degrees
of freedom and the second m to secondary system degrees of freedom.

The corresponding expression from the analysis of the two-degree-of-freedom sys­
tcm is

Thus the responses of structural degrees of freedom in mode k of the combined
system are identical to those in the primary system alone, and equal to the struc­
tural response of the two-degrce-of-freedom system multiplied by the effective
partIcipation factor of structural mode k at the point of interest.

The effective participation factors of degrees-of-freedom corresponding to the
secondary system ill a mode corresponding to a detuned primary mode contain
contributions from 'II[ secondary modes. Thc natural frequency and damping' are
those of lhe prillwry system mode.

For the secondary systcm participation f;lctors. the weighting factor fl'k¢pck falls
mpidly with increasing 1l1()(le number k fIll" typic:11 unisolated chain-type primary
~trucllln:s. Wilh effective stl'lll.:tul'al i.solation I~I>I¢IWI ~ 1.0. while values fOI" k > I
nrc quite smull.

• Mode correspolldill/: (0 del/ll/ed prill/Gly !IImle k:

w; =/111'1 (4.2 I()a)

r, = ( 2~ ).

ws ~

(4.213)
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• Mode corre!!;polldiIl8 to del/med secondary mode I:

For a single support location, this becomes

~. )
rs/~ .

(4.214a, b)

(4.214<:)

(4.214<1)

The effective participation factor or primary mode i at the connection point c,
r p;l!>pr:i, falls rapidly with increasing rhode number i for typical unisolatcd chain
Sl!Uctures, Again with effective isolation the factor is approximately 1.0 for i = I
and is small for i > I. Hence with effective isolation only the first tenn of the
summation may be required.

• Modes corresponding to a singly tllned prima~secondary mode pair: We next
consider modes corresponding to the singly tuned modes, mode k. in the primary
syslem and mode I in the secondary system.

The criterion for tuning of a pair of primary syslem and secondary system modes
has been given earlier. The frequencies, dampings and shapes of the two modes
r = k. and r = n + I of the combined system. corresponding to the runed modes.
are

(4.218c)

(4.218d)

(4.218b)

Yll + [; ( "'" ~.. - ~~") + Pv]'I
Wa..u Wa..1:/

(4.218a)

~: = 1/2 f WpI: ~p.t + WsI ~sI ± sgn(p.tI)1Wa..1:1 fl)a.,.tI

x 1m Yl'+ [i ("'" ~.. -~~") + p.,]'I
tlJa.l:/ Wa..1:1

[
,

(0) 1 wa,l:I . /tJpt
((*.k/ = -- -,-{hi + 1-~.,

Q'k1 WsJ WsJ

with

(4.215)

(4.216)

(4.217)

~.T [M)rr = "1',,+/ .6-
-+/ J..T [MJ.40.0 "'''+/'

'#'''+1 '1'_+1

This mode shape is real-valued, so the participation factor takes the conventional
form for a classical mode given above

Evaluating f"+l 10 lowest order produces (Skinner and McVerry, 1992)

In the case of one primary and one secondary mode, Ihis simplifies to the two­
degree-or-freedom expression

w~ W;

The participation factors for the structural degrees of freedom for the dctuned
secondary modes arc small, of order Yil. The participation factors for the secondary
system degrees of freedom may be of order 1. They differ by a factor of

The tUlled modes nrc ill gcncrlll complex -vnlucd if Ihe l1on·clnssical damping
parantctct is non fCro.

from thcir groulld-moUlllcd v:llucs, which is small if WsJ is large. but may be or
order unity ir IV,,) lies ill thc I;U1/olC of lhe low mexlal frequencics of the primary
l>yslem 01' il> less llmn 1111." fUlldulllt'lllal rnvde rrequency or Ihe primary l>yslClll,

(0) I [(\1;1.1. P )
(I I kI = -- -i-IJu + 101/ - sgn( 1I
Ill. (Ill IV,,) ( w;u)'Yu + iOll + w3 Ihl .(4.218e)
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For cOlllplcX valued mode shapes, the standard participation factor expression
for II c11l~~lclll mode is replaced by generalised participation factors as given by
Igu':1 and Del' Kiureghian (1985a). For the case of exact tuning, i.e Wpt = W$I

,\I flu 0, it can be shown that the effective participation-factor vector for sec­
olld..ry :.ystem degrees of freedom is the equipment participation factor in the
IIvo-dcgrcc-of-freedom system limes r p.t¢parlI-PsJ. For the primary system degrees
of freedom, the effective participation fac!Or vector is the two-degree-of-freedom
structural participation-factor times rp.t,ppt. These resuils should be good approx­
imations for near-tuned cases as well. For a base-isolated slrUcture. the product
r p.ttPp,:* is approximately unity for the first mode and nearly zero for higher modes.

Combination of modal responses

The detuned modes are well separated in frequency and real-valued, so the combi­
nation of their peak modal responses can be lreated by the standard SRSS approach
(Del' Kiureghian, 1980).

Pairs of singly tuned modes are both very closely spaced in frequency and in gen­
eral complex-valued. Igusa and DcI' Kiureghian (1985) give a modal-combination
rule for calculating their contribution to the overall peak response, but it is a rather
complicated expression. We take a different but similar approach which gives a
simpler, although more approximate result.

Consider first the nearly-tuned two-mass system. Analytically it is convenient
to express a peak seismic response of the structure, and a peak response of the
appendage. either mounted on the structure or mounted on the ground, as the
product of the root-mean-square, RMS, value of the response and a 'peak facIOI"
P, which is defined to be the ratio of the peak response to the RMS response.
Hence for peak displacement responses,

(dmu.• )2 = L r~•.;S~(Wj, ~i) + L (rp.t4>tx.t r IItPvt)2
i6tWned U tuned paIt$

(4.223)

(4.222)

1
SD(W,~)" J~w"

where Go is the white-noise power density spectrum, and hence

Generalising to the multi-mass case involves replacing the parameters by their
multi-mass analogues. and multiplying by the appropriate component of t~ par­
ticipation factor product r p.t,ppt'krsJ,p", for the point of in~eres~. The expressIon for
combining the modal responses 10 find the maximum relatIve dIsplacement response

d "' point r of the secondary system then becomesmax.•

(Skinner and McVerry, 1992). As a second assumption. take thc RMS rati~ in the
first bracket to be the SOlmc as for the 'white-noise case. Then, from EquatIon (36)
of Igusa and Del' Kiureghian (1985a),

X _ I (",)312 X
s

~ - J8{p~.JI+ P'/(4I;;> + y/(4I;,~p) '"

'" 1 - 3pt4 SD("', ~.). (4.221)
J8~p~.JI + P'/(41;;> + y /(4~.~p)

It is implicit in this assumption that response-speclrUm va1u~ for frequencies ~n
the vicinity of the near-tuned primary and secondary frequenCIes Ws. and Wp scale 111
the same way with frequency, and particularly with damping, as the RMS response
of a ground-mounted oscillator to white noise, Le.

(4.219)x ~ p. X(RMS).

For a ground-based IDOF oscilla!Or, with frequency wand damping;, X(w,;) is
the displacement spectrum value So(w, n for the ground motion.

The peak seismic responses of the secondary structure can be derived from the
ratios of RMS seismic responses and of peak factors, using Equation (4.219):

Xp6' Xp6(RMS), Pp6 = peak response. RMS response, and peak factor for the
secondary structure when mounted on the primary structure,

Xx. X.(RMS), p$ = peak response. RMS response. and peak factor for the
secondary stmcture whcn mountcd on thc ground.

A common assumption is. 10 neglect Ihc effects of the ratio of the peOlk factors, a
cOll'\Crv<llive ..S.SUrlll)tion in Ilml thi, mtio generally lies between about 0.75 and 1.0

whcre

x"" = LXps(RMS)/X$(RMS)][P",,/P$]Xs (4.220)

(4.224)

'nle effective panicipation factors reff •.; at point r in the second~ system of
dCluned mode i can be obtained from Equation (4.212) for detuned pnmary modes
and Equalion (4.216) for dctuned secondary modes. For the t~ncd.-mode tenn, t~
expression gives the combined contribution of the twO contrlbutmg modes so IS
eV:lluatcd only once for e:lch contributing pair.

Simil..r modal combin.lliOIl expressions can be wriuen for velocity or accel­
er:ltion responses. although strictly lhc luned-mode expressions vary for diffe~nt
reloponse (!u:llltities. II is cltpected thaI using Ihe displacement fonn of expres~lOn.
Wilh So rcplllccd by Sv or S/\ for the relative velocity or absol~te accelc.ratl~nS,

~hould be of comparahle accuracy 10 other Hpproximatiolls uscd III the dcnval~on.

Whel1 the lUlled Ill()(tes 1l1'C high frequcncy modcs of the sy.~telll, the conlnbu­
lioll' frOl1l the lowcl' frequcncy delllllCi.t mode~ mllY be l\ ,ignificul1t l)(lrtioll of the
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tOlal response. Note that the abovc expression assumes that the primary system
modes are well separatcd. and also that the secondary system modes are wcll sep­
aratcd. Also, the expressions have been developed for the individual subsystems
being classically damped.

4.4.4 Response of secondary systems in structures with linear isolation

The analysis of combined primary-secondary systems given so far does nOI apply
exactly to structures with linear isolation, as the isolated primary system has non­
classical modes. 'Kelly and Tsai (1985) and Tsai and Kelly (1988, 1989) have
performed three analyses of equipment in base-isolated structures. In each case
they have restricted their attention to equipment with a single mode. In the first
analysis (Kelly and Tsai. 1985) they consider the base-isolated structure represented
by two modes, the rigid-body-Iike isolator mode and the first superstructure mode,
assuming classical damping with thc equipment represented by a single spring­
damper-mass system. In the second analysis (Tsai and Kelly, 1988) they again
consider a two-mode representation of the base-isolated structure, this time with
non-classical damping. In the third analysis (Tsai and Kelly. 1989) they consider
a multi-mode representation of the base-isolated structure, but reven to classical
damping.

The results we have derived for a classically damped primary structure with an
attached secondary system can be applied directly to a base-isolated structure if
the non-classical nature of the primary system mode-shapes is neglected. This is
a reasonable approximation in that the structural motion of a well isolated struc­
ture is dominated by the first mode. From the results of Section 4.2.3. the two
leading terms in the perturbation expression for the fundamental mode shape of a
well isolated structure are real, with the effects of damping first appearing at order
(wt./WfIU)3, an order higher than the effect of the base-isolation spring. Higher
modes. for which the effect on the mode shape of the isolator damping appears
at O(wt./WFB1)2, the samc order as the effect of the isolator spring. have small
participation factors. of order (wt./Wnf)2. while the fundamental mode has a partic­
ipation factor of order 1. Even when the superstructure deformation with respect
to the isolator is considered. the first mode is still dominant. Its superstructure
deformation is O(wt./WFBI)2, while the superstructure deformation of the higher
modes is O(%/Wnf))l, where CUb is the bearing frequency ./(Kb/MT), WfBI is the

first-mode frequency of the fixed-base structure. and Wno is the nth-mode free-free
frequency of the free-free superstructure. with Wno = (2n - 2)WFBI for a unifonn
structure. Thus the higher-mode contributions to the superstructure defonnation are
of order (WFadw"o)2 times the first-mode superstructure deformation, which is of
order 1/(2n _ 2)2.

These features of the mode shapes and participation factors of a linear struc­
ture with a lincar isolation systcm mcan that the first·mode approximation to the
supcrstmcturc (teformation rctains thc csscntial features of the resl>onse.

Considcr first the case of illl N mll'~ superstructure mounted on illl isolation

system consisting of a mass. spring and damper, so the primary syst.em has (N + I)
degrecs of freedom, with non-classical damping effects of the pnmary .structure
neglected. The equipment is modclled as a single-degree-of-freedom OSCillator of
mass me, frequency We and damping Se and is attached at degree of frce~om c
of the superstrocture, giving an (N +2) degree-of-freedom system. For ~qUlpment

dctuned from all the isolated modes, the maximum absolute acceleration of the

equipment is given as

II: [ r.¢",i 2SA(w,;'~')1' + [I:---,-,_r'''?'(::'';-,.'.·)2SA(w··~·)1'1'1'1;=1 1 _ (:: ) IEI_~
(4.225)

Here r pi, ¢pc;, Wp; and spi refer to the parameters of Ihe isolated modes of the
primary system, with non-classical mode shape effect~ neglected, not to the modal
parameters of the unisolated structure. The first senes of teOllS corresponds to
the delUned structure modes, while the second tenn corresponds to the dctuned
equipment mode. which has contributions from all the strocture modes. .

For the equipment tuned to isolaled mode k of the structure, the resuh gIven

earlier simplifies in the case of a single-mass appendage to

where Wa = (Wpt + eve)/2 and Sa = (Spt + se)/2. .
For the case of dctuncd equipment. the first term dommates the first bracket

summation. bcc:IUse the first-mode participation factor is much greater than .for
other modes. In the second bracket. even this lenn can be neglected assummg

fV~ » wt.. so for the dClUned case

For the tun(.'(\ ca~. the tuned-mode expression will dominatc when t.he te~

under the ~llOlrc-root 'ign j, of the ,:nlle order as r rA¢pct or ~css. Fo~ lunlllg WIth
the first mode, l'I>l.1'I"t i, of order I. ~o the tuned mode WIll d011l1l1111C. Ex<:pt
for long-period IlC1l1S like ~loshil1~ w:llcr lHnk" ()I' C(jUII,J111CI11 with ~elY .nex,ble
1Il()l1ll1~. the e(jlJiplllelll is unlikl'ly 10 he 1\IIlcd to llle hrsl Illode 01 (lil IS(,IHled
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structure. For higher-mode luning, r rJ:~t is of order (wt;/w..o)2 while the term

under the square-root sign at least equals its value of j4~rJ:(~rJ: + ~e) oblained when

Yt =0 and Pt =0, which is of order ~rJ:. Orten this is greater than (wt;/WtQ)2 so
the tuned mode does not dominale. The maximum response of a 'high frequer:cy,
(We "'"" 0(WF81) or greater) appendage in an isolated SlnJcture will be of the same
order as the maximum response of the isolated structure, rather than the structure
response amplified by a factor of 0(1/ ../Y) whieh may be very large.

Tsai and Kelly (1989) give an example of a very lightweight piece of equipmenl
auached to a ~-isolated structure with a first-mode period of 2 s and damping
of I?%, and higher-mode and equipment damping of 1%. The first-mode response
dommates except when the equipment is tuned to the second mode when both terms
a~ of similar size. Generally. similar resulls for somewhat diffe~n1 dampings are
gIven by cases (ii) and (iii) of Figure 2.7.

This analysis showed that the response of 'high-frequency' equipment (i.e. nat~

ural frequency of order WrOI or greater) in a base~isolaled structure was strongly
depcndcnt on the first two modes, at most, of the isolated structure. Tsai and Kelly
(1988) uscd a simple representation of the base-isolated structure to consider the
effe,cts of non-classical damping. They represented the superstructure deformation
by Its first mode only, so the isolator-structure-equipment system became repre­
sented by a three-mode model. They chose the equipmcnt frequency so that it was
nearly tuned to the second mode of the isolated structure. The results discussed
above s.howed that this is the only case when the equipment response is likely 10
be dommated by a mode other than the first isolated mode.

It was found that the deformation of the equipment relative to the noor involved
terms corresponding to the c1assical~mode terms with slightly different natural fre­
quenci~ and dampin~, plus IWO additional terms arising from the imaginary parts
of the eigenvector, which do not occur in the c1assical~mode method. One of these
terms is of 0(1), so the equipment response calculated from the classical-mode
approximation may be completely different from that given by the more exact
complex mode method., For the particular example considered. the true response
was abou.t double that given by the classical-mode method. This ratio is also given
by EquatIOn (48) of Igusa and Ocr Kiureghian (l985a) for a two-mass system for
very s~all Y and a maximum value for 82, i.e. ~g or ~.2, where ~~ or ~p are zero
respectively.

Chalhoub (~98~) and Chalhoub and Kelly (1990) considered the earthquake
response of cyhndncal water tanks in base-isolated structures, with an experimental
shake·table study supported by 11 theoretical treatment. The sloshing frequency of
tanks of fluid may be close to the frequency of the fundamental mode which
generally dominates the response of isolated structures. The natural frequencies of
most other equipment are unlikely to be tuned to the low fundamental frequency
of an isolated structure.

Pressures on the walls of l:lnks eontllining fluids consist of lin impulsive com­
ponent :lIld a convective component. The impulsive pressure results from the :Ie.
celel'::ltion of the container w,tll 'l~lHll~t lhe fluid. 111e conveclive componenl rcsult~

from waves causing changes in the free-surface elevation of the fluid. The results
showed that low-frequency sloshing could be of larger amplitude in a tank mounted
on an isolated SInJClure, but the slight increase in convective pressure was much
more than offset by the decrease in the impulsive pressure because of the reduced
accelerations in the isolated structure. Thus even for sloshing water tanks, where
isolation could be perceived as introducing problems, isolation has real advantages
in reducing the accelerations on contents of a structure. The only serious concern
is the possibility of spillage from open tanks wilh insufficient freeboard.

In summary, the earthquake response of equipment in structures with linear iso­
lation is not susceptible to the strong amplification of the ground acceleration which
may occur for equipment mounted in fixed-base structures. Even for the worst case
where Ihe equipmem is tuned to the frequency of the lowest superstructure mode of
the isolated system. the amplitude of the acceleration response of the equipment is
only of the same order as its response when mounted on the ground. For accurate
calculation of the expected response of equipment in an isolated structure. it is
necessary to account for the non-classical nature of the equipment~structure modes
since the classical mode method may grossly underestimate the true responses.

4.4.5 Response of secondary systems in linear structures with
non-linear isolation

Introduction
The previous seClion has treated the response of secondary systems in linear struc­
tures with linear isolation by using an analytical response spectrum approach which
accounts for interaction between the primary and secondary systems and the non­
classical nature of the combined primary-secondary modes when there is near
tuning between modes of the two systems. The approach relied on the synthesis
of the modal propenies of the combined system. and the development of appropri­
ate modal combination rules (Skinner and McVerry. 1992) derived from random
vibrations theory, based on the results of Igusa and Der Kiureghian (l985a, b).

Systems with non~linear isolation are much less amenable to such an approach,
"lthough Igusa (1990) has extended it to two-degrce-of·freedom primary-secondary
systems with moderate 1l01l-linearities. However, the single-mass representation of
the structure in this simple model eliminates the non-linear interaction effects which
feed energy between the different modes of the primary system, which we have
shown in Scction 4.3 to be vcry important for structures with non-linear isola­
lion. Also, lhe assumptioll of moderate nOIl~lil1eal'ilY inherent in the perturbation
al>proach used in the analysis may be violalcd for a base-isolation system.

Thc results in thi.~ section for appendage response in non-linear primary struc­
tures have becn derived in twO ways. Fir~l. slandard floor-response spectra dcrived
hy ourselves and F:Ul 'Illd Ahmadi (1990) alld Fourier spectra of the floor mo­
lion" obtained expcl'imclllally by Kelly and l\ai (1985) are used to indic:lle Ihe
frequency band~ ill which energy i~ availllble in lhe floor mOlion~ to drive IIp­
pcnduge... Thi .. approadlllegk"C1'> interacliOI1 effceh. which :tre 11ll1)(lrtlllll ill linear
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syslems for Ihe response of lightly damped appendages tuned to lightly damped
Hludes of the primary system. An important result of Igusa's exploratory study
01 non-linear primary-secondary systems is that interaction is less important than
for tineal' primary-secondary systems. This is presumably because hysteretic en­
ergy dissipation in the non-linear system gives a high value of equivalent viscous
damping, in whieh situation interaction is not a significant factor for linear systems.
Ho.....ever. this result needs to be treated with caution for appendages tuned to the
higher modes of the non-linearly isolated structure. High viscous damping al the
base was shown in Section 4.2 10 produce high first-mode damping in the base­
isolated system. but small to moderate damping in the higher modes. If hysteretic
base damping makes a similar small contribution to the damping in the higher
modes. then lightly damped appendages tuned 10 a higher mode of the non-linear
isolation system give the situation of lightly damped primary and secondary sys­
tem modes. for which interaction may be important. The amount of damping in the
higher non-linear modes is difficult to assess, in that the energy dissipation mecha­
nisms are competing with energy transfer through non-linear interaction. However,
the results shown in Figure 4.11 indicate that higher-mode energy dissipation within
the yielding phases of a system with bilinear isolation is small, although there may
be significant higher-mode accelerations imparted from the non-yielding phases of
the response.

The second approach considers response histories calculated for one-mass ap­
pendages attached to multi-mass isolated structures. Fan and Ahmadi (1992) calcu­
lated response histories to derive exact floor-response spectra including the effects
of interaction for appendages on a structure supported by various isolation systems.
Fan and Ahmadi compared the appendage responses for an unisolated structure and
for a linear isolation system with those for bilinear isolation systems with either a
rigid pre-yield phase or perfectly plastic post-yield phase or both. The responses of
these types of bilinear isolators contain strong high-frequency components. as they
involve a low isolation ratio I (Kbll in the pre-yield phase or a. high non-linearity
factor. We performed a less extensive study which was restricted to appendages
which were perfectly tuned in the post-yield phase of the response to either the
second or third mode, bUI with spring elements active in both response phases for
the bilinear isolators.

Floor-response spectra

The traditional approach to evaluating lightweight appendage response is through
floor-response spectra, in which the support-point excitation of the appendage is as­
sumed to be unmodified by the presence of the appendage. 'Floor-response spectra'
calculated from the support-point motion in the absence of the oscillator are shown
in Figure 2.7 for the top floor of a structure supported by a variety of base-isolation
systems. Similar results have been calculated by Fan and Ahmadi (1990).

The systems considered in Figure 2.7 are tabulated in Table 2.1 and comprise
a ground-mounted four-mass structure with TI (U) = 0.5 s; and a similar struclure
(in some cases with TI(U) = 0.25 s) mounted on non-zcro-mass base isolation

systems. Two of these systems are linear and four are non-linear (bilinear) as
detailed in Table 2.1 and the associated text. The north-soUlh component of the
1940 EI Centro accelerogram was used as the earthquake ground motion. The Roor
response spectrum was calculated for an appendage with 2% damping subjected to
the top-mass motion in each case, and compared with the corresponding spectrum
for appendage responses 10 the first-mode contribution to the floor motion. The
first-mode motion was obtained by sweeping with the free-free first-mode shape
for the isolated systems. and with the exact first-mode shape for the ground-mounted
structure.

The discussion of the characteristics of isolation systems in Sections 4.2 and 4.3
indicates that relatively lillie higher-mode response should be expected for the
linearly isolated structures and for cases (iv) and (vii) which have a high degree of
isolation in the clastic phase (see Table 2.1). Cases (v) and (vi) with stiff isolators
in the elastic phase are likely to produce significant higher-mode responses. The
floor-response spectra obtained confirm these expectations. as shown in Figure 2.7.

The ground-mounted structure has peaks in its floor-response spectrum corre­
sponding to the first-, second- and third-mode periods. with the first-mode peak
the strongest. All peaks show a much stronger response of the appendage than it
would experience if ground-mounted.

The lightly damped linear isolation system has a strong first-mode peak, although
much reduced in acceleration from the strongest peak of the unisolaled system, and
small second- and third-mode peaks. The first-mode peak occurs at a period close
to Tb , while the second-mode peak is at about Tl(U)/2, as expected for the second
mode of Ihis well isolated structure. The Roor-response spectrum differs little from
that for the first-mode floor motion alone, as obtained by sweeping the overall
response by the first free-free mode shape.

The more heavily damped linear isolator led to a reduced first-mode appendage
response. but a slightly stronger second- and third-mode appendage response com­
pared with that for the lightly damped isolator. The increased higher-mode re­
sponse is presumably related to the higher effective panicipation factor arising
from the non-classical mode shape and increased base impedance for the more
highly damped isolator, as discussed in Section 4.2.

As anticipated. the bilinear isolation systems with stitT elastic phases, i.e. low
I(Kbd. produced floor-response spectra showing strong shon-period excitation of
appendages. The strongest of these peaks is of smaller amplitude than the first-mode
peak of the unisolated structure. However, the higher-mode peaks have amplitudes
similar 10 those for the higher modes of the unisolated structure. The higher-mode
peaks arc considerably s1J'()1lgcr than the first-Illode pe:lk. The periods of the higher­
mode peaks correslXlild h) Ihe tl<ltural periods ill the post-yield phase, which are
clo~e to the free free pcrio<" lor the higher 111odes.

The floor re~l}{ltl~e ~rk.'l'IU1ll for C:l~e~ (iv) :tIld (vii) is similar at tow frc<!uencies
to IImt for the liuCllt l'Olnlllt wllh hi~h dUlllping. Ilowever. lhcrc is a signific:mt
peak at the 'C<",ltlll Ulll<k I1l'lIl1l'llI'Y hIt "a~e (vii). which ha' lin isolator with a
virtually c1ll'ltl IlIU'lIl hIll!' Ilt'plllll·llll·tll dl,lractcri~tIC. lItld hcnce II high non
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linearity factor. This is consistent with the considerable strength of the second-mode
response for this system, as predicted by the plot of second-mode fo first-mode
response as a function of non-linearity factor (Figure 4.12).

Floor-response spectra for 2% damped appendages mounted on the top storey of
structures with various types of isolation systems were also produced by Fan and
Ahmadi (1990). The results were summarised in their Figure 5, reproduced here
as Figure 4.15. Fan and Ahmadi considered a unifonn lhree-mass Structure with a
fundamental period of 0.3 s mounted on a fourth mass of the same value supponed

by the non-linear springs and viscous damper of the isolation system. They gave
results for five types of isolation system, as well as the unisolated structure. The
systems considered were a linear isolation system with 2 s nalural period and 8%
crilical damping. laken as a representation of laminalcd-rubber bearings. and four
non-linear syslems cOnlaining friclional sliding e1emenlS. Two of lhese isolators
had rigid characlerislics in the non-sliding phase.

Fan and Ahmadi found Ihat. for excitalion by the EJ CenlrO 1940 nonh-soulh
component. the base isolalion systems which they considered eliminated the res­
onance peak of about 109 in Ihe floor-response spectrum which occurred for the
unisolated slruclure at ilS fundamental period. The amplitudes of Ihe floor-response

speclra allhe fundamenlal period of the unisolated Slructure were generally reduced
by a factor of 10 or more for the various' isolation systems, except for the pure fric­
tion (i.e. rigid/perfectly plastic) system with a coefficienl of friction of 0.2 which
had a series of peaks of aoout 2g amplitude, The linear rubber bearing system, with
2 s period and 8% damping, produced a peak of about 1.8g at ilS nalUral period, bUI
ils amplitude over Ihe rest of the spectrum was about O.IS-o.3g, the lowest for the
various isolalion syslems considered, The spcClrUm for the rubber bearing isolator
was smooth with only a few peaks, corresponding to the modes of the isolated
system. The second peak was at about 6 Hz, aooul twice the natural frequency
of the ground-mounled slructure as expected for the second isolaled mode. The
spectra for Ihc other systems generally fell belween those for the rubber-bearing
system and the pure friction system, The spectra were very irregular for those sys­
tems with slick-slip friclional sliding characteristics, particularly where the isoialor
was rigid in the non-sliding phase, The 'EDF' system, with elastic-perfectly plastic
characteristics. had a spectral shape similar to that of the rubber-bearing syslem,
although with larger ampliludes, with a well defined second-mode peak, This sys­
lem is similar in response characteristics 10 our case (vii), with reasonable isolation
in even Ihc elastic phase of the response bul a high non-linearity faclor because of
its elasto-plastic charaCler.

Fan and Ahmadi (1990) showed further differences in the nature of Ihe various
isolalion syslems by comparing the floor-response spectra al various levels in the
slructure. lbeir Figure 6 and some additional material are given as Figure 4.16.

For the linear rubber-bearing isolation system (Figure 4.16b), the spectra were
virtually identical for all floors ell:cept for frequencies in the vicinity of the small
second-mode peak. where the appendage response was Slrongesl at Ihe level imme­
diately above Ihe isolator and at Ihe top of the structure. This is consistenl with a
rigid-body-typc fundamental mode contributing mosl of the response, with a small
conlribution from the second mode which is characterised by antinodes of virtually
cqual amplilude al the top and immediately above the isolators, with a node al
mid-height.

The 'EDF' system, an elasto-plaslic system with a coefficient of friction of
0.2 and a I s period in the non-sliding phase, showed an essentially rigid-body
first-mode response (Figure 4.l6(e». with the diffcrences between the mid-height
response and Ihose at the top and base of the structure more accentuated by rela­
tively stronger second-mode response than in the rubber-bearing system.

The resilienl-friction systcm (R-FBI), where the isolator is rigid in the non­
.~liding phase but has spring resilicncc during sliding, showed evidence in the
Ooor-response spcclra from thc various levels of at least the first Ihree modes
participating in the respollsc (Figurc 4,16(d», The acceleration response in the
third mode, .It about 10 HI, \\IllS :-11'(1111:'><.::-1 in thc mid-height region.

Fan and Ahm'ldi ulstl cOtl~idl.'rl.'d the re~ponse of the isolation systems to ell:­
citation by lhc 1971 Pilcoilllll Dalll Sl6E Illld 1985 Mc)(lco City SCI' e:l.~t-west

records. Thc PlIcoinlll I):Ull l'\lIl1lklll\'llt llllll II very ~lr(Jllg peak ground :lccclcrutiOIl
of I,I?,'!. :11111 pl'()duccd Ill! \'''H'lIl\' 1\'''lIl1U!\:C (ahout 50",,) in the top floor 1'C\lxm\c

2015
( Hz )

.,

!\ , .-p.':' .....: )~,-- ..:' ". :'..:-
~:f'./" ~,'''''-:-''~''--
11f!:v, :.: ~' \ ".:," \~'- .....• R-rBl

, .lo J , SR-F ' .
I' '. ~,I ~'- ~_, ':',_ .......

[I .... 1\ 1 ~ ... __'~';,, ..:.;:-=-=-=-
[\ ..," EOF --- __

.... - '--- __ ....Re.... __

Floor-response acceleration spectra with various isolation systems. 11l the
tOp of a unifonn three-mass structure with a fundamental period of 0.3 s
and a damp~ng factor of 0.02. for EI Centro 1940 NS (from Figure 5 of Fan
and Ahmadi, 1990). Systems shown are fi)(ed-base (F·B). illiTe friction (P­
F). resitienl friction (R-FBJ), sliding resilient friction (SR-F), Electricit6 de
Fr;mcc (~~DF) and lluninated-rubber bc3ring (RB). Note the high.frequeney
contcnl 111 Ihc rc~poll'\C of the PF, R-FBI and SR-F systems which huve
rigid n()Il-~lidlllft phtl\cs
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WWW.BEHSAZPOLRAZAN.COM



222 STRUCfURES WITH SEISMIC ISOLATION 4.4 SEISMIC RESPONSES OF LOW-MASS SECONDARY STRUCTURES 223

P-F

---
20

R-FBI

15
)

3.d FL
2nd FL

----. 1st FL
Bose FL

( H,
5 10

Frequency, /.

3.0

...--..2.5
~

20
c
0
:g 1.5
"•0;
u
~ 1.0
~

0

ct 0.5

0.0
0

I')

30
RB

3rd FL
2nd FL
1.t FL
Base FL.

10,-T--------_=_~
9 F-B

8

3.0 ,-------------~

~ 7

spectrum of the uniso[ated structure. The scr record had only a moderate peak
ground acceleration (O.17R), but was chamcterised by strong frequency contcnt in
the 0.45-0.5 Hz band. which may be important for somc types of isolation systcm,
particula1'ly the linear rubber he,II'ing system when thc natural pcriod is 2 s.

As with the E1 Centro CXl,;itlitioll, HII or the isolation systcms considered COIll-
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plctcly eliminated thc resonant peak of the unisolatcd structure at 3.33 Hz in the
Pacoima rcsponsc, with maximum amplitudcs of the floor-rcsponse spectra 10 to
25 times [owcr than for the unisolated structufC. For thc Mexico City excitation, the
rubber bearing systcm. with 2.0 s period, showed the expected resonance at about
0.5 Hz, reaching all amplitude of aboul [OR compared with about 1.7g for the un iso­
lated struCHII'C. AI greater fl'cqueltcics, the noor-response spectrum was almost flat.
The threc isol;11ioll SystCIll,~ with r1/;1i(1 IlOlI-.~liding phascs. that is the purc friction,
resilienl rrietioll nnd slidill~ resillellt trictiOIl isolators, showc(l strong .sccond-modc
peOiks under the low rrt'lllll.'llt'y, 111'111' sinusoid:ll Mexico City exclwlioll. The pure-

Figure 4.16 (cominl/cd)
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Floor-response spectra with various isolation systems at the floor levels of
the structure considered by Fan and Ahmadi (Figure 6 of Fan and Ahmadi,
1990, an~ personal communication, (992). Note the second-mode response
at appr~xlmateJy 6 Hz and the third-mode response at approximately 10 Hz
for the Isolated structure. (a) Fixed base system. (b) Laminated-rubber bear­
ing. (e) Pure friction system. (d) Resilient friction system. (e) Elcctricitc de
France system
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Figure 4.16 (continued)

3.0 ,-------------~
EDF

friction system introduced this eXIra peak while failing to eliminate the fixed-base
peak at about 3.3 Hz. For the Mexico City base excitation, the elasto·plastic EDF
system, with an elastic phase period of I s detuned from thai of the slruclUre al 0.3 s
and that of the excitation at 0.5 Hz, gave the best perfonnance in [enns of the AIlOr
acceleration response spectrum. These results show that isolation systems must be

selected with care if there is a possibility of low-frequency, nearly sinusoidal exci­
tation. Even highly non-linear isolators which suppress the low-frequency motion
may produce higher-frequency secondary system responses which are stronger than
the secondary system responses in an unisolated shon-period structure.

The final section of the paper by Fan and Ahmadi (1990) considered the effect of
damping in Ihe structure, in the secondary system and in the isolator for a resilient
friction isolator. TIley found that damping in the structure 'has no effcct on Ihe floor
spectrum for frequencies lower than 4 Hz'. From the speClra presented in Figure 8
of their paper, we interpret this result as showing that damping in the structure
has lillie cffect on the first-modc response of an isolated s(ructure and increasingly
greater effect on the higher modes. This is consistent with our analysis of linear
isolation systems, for which the isolator contributes most of the damping in the first
mode, while the damping in the structure becomes progressively more important
at higher frequencies.

Increased damping in the secondary system significanlly reduces ils response
for secondary-system frequencies less than 15 Hz, but has liule effect for higher­
frequency appendages. We intcrprct this as showing that damping in the appendage
has significant effect in the frequency r:.\Ilge of the modes of the iso1:lled structure.
In lhe example considered. 15 III i, :l higher frequency than the natuml frequency
of any of the mode, of lhe l,oluted 'tructurc, so appcn<l:lgcs with fre(IUencies

greater than this essentially respond as rigid bodies with the same motion as their
attachment point.

Fan and Ahmadi (1992) considered the same structure and isolation systems
as in their 1990 paper, with the omission of the resilient sliding friction system.
This paper took into account interaction effects, with maximum values extracted
from the response histories calculated for appendages with various mass ratios. The
interaction effects were found to be important only for the stronger peaks of the
floor-response speclra, and then only for appendage masses of 0.01 times the floor
mass, or greater, for the isolated systems. The interaction between the primary and
secondary systems generally reduced the peak response of the secondary system,
so that the standard floor-response approach neglecting interaction is usually con­
servative. The nature of the spectra was generally similar to that of those discussed
:lhove, for which interaction effects were not modelled.

Expuimental studies of appendage response on isolated stmctures

Kelly and Tsai (1985) carried out an experimental shaking-table programme to study
the response of appendages attached to the top of a five-storey steel frame mounted
on isolation systems consisting of laminated-rubber bearings with and without lead
plug inserts to provide hysteretic damping. One oscillator had a natural frequency
close to that of the lowest mode of the fixed-base structure, while the second
and third oscillators wcre tuned to the second and third-mode frequencies of the
base-isolated structure. The shake table was driven by various scalings of the EI
Centro 1940 north-south, Taft 1952 S69E, Parkfield 1966 N65E and Pacoima Dam
1971 Sl4W motions. The case of an appendage tuned to the first-mode isolated
frequency was not considered as most equipment is unlikely to have such low
natural frequencies.

The peak accelerations of the oscillators on the base-isolated systems were less
than those on the top of the fixed-base structure, even when the oscillators were
tuned to the second and third-mode frequencies of the isolated structure. For the
rubber bearings without lead plugs, the peak accelerations of the oscillators were
less than those of the shake table.

For the appendages on the structure with non-linear lead-rubber isolators, the
magnification, defined as the ratio of the peak oscillator acceleration to the peak
shake-table acceleration, reduced as the earthquake scalings increased. This demon­
strated that the non-linear nature of the lead-rubber isolator system provides more
isolation as the intcnsity of the earthquakc excitation increases.

The rcductioll factors for thc pcak oscillator accelerations on the isolated struc­
tures with respcct to those 011 the ullisolated structure were large for the rubber
bearings with no lead plug, typically lIroull(1 15-20 for thc first-mode oscillator and
usually 10-15 for lhe higllcr frl.:qucncy oscillutors. The factors were much less for
the oscillators 011 thc lead ruhher i,olator ,ystcill. ranging from 1.4-4.9. Greater re­
ductions would have heen \x\"ihk hy fe<tue;llg the yield forces of the lead-rubber
i,ol"tof'. hy reducing th<' 'Ill' III till' lc:,tt plugs, but thc le"d plug~ are effective
mainly for reduclIllf. till' 1\\llIltHl Ih,pluccl1lenh r:,thcr tlmn reducing the llccclcnt
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lion response of oscillators tuned to the higher-mode frequencies of the yielded
isolator-structure system. These experimental results show the same trends as our
calculated floor-response spectra shown in Figure 2.7. The calculated spectra are
for systems with bilinear hysteretic loops, while the loops for the experimental sys·
tern were likely 10 have been curved. Fourier spectra of the measured floor motions
showed much stronger high-frequency contcm with the lead-rubber isolators than
with the linear isolation system obtained with the rubber bearings alone.

AnOlher experimental study of the response of contents in base-isolalcd SlnIC·
tures was that by Chalhoub (1988) and Chalhoub and Kelly (1990), which con­
sidered containers of fluids with sloshing frequencies similar to the first-mode
frequency of the isolated system, a situation where it might be thought that isola­
tion would increase the response. However, as discussed earlier, the reduction in
the impulsive forces through isolation was much greater than the increase in the
convective forces from sloshing, leading to much reduced dynamic forces in the
tank compared with those when the tank is installed in an unisolated s(nJcture.

4.5 TORSIONALLY UNBALANCED STRUCTURES

4.5.1 Inlroduction

A structure is torsionally unbalanced when its centre of stiffness is offset from its
centre of mass. Some structures are inherently torsionally unbalanced, due to an
asymmetric floor plan (probably dictated by the needs of the building), an asym­
metric layout of the structural members, or the location of stair-wells and lift-shafts,
etc. With nominally balanced structures, accidental torsional unbalance can arise
due to material inhomogeneities; distribution of live loads; inhomogeneous struc­
tural stiffening around cladding. windows etc; or failure of structural members.
Again, when an isolated structure is nominally balanced, allowance must be made
for inevitable accidenlal unbalance. Design codes therefore call for a minimum ec­
centricity in calculations. typically 10% of the length of the structure perpendicular
to the direction of loading.

When a transverse mode is coupled to a rotational mode by moderate static
torsional unbalance, there is a dynamic amplification of the torsional component
of seismic responses if certain conditions are met. The main conditions are: close
modal frequencies. sufficiently large torsional unbalance and sufficiently low modal
dampings.

The principal effects of torsional unbalance on the seismic responses of linear
structures have received considerable attention (Newmark and Rosenblueth. 1971).
The treatment of modal features which is closest to that given in this section is
presented in papers by Skinner el af. (1965) and Penzien (1969). These papers give
combined seismic responses of close-frequency torsional modes, based on time­
history analysis of responses to earthquake accelerations. Combined responses arc
treated more systcmatically by Pcnzien. who proposcs special response speetra for
c1osc-fre(IUeney mode p"irs. The Ilt:t:d for these speci,,1 spectra has been I:lrgcly

removed by the introduction of the more convenicnt CQC rules for modal combi­
nation (Der Kiureghian_ 1980a. b; Wilson el 01. 1981). The CQC treatment is used
in the present discussion.

The approach used here is an analytical treatment of the modal features and
seismic responses of a 2DOF structure whose centre of stillness (C.S.) is ollset
from its centre of mass (C.G.). This applies to linear structures with or with­
out linear isolation. Secondly, there is consider,l.lion of a torsionally unbalanced
structure with bilinear isolation. The seismic responses of a torsionally unbalanced
structure. with and without bilinear isolation, have been evaluated by Lee (1980)
using response-history analysis. This shows the clear-cut reduction in torsional (and
other) responses that can be achieved by mounting the (single-storey. asymmetric)
structure on a bilinear isolator. As with linear isolation, the bilinear isolation sys­
tem was found to be most effective if mounted with its centre of stiffness below
the centre of mass of the structure.

4.5.2 Seismic responses of linear 2DOF struclures with torsional
unbalance

ModoljeaJures

The modal features of 2DOF structures with torsional unbalance are given in detail
by Skinner et al. (1965). The present treatment emphasises cases with moderate
unbalance and with close translational and rotational frequencies.

The quantitative effects of torsional unbalance may be well illustrated with a
simple two-degree-of-freedom, 2DOF. model, as shown in Figure 4. 17(a), in which
a torsionally unbalanced structure is oriented along the x-axis and translation in
the y-direction, and/or torsion in the horizontal (x - y) plane. occur in response to
excitation in the y-direction. Here the circled dot and cross refer to the centre of
mass (e.G.) and centre of stiffness (e.S.) of the structure respectively. The structure
is assumed balanced for excitation in the x-direction.

Figure 4. 17(b) shows a simplified plan view of a model with two equal masses
M /2 (equal weights W /2). which retains the same e.G. and angular momentum as
the original structure of Figure 4.19(a). The masses are separated by ±r from the
CG. Torsional unbalance is given by offsetting the centre of stiffness (e.S.) by TO
from the CG. The supporting 'springs' of stiffness K/2 are taken as equidistant
from the C.S., with a radius of torsional stiffness which is (I + 6.) times the radius
of inertia T. The masses arc displaccd by Y. and Yb rcspectively during the mode-I
rotation shown. and the springs <Ire displaced by Yc and Yd.

If both 0 = 0 and 6. = 0 then the system has equal translational and torsional
frequencies but it is degenerate and 110 uni(llie natural mode shapes are defined.
Close frequencies and moderate unbalance arc achieved by giving 6. and O. respec­
tively. small fractional vahlt:s. For small values of !:J. and 0 the modal features may
be expressed approximately a.~ perturbations of the fe:lturcs of the equal-frequency.
balanced modes, i1~ (ti~cllsscd below.

The model in r:i~ure 4.17 IUIlY he illteq)rcted :I, rcl)fCSClllillg a Ollc-~torcy uniso·
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Ialed structure with a shear stiffness K, or as a model of a structure with linear
isolation, with K = K b• and with the structure approximated as rigid. The shapes
of the two nonnal modes and their natural periods may be obtained by equating
translational forces and by taking moments about a node such as that on the right
of Figure 4. 17(b), for free vibrations at frequency w in the absence of external
forces. Thus
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Figure 4.17 Modal features of two-degrce-of-frccdom (2DOF) structures with close fre­
quencies and moderate torsional unbalance. (a) Elevation of :1 model of a
torsionally unbalanced 2DOF structure. (b) Plan view defining the slruclUral
panullcters and Ihc coordinalc system. (e) Modal dcOcclion when II small
unbalJll1cc is dOl11injll1t. case 1, (broken line) and when a small frc<lllcrlCY
separation is domin:lIl1. ellSC 2 (solid line). (d) 'l1lC modal parlicip:uioll fac­
tors r I (ol) mltl I'l( I), :lIld II combined-response 1J;lnicip:uion (ilclor 1'1<2(·1).
lIS derived in the 'l'~l, IIl'e \hOWIl for casc 1
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so thai ,<; ::::=: /!,. for small 6. and o. The positions of the two nodes, which define the
two mode shapes, are then

Note that XIX2 = _r2 , which shows that the nodes of the two modes lie on opposite
sides of the e.G .• one within and onc beyond the radius of inertia.

The natural (circular) frequencies can be obtained from Equations (4.227a) and
(4.229) which give:

where

Mode 1:

Mode 2:

Xl = (rN)[J(,<;2 + ,52) + e]

xl = -(r/O)[.jee2+ 52) - 81.

(4.228b)

(4.229a)

(4.229b)

The above modal features may be illustrated by the modal displacements for
an acceleration of -g along the y-axis;as shown for two cases by the plan view
in Figure 4.17(c). For case I, /!,. = 0.01 and 8 = 0.05, the unbalance parameter
8 exceeds the frequency separation parameter /!", and both modes contain large
(and opposite) rotational components. Modal displacements Y1 and Y2 are given
by broken lines, while the dotted line shows the static deflection for this case. For
case 2, /!,. = 0.05 and 8 = 0.01, the frequency separation parameter /!,. exceeds
the unbalance parameter 8, and both modes contain small (and opposite) rotational
components. Mode I is dominantly translational and mode 2 is dominantly tor­
sional, and small, as shown by the modal displacements Yl and Y2 given by solid
lines.

In case 2 there is little axial-mode interaction. In case I strong axial-mode in­
teraction is caused by the small unbalance 8 of the translational mode. with little
suppression by the even smaller frequency separation term /!".

Peak combined responses of modes I and 2

The peak seismic displacements of modes I and 2 may be obtained using the
participation factors of Equation (4.233) and the response spectrum values for the
modal periods and dampings. For close modal frequencies, as considered here, it
may be assumed that

(4.231)

(4.230')

(4.230b)

w~ = gKjW [I +e - .)(£2 +(2)]

w~ =gKjW[1 +£ + ./(£2+ 02)].

It is useful to define the tcnn in the above square rool separately, as the variable

fi'

Note that 13 is a measure of the relative separation of the modal frequencies, as where W., Sa are the average values for the modal frequencies and dampings. The
modal responses may be combined using the CQC approach (Oer Kiureghian,
1980a, b) to give the peak seismic response at X as:

On substituting for the participation factors fl(x) and f 2(x), this becomes

where the average frequency

w. = (WI + 0>2)/2.

The mode shapes y = t/!(x) are dcfincd conveniently by the locations Xl and
X2 of their nodes, (Equations 4.229) and are scaled to give unit displacement at
X = O. Hence

(4.232a)

y ~ (II j2).j[(I + R') + p",(1 - R'»)SD(W•. (.)

= r 1c2(X)SO

(4.234a)

(4.234b)

where

4'2(X) = I - X/X2' (4.232b)
(4.234c)

Modal participation factors

From the mode shapes and mass distribution, the participation factors are givcn by

r,(.,) = (1/2)11 + '/~ - ('/~)(-'M)

I',VI 11/2111 'II! + ('lfi)(xMI.

(4.233<1)

(4.2331»

From Dcr Kiureghian (1980a. b) il (,;an be shown, for the close modal frequencies
considercd here, that lhe correlation eooflicient PI.2 Illay be approximated by

(4.234d)

The cocflici(;l1t or Sn in I\qUlllIOIl (4..\4h) may be n:gaf(kd as the partidp'ltioll
factol' f k2 (.I) of the ('ol1lhilll'd IlliHk~ I IlI1(12.
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The participation {uClors of Ihe combined modes rcflcci the features of the par­
ticipation factors of the individual modes. When 0 « ~ (case 2) then fJ ~ E and
Equation (4.234) gives

r 1c2(X) ;:::: 1.0. (4.2353)

Thcrefore an increase in the torsional unbalance 0 allows dynamic amplification
10 occur with a greater frequency sepacation f3 and then also with greater modal
damping l;•. Conversely dynamic amplification can be suppressed by a sufficient
increase in lhe frequency separation and/or in the modal damping.

('. #<0.

Ailematively if there is Slrong interaction, (case I) given by a «0 then £ «p,
"d

If there is a high correlalion P1.2 :::::: 1.0, given by 4~a2 » ,52. which may readily
occur, then the combined participation {aClor is again approximately unity.

The grealesl dynamic amplification is given when slrong interaclion occurs, as
for Equation (4.235b), and at the same time there is a low correlation between
modal responses. given by ~; « 052: which is however a relatively exlremc case.
The upper limit of the combined panicipalion faclor, for this case where a « 8
and Pl.2 « 1.0 is then given as:

4.5.3 Seismic responses of structures with linear isolalion and
torsional unbalance

Using the above 200F model, seismic isolation may be used to reduce the torsional
unbalance 0 to a small value. This can be achieved by an appropriate placement
of the isolator springs. The isolator may also provide large damping in the pair
of modes. The seismic isolation reduces the responses of the first pair of modes,
and the small unbalance and high damping limit the torsional components of these
modes to their static values by suppressing dynamic amplification of torsional
responses.

Consider a torsionally unbalanced three-dimensional structure with its C.G. di­
rectly above the centre of stiffness, C.S., of its linear isolator. The first triplet of
isolated modes is given by a system which is almost torsionally balanced since the
modal motions involve little struclural deformation, and with no structural defor­
mation the system would have exact lorsional balance. Next consider a moderate
offset between venical axes through the structural C.G. and through the isola­
tor centre of stiffness. which will normally occur despite a nominally zero offset.
Torques will then be introduced by seismic forces perpendicular to this offset.
Since the torsional and translational frequencies of the first isolated modes may be
quite close, a moderate torsional unbalance of the isolator (corresponding to 0) may
be sufficient to overcome the inhibiting effect of the small frequency separations,
as discussed above. The mode shapes are now the 3DOF equivalent to case I in
Figure 4.l7(c), with each natural mode containing a large component of each of the
three axial modes. for unbalance along both horizontal axes. With sufficiently low
isolator damping, such a system of modes results in large dynamic amplification
of rotational motions, as shown for its 2DOF counterpart by Equation (4.235b),
and illustrated for a panicular case by Figure 4. I7(d). However, the equation and
figure indicate that an isolator damping l;. which is equal to the unbalance offset,
expressed as a fraclion of the radius of inenia of the structure, is largely sufficient
10 suppress dynamic amplification of torsional unbalance for the first triplet of
isolaled modes.

Thc second triplct of isolated modes. arising from the second modes for the
threc axes. may again havc elo~c rrC(llIClleie~ for a regular shear-like structure.
If lhe lorsional unbalance of IlIc~c ~II'Uctu1"c-dOlllinatcd axial modes is relatively
high, and structul';i1 dUlllpill10l is tlwdemtc. there may well be dynamic amplification
of the torsional unblllullI':c fOI (his ~ccolld lriplet of isolated modes. This may give
compllrable re~potlsCS Illi 111(' HlllIliOllfd lllld translational componcnts of thc sccond
triplcl of isOllilcd ll1o(k~ '1Ill'~t' llild Iluk til the displaccmcllts and loads of lhc nrst
triplct of i~olntcd Illtl(lt's. wllt'll' OUI ~'U"I'S (ii) lind (iii) of Figure 2.7 give ~ome

(4.235<)

(4.235b)

Exampl~ of individual and combin~dparticipalion faclors

Figure (4. J7d) shows examples of individual and combined participation faclors,
as given by Equalions (4.233) and (4.235). To give strong axial-mode interaction,
the frequency separation a was made smaller than the torsional unbalance O. with
6. := 0.01 and 0 = 0.05. as in case (I). The damping was taken as ~. := 0, 0.02.
0.05.0.20. which give the correlation coefficient the values P1.2 := 0, 0.38. 0.79.
0.98, respectively.

The dolled lines in Figure 4.l7(d) give the individual participation factors r I(X)
and r2(X) for modes I and 2, while the full lines givc the corresponding values
for the combined panicipation factors r Ic2(X) for various average modal dampings
l;., and hence for various correlations between modal responses. The figure shows
that the combined participation factor is greater than unity whenever the valucs of
rl(x) and r2(X) have opposite signs. This combined-response participation factor
illustrates the ability of modal damping to largely suppress the effects of small. but
dominant. torsional unbalance.

The above features of the combined modal responses may be summarised as
follows. When a tmnslational mode is coupled to a rotational mode. then sufficiently
close modal frequencics give strong modal intcractions. If strong modal intemction
occurs whcn there is also a low correlation between modal responses. givcn by
sufficiently low modal dampings, then there is a dynamic amplificlltion of lhc
combined seismic responses in thosc regions of the structurc which havc normal
modc responses of oppositc sign.

I-ligh dyrmmic amplificalion of tor~iOllal unbalance requircs
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indication or the C{)Il~cqucl1ces of combining the translational components of the
first and second modes.

4.5.4 Seismic responses of structures with bilinear isolalion and
torsional unbalance

The consequences of lorsion'll unbalance, for a simple linear sllUClure supponed
on a bilinear isolalor, were investigated by Lee (1980) using seismic response­
history analysis. Lee modelled a square building by a single slOrey with comer
masses. columns :lnd bilinear isolator components. The e.G. was al the centre of the
building. When the building or the isolator was torsionally unbalanced. these shifts
in their centre of stiffness had equal components along the x· and y-axes. Since
all springs and masses were at the same distance from the centre of the structural
model. the radii of inertia and stiffness were equal and. when torsionally balanced,
the frequencies of the translational and torsional modes were equal, corresponding
to 11 = 0 for the twCK1imensional model of Figure 4.17.

The bilinear isolator parameters were Tbl = 0.9 s, Tb2 = 2.0 sand Qy/W =
0.05. These parameters were close to the isolator parameters for our case (iv) in
Figure 2.7. Lee's seismic responses gave isolator displacements moderately larger
than for our case (iv) (as a consequence of exciting the isolated slrUcture by both
components of the El Centro 1940 eanhquake simultaneously) and the equivalent
period and damping for Lee's isolator were close to our values, namely 1.45 s
and 24%. Lee's model included a set of small masses at the interface between the
isolator and the structure which appear to have caused little change in the character
of the seismic responses of the isolated structure.

Initially the structure was given eccentricities typical of code prescriptions for
accidental unbalance, with e~ =ey =0.1 b, where b is the length of the sides of
the structure. This corresponds to an unbalance factor {) = 0.2 along a diagonal of
the structure. The structure was given periods from 0.1 to 1.2 s and responses were
obtained for simultaneous excitation by the El Centro 1940 accelerograms, with
the N-S component along the x-axis and the E-W component along the y-axis.

Without isolation, the x-axis and y-axis responses were approximately those
which would have resulted from the 5% damped spectra of the N-5 and E-W
accelerograms respectively (with a balanced structure). The torque, at various struc­
tural periods, corresponded to column forces which equalled or exceeded the col­
umn forces for x-axis responses. Hence, all three components of the structural
responses were high and the torques corresponded to a considerable dynamic am­
plification of the torsional unbalance.

With a balanced bilinear isolator all three components of the response were
greatly reduced, with the .1'- and y-axis forces close to the value givcn by lhe
acceleration of 1.08 m S-2 for our case (iv) in Figure 2.7. The lorques were reduced
to give corresponding column forces which were a small fraction of the small .1'­

and y-axial forces. Hence lhe balanced isolator was very effeclive in suppressing
torsional responses 10 the stnlctural unbalance.

Lee also investigated the effects of isolator unbalance. The resulting torques were
essentially those given by the static unbalance, without dynamic amplification. This
was the result to be expected for an unbalanced system with high equivalent viscous

damping.
It appears that all the results reponed by Lee have the general trends which

would be given by replacing the bilinear isolator by a linear isolator with the
effective period and damping based on maximum loop displacements, as described
in Section 4.3, and approximated above by comparison with our similar balanced
system (case (iv».

When a multi~storey structure is mounted on a bilinear isolator, with structural
and isolator parameters corresponding to cases (v) and (vi) of Figure 2.7. then the
second triplet of isolated modes will be more severely excited, and they may make
significant contributions to the 'static' unbalance responses given by the highly
damped first triplet of isolated modes. Such higher.mode torsional responses will
have the greatest design significance for structures with high-value, seismically
vulnerable contents.

4.6 SUMMARY

The main results in this chapter are summarised here. The seismic responses of
isolation systems can be regarded as falling into two categories. The first category
comprises first-mode responses, or responses which are dominated by first-mode
contributions; examples are the maximum base shears and isolator displacements.
The second category comprises higher-mode quantities, or responses which are
strongly affected by higher-mode responses: examples are the distribution of accel~

erations and shears in the structure, and the floor-response spectra for frequencies
greater than about 2 Hz.

A high degree of linear isolation markedly reduces both first- and higher-mode
responses within the structure itself compared wilh those in the unisolated structure.
'Aoor spectra', which govern the eanhquake forces on the contents of the struc­
lure, are correspondingly reduced at shon periods. These large reductions in the
accelerations, loads and defonnations in the structure are obtained at the expense
of large displacements across the isolators.

The acceleration reductions resull from a lengthening of the fundamental period
of the structure so that it lies oUlside the range of periods of the dominant peaks
of the acceleration spectra of most c;u'th{IUakcs. For linear isolation systems, the
higher-mode excitatiOlls ilre suppressed becallse the mode shapes are nearly or~

thogonal to thc dislribUlioll of illcrlill forces imposed by the ground motions. The
base she;\r is dctcrmincd ulmosl clltirely hy the lirSl-mode response, because the
shapes of the higher IHO{le;; mCllll thllt the higher-mode inertia forces almost cancel
when summed ,\(.:ro;;s till' VIIIIllIIS 1ll1lS'l". '" well liS the higher-modc particip<ltion
factors being lIt:lllly 1{'IiI Ill\' dlsplilrl'IIiCIllS Ilrt: "Iso controlled by Ihe first modc.
because of the low p'IIII{·lllntI1U1Il1\ltll~ "I till' hIgher l1l(Kles ;Ind their milch shorter
perio<b c()Iuplm:d wltll 1111' IIlSl Illl~h'
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In the first isolated mode. the structure responds almost as a rigid body, with
the fundamental period determined by the overall mass and the stiffness of the iso­
lator. The first-mode damping is detennined largely by the damping in the isolator
because of the [ow defonnations in the structure. The low base·stiffness produces
free-free type higher modes. wilh the perioos of the higher modes a function mainly
of thc stiffness of the structure rather than that of the isolator.

Because of the rigid-body nature of the first mode and its dominance in the
overall response, the base shear and isolator displacement can be estimated accu­
rately by a one-mass model. with the stiffness and damping corresponding to those
of the isolator.

The degree of linear isolation depends on the isolation factor I = Tb/TI(U),
namely the ratio between the period Tb of the isolator and thc fundamental pe­
riod TI(U) of the unisolatcd structure. The isolatcd modc shapes and highcr-mode
perioos are very close to thc free-free values for I > 2.

The isolator displacemcnts can be reduced by increasing the energy dissipation
in the isolator. This can be achieved either through viscous damping, in which
the isolation system remains linear, or through non-linear hysteretic damping from
yielding of metals or frictional sliding mechanisms.

Providing a high viscous damping in the base, such as about 20% of critical, pro­
duces non-classical modc shapes. Thc base impedance may increase significamly
from that due to the isolator stiffness alonc, and the higher modes are no longer
orthogonal to the incrtia force excitation. Both thcse cffects may lead to substan­
tially increased higher-mode effects. The higher-mode conrributions are important
in producing deviations from Ihe mass-proportional force distribution of the first
mode, and in increasing the floor-response spectra at higher frequencies.

Non-linear hysteretic cnergy dissipation in the isolator can lead to response char­
actcristics significantly different from those for high degrees of Iincar isolalion. Thc
significant featllres of non-lincar isolation can be modelled by bilinear hysteretic
isolation. The diffcrent charactcr of the response of non-linear isolation systems is
related to the excitation of higher modes. The first-mode response, which govcrns
the maximum base shear and the isolator displacement, can be closely approximatcd
by that of a one-mass mooel, as for linear isolation.

The similarity between the first-mode responses of linear, viscously damped
and bilinear-hysteretic isolation systems makes it useful to define an 'effective'
or 'equivalent linear' period and damping for the bilinear system. This period
and damping can then be used in a 'response spectrum' approach as for linear
systcms. The maximum basc shear and isolator displacemenl of the non-linear
isolation systcm whcn subjectcd to an earthquake ground motion can be obtained
from linear response spectra. The accuracy of this approach can be estimated by
comparing these values with the maximum displacements and accelerations of
single-mass models on bilinear isolators, calculated from response-history analyses
and presented in Figure 4.5. TIle approach is sufficicntly accurate that it is useful
as thc basis for the preliminary design procedure recommended in Chaptcr 5.

-n,c high-frccltlcncy (>- 2 III.) "c~ponscs of bilincar-hystcretic isolation sys-

tems can be understood in tenns of their modal character. The seismic responses
of a linear structure with a bilinear isolator are controlled by two sets of natural
mooes and the interactions between thcm. The elastic-phase set of modes is that
given with an isolator stiffness Kbl , The yielded-phuse modes are those ~esu\ling

from an isolator stiffness K b2. The yield-level ratio plays an important role III deter­
mining the level of first-mode response, and in the degree of excitation of the higher
modes of the yielded-mode set. Interaction between the elastic-phase and yielded­
phase modes is strongly dependent on the elastic phase isolation factor I(Kbl ).

Since the maximum seismic responses typically occur during the yielded phase
of the isolator, the distributions of maximum mooal responses within the structure
are given by yielded-phase mode shapes. These mode shapes are the same. as for a
linear isolation system with an isolation factor I (Kbl), However, the amp\Jtudes of
the higher-mooe responses may be considcrably greater than for the linear s.yst~m

because of the various non-linear excitation mechanisms besides direct exctlatlon
by ground motion during the yielding isolator phase. As for linear isolation systems,
the higher-mode forees again almost cancel when summed over the structure, an~
the low frequency of the fundamental mode in the yielded phase means that It
dominates the displacement response. Unlike the case of effeclive linear isolation
systems, higher modes may make important contributions to the overall acc~lerat~on

and shear distributions, and to the floor-response spectra for non-linear IsolatIOn

syslems.
The elastic-phase isolation factor I(Kbd and the non-linearity factor NL, for

which the yield ratio is an essential parameter, combine to play an imJXlrtant role
in the strengths of the yielded-phase higher-mode resJXlnses. A low value of '.(Kbl)
combined with a large non-linearity factor is correlated with a high ratio of hlghcr­
mooe to first-mooe acceleration response. Poor elastic-phase isolation allows strong
excitation of the higher modes directly by the ground motion in this phase of the
response. In addition. a low valuc of I (Kbl ) produces a sfrong contrast between ~he

shapes of the clastic-phase and yielding-phase modes of the same number, r~sultlllg

in significant coupling between clastic-phase and yielding-phase mooes of d,~f~rent

numbers. In more general non-linear systems with curvilinear rather than blhnear
force-displacement characteristics, this coupling process occurs continuously as the
cffective mode shapes change with the amplitude of the motion, rather than at the
discrete timcs associated with thc changes in response phases as in the bilinear
model. A large non-linearity factor is oftcn required as the equivalent viscous
damping from hyslcrcsis is proportional to NL, and high damping is required to

reduce isolator di:'lplaecl1lCl1lS, Idc;lliscd simplc-friction sliding sySlems have no
i<;olation in Ihcir locked pha<;c alld have the maximum possible non-linearity factor
~lr I because of their rigid pla<;llc force dbplacclIlcnt loop, so usually have strong
highcr-mode rc<;pon<;(,:<;. Oil the olher halld, by designing isolation systems with
hy<;tcrctic mcch:IIll<;II1<; wll1lh plllvidc' ("(111<;lder<lblc .i<;Qlation ~n their ~I~stic phase.
" i<; po....ihlc 10 iKluevl' Ill\' IIl'<;lIl'll 1IIIIpelly of IlIgh damping 10 1."111t '.hc firsl­
Illude re"I)()Il<;{,<; wllhl\l1l 1IIIIm 11111 ~lllm~ IlIgh fn.'llucllcy rc<;pol1<;Cs which Will all:lck

MlhsYSICIll.<; HIl(1 l'OII'C'l1h 1\1 ,Ill' "1111\ 1111\',
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Slrong higher-mode responses produce an overall shear distribution which is
'bulged' in comparison with the first-mode distribution, producing substantially
increased values in the top half of a structure in particular. Strong higher-mode
responses also make important, and often dominant, contributions to floor spectra,
which determine the seismic forces on the contents of the structure.

The installation of seismic isolation is shown to reduce the effects of torsional
unbalance, particularly if the centre of stiffness of the isolating system is beneath
the centre of mass of the structure.

In summary, structures with a high degree of linear isolation and low isolator
damping have much reduced acceleration responses and floor spectra compared
to those of un isolated structures in El Centro type earthquakes, but may require
large isolator displacements. Lightly damped linear isolation produces mainly first­
mode response, which is characterised by nearly unifonn, rigid-body-like motion
in the structure which is insensitive to irregularities in the structure. The isolator
displacements may be reduced by introducing high viscous damping or hysteretic
damping in the isolator, but this generally increases the higher-mode responses
which may be important for the overall shear distributions and floor spectra. Rigid­
plastic isolator characteristics give particularly bad high-mode effects. Non-linear
systems with good isolation in the elastic phase retain the desirable feature of
first-mode dominated response as for linear isolation, producing both low forces
throughout the Slructure and moderate isolator displacements.

5 A Basis for the Design of
Seismically Isolated Structures

5.1 GENERAL APPROACH TO THE DESIGN OF
STRUCTURES WlTH SEISMIC ISOLATlON

s.l.1 Introduction
Design approaches for seismically isolated buildings and bridges are presented
ill this chapter, together with a numerical example and some comments on de­
sign codes and guidelines. The procedures follow from the features of seismically
isolated structures and the properties of the isolating devices, as discussed in Chap­
leI's 2, 3 and 4. The preliminary aseismic design of an isolated structure calls for
approximate estimates of seismic loads, defonnations and floor-~ccele~ation spe~tra

(which indicate levels of appendage loads) when the structure IS subJcet to deSIgn
c<lrlhquake accelerations. The procedure for structures with bilinear hysteretic i~o­

lation is similar to that recommended by Andriono and Carr (l99Ib), for a Wide
r;mge of earthquake excitations and for a range of structures with bilinear isolation
(Andriono and Carr, 199Ia).

These initial estimates of seismic responses allow an assessment to be made
of the effectiveness of seismic isolation for the particular structure and site. The
eslimates also allow initial decisions to be made on structural fonn and isolator
paramcters, and a tentative assignment of member sizcs. These preliminary desig.n
choiccs fonn the basis of the second design stage, which calls for further Opll­
lIliS<llion of the aseismic design based on more accurate evaluations of seismic
responses, and for a more detailed design of the structure and isolator..

II is emphasised lhat the procedures outlined in this chapter are Intended as
II design guide only, namely as a me;lIls of enabling the designer to .arrive at
~lIilable starting values for system parameters, which will then be refined III further
eOlnplilatioll ;mel dynamic allalysis.

As discussed ill Chapler 4, whcn 11 sll"t1clure and isolator can be treated as
lincal', thell seismic l'csponses lllUy he ev:dllaled approximately by the general modal
procedures used fol' lion isolaled lillelll' .~lrllcturcs, namely using modal pcri~s,

dlltllpings und })nr'lieip:llioll flll'WIS, 1{)~Clher wilh dcsign-earth<luake spectra. WlIh
lillear isolalion, llll' n.. 'pon'l' i~ dUlIllll11led hy a simple firsl mode. Higher-mode
di~})luccmCIlIs lire IISlllllly 11l~1~'lIltll'lllll. Fir'll mode loads call be combined wilh lhe
~IIlHII highcr 1lI00k l'(l1l1l1l1l1l1'\11~ hI ",IVl' lllc ovcrllil sll"t1Clnral responsc.
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Even moderate isolator non-linearity lends to increase the higher-mode accel­
erations and hence 10 increase the floor spectra. Therefore when low appendage
responses. and hence low floor spectra, are an important design consideration, a
more detailed analysis may be required to evaluate the floor spectra, even when
non-linear isolator effects are only moderate.

When the effeclS of isolator non-linearity are large, or when an irregular structure
with a linear isolator has seismic responses which are complicated by close modal
periods or greatly non-classical mode shapes, then the evaluation of the modal
participation factors and the definition of rules for combining modal responses
become more difficult. II is then usual to compute the seismic resjX)nses of the
structure direclly, using stcp-.by-stcp evaluation of the responses of a model of the
structure to the time history of design-earthquake accelerations. However, a modal
approach may be retained for the more complicated linear structures by adopting
the analytical approaches presented by Hully and Rubinstein (1964), Wilson et al.
(1981) and Der Kiureghian (1980).

Even when structural response evaluations call for detlliled lime-history analy­
sis, an understanding of the importance of various structural and isolator features
is increased by also computing the cOlllributions of individual isolated modes. This
increased understanding assists in selecting the structural and isolator modifications
required 10 improve aseismic performance. When it is difficult to compute the re­
sponse contributions of significant modes directly, these individual mode responses
may be derived from the time-history responses by using the mode-sweeping tech­
nique which has been described in Chapter 4 and used to derive many of the resulls
presented in Chapters 2 and 4.

5.1.2 The seismic isolation option

Principal jeaJures gi."en by isolalion

Seismic isolation below all or pan of a structure provides flexibility and usually
damping, which generally reduce the severity of earthquake attacks. Chapters 2
and 4 demonstrated the principal reductions in attack which isolation can confer
on structures and their contents. These chapters also showed the isolator defonna­
tions and structural displacements which must be accepted in order to achieve the
reductions in seismic attack. Three central features emerged:

(I) Isolators may give large reductions in the seismic loads and deformations for
those structures. with short periods and low dampings, which are most prone
to suffer severe seismic allack if unisolated.

(2) Selected isolators may give very large reductions in the seismic loads on
secondary structures and on the contents of appropriate structures.

(3) An isolator which is effective in reducing seismic attacks on a structure must
have features which result in relatively large isolator displacements. The total
structural displacements are then a linle larger than the displacements of the sup­
porting isolator, since they are moderately increased by structural defonnation.

Seismic isolation may be used to give additional benefits:

(I) Isolation gives a large increase in the first-mode period and substantial in­
creases in higher-mode periods and this may sometimes be used to reduce
severe seismic responses of secondary structures if the severity is caused by
approximate tuning to the period of an unisolatoo structural mode, particularly
unisolated mode I.

(2) Isolated bridge superstructures may lead to more integrated and balanced
structures with a beller distribution of seismic loads between vulnerable sup­
pon substructures.

(3) Hysteretic isolators may be used to confer ductility on otherwise brittle struc­
tures, thus enabling them to resist seismic loads. If the structure has high
stiffness and low damping, effective ductility can be introduced without large
increases in structural defonnations.

(lac/ors jat'ouring seismic isolation

At the initial design stage, it is necessary to consider whether the addition of
seismic isolation will prove to be a cost-effectiye means of providing appropriate
levels of seismic resistance for a structure and its significant secoodary structures
:lnd contents. However, the final decision to use seismic isolation must be made
on a case-by-case basis. The inlroduction of seismic isolation may be beneficial
when several of the following conditions apply to a proposed structure, when
unisolated:

(I) The unisolated structure is subject to severe seismic atlack due to high seis­
micity at its site. and due to its responsiveness to design-earthquake acce!·
erations. Dominant structural modes, that is modes with high participation
factors, have moderate damping togethq with periods within the high-value
range of acceleration spectra, and therefore high seismic responses may occur.

(2) Earthquake motions likely to occur at the site have relatively short~period ac­
cclerograms, typically with dominant periods not greater than those for the EI
Centro 1940 record. When the seismic attack has shon periods, less isolator
flexibility is required for a given reduction in the spectral acceleration val·
lies for isolatcd mode I, which u5ually dominate the seismic attack. Both the
reduced flexibility, and the con5equenl smaller isolator deformations, should
generully reduce the costs of lhe i50lalOr components and the cost of providing
lor slruclural diwiacclllellls. DOinilliU11 seismic sl>cclral periods are generally
reduced by s1l1allel' sile llcxibilily. particularly liS occurs al rock sites. Mod­
erate epicel1lral disttluce llud clII'lhquake magllitude, and the absence of large
movements 011 lIearhy fuull,. llIuy :il~o lend to give short-period spectra.

The fact 11m! CllllhllllU~C tuOlionll{)lllillllled by shari-period content favours
Ihe adoption 01 \CI\lIl1l l\lllllll\l1l11c)C' nOl rtlle oul its usc where 'fault-fling'
tYI>C mollOlI' wllh Inll~ 11l'lulll Ih,phu:cI1lCnh arc eXI>ccted. 111e large di,­
pillcemcnt dCIl1.ltlcl~ 1UlIlllWd hy hUll! tlllllt COIIII)()ucnl, may he nllm: readily
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accommodated by isolated structures with provision for large isolator dis­
placements than by conventional structures.

(3) Primary or important secondary structures are particularly vulnerable to seis­
mic attack. This includes primary or secondary structures with mooerate
strength and a low capacity for inelastic defonnation, thai is, with low ductil­
ity. Vulnembility of secondary structures may be increased by near-resonance
with dominant unisolated structural modes.

(4) Structural foundations are weak and have low ductility. This may present
severe problems since such foundations arc usually difficult to inspect, and to
repair if damaged.

(5) Seismic loads and defonnations are increased in pans of the unisolated struc­
ture by an irregular structural form. Such forms include severe set-backs,
irregular floor profiles such as an L-shape, and mass and stiffness distribu­
tions which give torsional unbalance. Unbalanced foundation stiffness may
also cause torsional vibrations of a struClUre.

(6) Seismic deformations of the unisolated structure make it difficult to protect
non-structural components.

(7) The structure requires linle modification to accommodate an isolation sys­
tem. Such structures include bridges with superstructures which already have
provisions for substantial length and shape changes. They may also include
structures already isolated from ground-transmitted non-seismic vibrations,
such as those generated by railway traffic. Buildings with three-dimensional
beam-column frames may have a distribution of columns which gives ap­
propriate locations for isolator mounts. Buildings which have deep slender
piles to gain support from a high-strength subsurface layer may be given hor­
izontally flexible mounts by making the piles free-standing within clearance
sleeves.

(8) Reliable isolator components, which provide the required isolator features,
are available at an acceptable cost.

5.1.3 Design earthquakes

In principle, design earthquakes for seismically isolated structures should be se­
lected on the same general basis as design earthquakes for an unisolated structure
at the same site. In practice, design motions for isolated structures tend to place
greater emphasis on excitation with strong long-period coment than is usual for con­
ventional structures. In particular, accelerograms with long-duration 'fault-fling'
components are often considered for base-isolated structures located near faults.
Appropriate relUm periods for 'design-level' and extreme or 'maximum credible'
motions are selected on a similar basis to those for unisolated structures, taking
into account the seismicity of the region and the importance and risk f"ctors for
the structure.

For many sites with high seismicity, and ground of moderate flexibility and high
strength, amplitude-scaled El Centro-like accclerogr:uns and spectra may be used

for seismic design; other conditions such as ncar-fault location or highly flexible
soil give different accelerograms and spectra. In some cases the significant features
of the accelerograms and spectra can be approximately matched by scaling the am­
plitudes and periods of the EI Centro NS 1940 accelerogram ug(t) by the multipliers
Pa and Pp respectively, to give the scaled EI Centro accelerogram Paug(tI Pp). The
period scale factor increases the spectral periods and the duration of the accelero­
gram by the multiplier Pp . For linear structures with bilinear isolators, the seismic
responses to scaled El Centro accelerograms can be obtained from the responses
to the EI Centro accelerogram by weighting the structural and isolator parameters
and response quantities by appropriate factors inVOlving p. and Pp, as presented
in Chapter 4 and included in the seismic response summaries below.

A factor which may influence the character of the earthquake motions at a site
is the proximity to the causative fault, and the nature of the faulting action. A
large movement on a nearby fault is thought to increase the amplitude of long­
period ground accelerations through Ihe presence of a 'fault-fling' pulse, which
is important for isolator displacements. The Unifonn Building Code (UBC)(1989)
commonly used in the USA calls for increases of 20% and 50% in design dis­
placements of isolators when an active fault is within 10 km and 5 km of the site
respectively, compared with those in the absence of an active fault.

Response spectra for some typical design earthquakes are discussed in Chapter 2,
where it is shown that the acceleration response spectra are dominated by periods
in the range 0.1-1 s while displacement spectra are dominated by much longer
periods. With seismic isolation it is usually found that a number of important
design features, such as the isolator-level displacements and shears, are dominated
by displacement spectral values for periods in the range from 1.0 s to 3.0 s, and
frequently within the range from 1.5 s to 3.0 s, as illustrated in Figure 2.1. For this
period range, the spectra of EI Centro-like earthquakes may be approximated by
very simple trend curves.

Figure 5.1(a) shows simplified linear acceleration, velocity and displacement
response spectra for the scaled El Centro earthquake. The long-period 'enhanced'
option, shown dotted, makes some provision for greater long-period spectral values
which may be appropriate for some sites or for earthquakes with magnitudes grealer
than the Ms 7.0 value of the 1940 Imperial Valley earthquake which produced the
EI Centro accelerogram.

To denote. that these are simplified spectra, the symbols are underlined in the
figure and text below.

Figure 5.1 (a) is based on <l simple model in which, for a given spectral damping
~. the El Centro NS 1940 velocity spectrum svcr, <) is approximated by a curve
!lvCI', <) which is pl'Oponioll;11 10 l}Criod from 0.25 s to 0.5 s, is independent of
l}Criod from 0.5 s to 3.0 s, a1l(1 is inversely proportional to period from 3.0 s to 4.5 s.
The model also (ldOPIS 1I simple rdlltiollship betweell the acccleration, velocity and
displacemellt Spcctfll ~ivrll II)'

(5.1 )
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Simplified linear response speCfra. (a) Smoothed and simplified approxima­
tions to lhe 5% damped linear response spectra L. ~v and h. for the scaled
EI Centro NS 1940 design earthquake (solid lines). The speclra with 'Ioog­
period enhancement' arc also shown (dotted lines). (b) Multipliers CA. G"
and CD which can be used to derive simplified scaled EI Centro spectra willi
olher damping-factor values, from the 5% damped curves in Figure 5.I(a).
(c) Simplified El Centro displacement spectra wilh long-period enhancement
(dashed lines) for damping factors of 5, 10 and 20%, multiplied by a factor
of 0.9 (see tellt) and compared with the average spectra for eight earthquake
components (solid lines)

E
S
c• 000
E•u•0.••..
~
u•Q
0

0
0

,<,
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where OJ (?;') and 02(?;') are constant for a given damping factor?;'. This approach
gives relationships between the acceleration, velocity and displacemenl slx:ctra
similar to, but not the samc as. the commonly used pseudo-acceleration spcctra
wSv and pseudo-displacement spectr:! Sv/w for which 01 and {/2 arc 1/27r and 2Jr
respectively for all dampings.

The vCrlical sC:llcs of lhe \.'\Irvc sllllpcs of Figure 5.1(a) wcre adjustcd 10 give beSl
filS 10 lhe COITC~I}()lldillll 'i'1, i.hlll1l~i.t .;pcctnl for EI Cenlro NS 1940. The curves of
Figure 5.I(a) ..how lh" 1l;ll1l1hll\'d "111'\.11'11 SCI", 0.05) for:l spectral damping faclor
l; 0.05, 'Ille CUlV\''l 01 Hputl' '1.1(11) ~ive lhe ..cl.lc 11lulliplier.. C(l;) rC1luirclt 10
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5.1".4 'Trade-oW between reducing base shear and increasing
displacement

"

X.,---
'{l;-- -

- 0.1

>C~~-:::----- ---- "::.. "':...--..:- -- -"":...

Trade..o{f curves for a bilinear isolator. A single mass or rigid structure of
weight \V is supported by a bilinear isolator which has 'cffeclive' period T.
and 'cffectiye' damping factor~. as defined in Chaptcr 2. The: systcm is
subjected 10 scaled EI Centro NS 1940, cnhanced 10 a long period of 4.0 S.11le:
conservatiyc option. ApproJ:imatc yalues of the mouimum displacement X"
(solid linc) and maJ:imum shear force ratio St./ \V (dashed line) arc: given as
functions of T, for various ~B' The scaling faclors p. and Pp are defined in
the tCJ:1 in Chapler 5, and the corrc:clion factor Cp is discussed in Figure 4.8
and in the associate:<! text in Chaptcr 4. Thc: isolator velocity-damping was
~"2 = 0.05, which gives an effective velocity-damping for bilinear spectra
of approximately ~b = 0.05TB/Tb2

"
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(5.2)!i(T.~) = C(O!i(T, 0.05).

TI1ere are different factors CA(n. Cv(n and CDR} for the acceleration, velocity
and displacement spectra respectively. The velocity factor has the same role as
the factor I/B of the UBC code, and has very similar values to I/B. A detailed
study of the variation of acceleration reSjX)nse spectra with damping is given by
Kawashima and Aizawa (1986). who find a relation lying between our CA and C"
curves.

Figure 5. I(c) superimposes 0.9 times the simplified EI Centro spectra of Figure
5.I(a) on the average spectra for eight scaled earthquake comjX)nents, as given in
Figure 2,I(c). The good agreement demonstrates that the shape of the displacement
spectra is representative of this set of eight scaled earthquake comjX)ncnts, and for
many purposes justifies the simplification adopted for the spectral curves. Thc factor
of.0.9 ariscs because of the method used to scale the various accelerograms, which
was to equate the areas under the 2% damped acceleration response spectra, over
the period band 0.1-2.5 s, to that of the EI Centro NS 1940 component, while the
simplified spectra were derived directly from the EI Centro spectrum.

Any earthquake motion whose smoothed spectra approximate the smoothed
spectra of the EI Centro accelerogram when scaled by Pa and Pp as described
above, including sets of artificial noise-based accelerograms, may be regarded as
'EI Centro-like' for many design purposes. II is in this sense that earthquake ac­
celerograms are described as EI Centro like in discussions of design earthquakes.

For more detailed analysis of the seismic responses of isolated (and unisolated)
structures, acceleration-time histories of design-earthquakes are required. These may
be scaled accelerations of recorded earthquakes, Such recorded earthquakes may be
supplemented by artificial accelerograms with appropriate frequency content and
the required variation of the acceleration amplitude envelope with time. A suite of
similar recorded, or artificial. accelerograms may be used to improve the statistical
basis of aseismic design when reSjX)nses are evaluated by time-history analysis.

give simplified spectra for greater damping values. Hence

The simplified spectra of Figure 5.I(a) show that in the period range which applies
for the effective fundamental period of isolated structures, namely about I s or
greater, increasing the period reduces the spectral acceleration for a given damp­
ing while increasing the spectral displacement. Considering the CA(~) and CD(~)

curves of Figure 5.I(b), it can be seen that increasing the damping, from 5% of
critical, reduces the spectral displacement for a given period, while the accelera­
tion decreases until 25-30% damping and then increases with a further increase ill
damping. For a single-degrec-of4frecdom system, or a linear system in which the
base shear is dominated by the fundamental mode 3.." for isolalcd structures, the

spectral acceleration is prop0rliollill to thc b;lsc shear. Thus there is a 'trade-off'
OClween reducing basc shear and incrcllsillg displacemcnt as lhe fundamental-mode
Ix:riod is increased, and aho 1(1 II lesser cxtcnl as lhe damping is increascd beyond

about 30% of critical.
Por line;lr i"olati(l1l SYldt.'IlI~ 1I1l''l' lmdc·offs can Ix: emph<lsised by plolting on

a single diagnlln llll' SI~'lllllllll~plllll'll\en,s SnOh,l:b) ~ XbPi"l:b) ;lIld ,hc nor­
malised spcctrlllll\T"krlllhltl '\AI ' h, l:hl!J.:. Sb/ IV, liS (I function of 'fto for varioll"
dfllllpillgs l:b. Whl'H' It ." l'~ lillii'll 111111 III lIud l:h arc dose 1Illpr'llXlnllltion.. 10 Ihe
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true isolated first-mode period and damping. However, these values can be read
direclly from the spectral curves.

For non-linear systems, a similar set of curves can be plotted by making use of
the 'equivalenl linear system' approach discussed in Chapters 2 and 4. For non­
linear isolalion systems, the varialion of base shear with equivalent viscous damping
is somewhat differenl than for a true linear syslem. We have found that the base
shear is approximated better by Sb ::::::: KBSO(TB,~B) than by Sb::::: MSA(TB.~B).

The base shear for a given period TB continues to decrease like So(TB, ~B) when
the equivalent viscous damping increases in the high-damping range. rather than
to increase like SA(Ta, ~a). This different behaviour arises because. for the non­
linear system. the actual viscous damping is small, so that the force corresponds
essentially to the spring force, while for a highly damped linear system. the viscous
damping lenn may add considerably to the spring force. The lrade-off belween
reducing base shear and increasing base displacement as the effeclive period Ta
increases is similar for non-linear and linear isolation systems.

Trade-off curves based on the equivalent linearisation of bilinear systems are
shown in Figure 5.2 for motions corresponding to the simplified enhanced EI Centro
speClra. These curves give the base shear and base displacement as a function
of the equivalent linear period To and the equivalent viscous damping ~B. 1lle
displacement Xb(TB'~B) curves are simply Co(~a)~(TB,0.05). where CD(~B) is
obtained from Figure 5.I(b) and ~(TB. 0.05) from Figure 5.I(a). The Sb/W curve
corresponds to K BXb(TB, ~a)/ W. As the damping enters inlO the Sb expression only
through Xb(Ta. ~B). both Sb and Xb decrease with increasing damping. both for
low and high dampings.

The axes indicate how the parameters and responses are scaled when the design
mOlion is scaled from the smoothed EI Centro spectrum by an amplilude factor p.
and a period factor Pp• The correclion factor CF, corresponding 10 Figure 4.8, is
also included; for most cases CF is close to unity. ,

For the panicular displacement spectrum shown in Figure 5.l(a)

"nd

where (VII = 2rrlTn is Ihe effective frequency, given by .j(Kug/W).

(5.7)

(5.5)

(5.6)(m).

Xb(To, ~o) = C,g/w~

= O.25AS, T.I B(~.)

For A = 0.4 and Sf = I.

5.1.5 Higher-mode effects

For 5% damping, for which CD = B = I, this value agrees well with that
derived from our simplified EI Centro spectrum.

Using linear spectra to obtain X b and Sb for a bilinear isolation system is an
iterative process. The equivalent linear period To and damping ~o are dependent
on Xb and Sb and on the parameters of the isolation system. 11lerefore, in using
the curves of Figure 5.2 or the above equations, it is necessary to check that the
(Xb, Sb) combination obtained is consistent with the (Ta, ~o) values used to enter
the spectra.

where A is a zone-dependent seismic coefficient and S, is a site-dependent coeffi­
cient. The displacement is

Displacement and base shear are related mainly to first-mode responses, and can
therefore be predicted well by the response of single-degrce-of-freedom systems:
However. the distribution of shears in the structure is also dependent on the higher­
mode responses.

In Chapter 4. it was shown that the ratio of higher-mode to first-mode responses
was strongly correlated with the elastic-phase isolation factor I(Kb1 ) = Tbl/TI(U)
and the non-linearity factor NL. The results given in Figure 4.12 for 63 of the
bilinear isolation systems given in Table 4.1 are generalised to an N-mass struc­
ture and simplified in Figure 5.3(a). This figure shows the ratio of the nth-mode
acceleration response at the top of thc Slructure (mass N) to the corresponding
first-mode acceleration, for modes n = 2 (solid lines) and fl = 3 (dashed lines). as
a funClion of NL for v;lrious ranges of clastic-phase isolation factors. As discussed
ill Chapter 4. Ihe resulis wcre derived for uniform 5-mass isolated shear-structures
subjcctcd 10 the N-S componcnt of EI Ccntro 1940. However, they should apply
reasonably well I'm IIcudy uniform shear·structures with any number of masses
(storeys) with N .... 4. Figure ~,_1(1l) docs not represent the responses of systems
with nearly dH~tn pIUSIIl' (hllrU~·tl'ti"lic .., i.c. very large valucs of T1>2. such as the
cll~esofTllhIc4.1 \\I1tll flo' /I ..

Similar expressions can be derived from other simplified spectra. An example
is the seismic coefficient of the UBC (1989) and AASHTO (1991) design specifi­
cations:

(5.4,,)

(5.3)

(5.4b)

(m).~O(TB. 0.05) = 0.29(70 /3)

Sb(TB, ~a)/W = w~Xb(Ta. ~B)/g

::::::: 0.39CpPaPpCo(ta)/TB

Xb(Ta. ~H) = CpPaP; O.29(TB /3Pp)CoRH) (m)

= 0.097CpPaPpTI:ICD(~B) (m)

Thus the curves of Figure 5.2 correspond to
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5.1.6 The locus of yield-points for a given NL and Kfi • for a bilinear
isolator

(5.8)
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Figure 4.13 and the associaled text to be given approximalely by

where a '"'- 0.85 for 1'1 (U) = 0.25 s, 0.75 s, and a '" 0.6 for 1'1 (U) = 0.5 s. The
shear at positions other Ihan mid-heighl can be eSlimaled by adding a half-sine~

wave variation 10 the triangular first-mode distribution.
Strong higher-mode responses also produce strong floor-response spectra in the

range of higher-mode frequencies, as shown in the examples of Figure 2.7. Higher­
mode responses can generally be reduced by increasing I(Kbl ), which has lillie
effect on first-mode responses, or by reducing NL, which generally increases base
shears and displacements. Typically, reduced higher-mode responses are obtained
at the expense of increased base displacement.

Figure 5.3 (continued)

Features of higher-mode responses of a standard unifonn 5-mass shear struc­
lure wilh bilinear isolation, subject to El Centro N$ 1940. (a) Trend lines
derived from Figure 4.12. showing falios of peak modal accelerations at
the lOp of the structure, for 63 of the bilinear isolation systems given in
Table 4.1. Parameters for the trend lines are the non-linearity factor NL and
the elastic-phase isolation faclOr Tbl/T1(U). (b) Variation of the lotalseis­
mic shear (solid line) and the first-mode shear (dashed line), illustrated for
a case wilh substantial higher-mooe accelerations. The value of the ratio
S,/Sr.I halfway up the structure is defined as the 'mid-height shear bulge
factor' BF

Figure 5.3

Figure 5.3(a) demonSlTates that bilinear isolators give strong higher-mode ac­
celeration and load responses when the non-linearity NL is high, and when the
elastic~phase isolation facial' is low. If such higher-mode responses are undesirable
then Ihese two parameters should be chosen suitably, as discussed in Chapters 2
and 4.

Figure 5.3(b) illustrates typical ratios of lotal (solid line) and mode-I (dashed
line) seismic shear forces using a uniform shear~bcam structure mounted on a
bilinear isolator. The ratio of these she'll'S al any height Zr is defined as the shear
bulge factor .!lE. = Sr/S,..I. The mid-height shear bulge factor BF is shown in

Geometrical construction
A method of detennining combinations of Kb1 , Kb2 and Qy which will produce a
bilinear isolator with a given non-linearity factor NL and effective stiffness Kfi, is
illustrated in Figure 5.4(a).

The non-linearity factor NL was defined in Figure 2.3(c) 10 be equal to Ihe
ratio between two perpendiculars standing on the common diagonal of the shear­
force/displacement hystere.sis loop and the circumscribed axis-parallel reclangle
with vertices (I Xh , -/ SI,) lind ( XI>. -51)). POI' the bilinear case, the non-linearity
factor ~ is aiM) the mlio hetweell tim area of the hysteresis loop <md thaI of the
rectangle.
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(a) Detail of part of the bilinear hysteresis loop shown in Figure 2.3, showing
the initial and yielded sliffnesses Kbl and Kt,2. the effective (secant) stiffness
KB = Sb! Xb, the yield-point J, and a line PR of gradient Kg through J
which is the locus of yield-points which give the same non-linearity factor
NL=OP/Sb . (b) Extension of Figure 5.4(a), in which the primed variables
show how doubling the cyclic displacement Xb of a bilinear isolator affects
its 'effective' stiffness Kg and non-linearity NL, and hence the effective
period Tfj and damping factor tb

A numerical example

A numerical example is given here which illustrates the 'yield-paint-locus' concept.
It is assumed that T1(U) is less than I s, so that seismic isolation, by means of
period shifting, is appropriate. A typical value chosen is T1(U) = 0.6 s. A value
chosen for the effective period is then Tn ~ 1.5 s, with high effective damping i.e.
~B ~ 0.25. The target peak base displacement is X b = 0.071 m and the base shear
Sb = 0.127W, where W is the total weight above the isolator interface. Reference
to Figure 5.2 shows thai these values are consistent with each other.

Appropriate isolator parameter values are now selected by using Figure 5.4(a).
At this stage a value for the viscous damping ~b must be chosen, for example
choose ~b = 0.05. Then ~h = 0.2 is required to give the total effective damping
~B = 0.25. Since the non-linearity and effective damping factor are related by
NL = (Jrj2)~h. this gives NL =0.31. Hence or in Figure 5.4(a) is given by:

Qy/ W can be obtained. As long as the viscous component of the damping is small
compared with the hysteretic contribution to the damping, the equivalent linear
approach (i.e. the use of 'effective' parameters) predicts that all such systems with
the same KB and NL have the same maximum seismic responses Xb and Sb.
However, the approximation tends to break down when K b1 is very large or Kb2
is near zero. Despite this limitation, the approach can be used as a framework for
design.

From the diagram alone, it would seem that the point J could be moved with
considerable freedom along the dashed line, but the values which are obtained may
be unsuitable because restrictions are imposed by the properties of real isolators,
which have only certain ranges and values for the stiffnesses K bl , Kb2 , the yield­
point Qy, and the ratio Kb1 1Kb2 . In addition, if the value of K b1 , in combination
with the non-linearity NL, is too high, i.e. I(Kbd is 100 low, then undesirable
higher-mode effects may be produced. In some situations, there may be ways of
designing the isolation system so that desired values of K b1 and K b2 can be ob­
tained. For instance, a combination of laminated-rubber bearings and lead-rubber
bearings has been used in some buildings (see Chapter 6) which gives more free­
dom in the achievable combination of parameters K b1 , Kb2 , and Qy than is given
by lead-rubber bearings alone.

B

x.

5.

a,

Figure S.4

Simple geometry, using similar triangles, results in the fannllia NL = Qy/Sb­
X y / Xb· Further geometrical construction results in another useful result, n<lmely
NL = OPjSb, where the point P is obtained by drawing a line of slope Kn = Sbl Xb
through the yield-point, i.e. parallel to the diagonal linking the origin and the point
(Xb, Sb). This line is shown dashed in Figure 5.4(a). The yield-point is indicated J
on the diagram.

The dashed line PR is thus the locus of yield-points J which give thc same
nOIl-lincarity. By moving J <llong the linc, systems with different Kbl , Kb2 and

Fixing P locates the line PJR in Figure 5.4(a), since it is parallel to OB. If the
bilinear parameters could be chosen freely to satisfy TB = 1.5 and ~h = 0.2, lhen
1he point J could lie at any posilion along PRo This is satisfied, for example, when
.I is near the mid-point of PRo Let PJ=JR, giving

Qy = 0.645 SI> = 0.083W.

Also
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Also, since K B, with the rigid-structure mass, gives To = 1.5 S, it follows thai

5.2.1 Selection of linear or non-linear isolation system

5.2 DESIGN PROCEDURES

(5.9')

(5.9b)

"1'1(1):,:;;: 'It, = 2lf(M/Kb)l/2

(I (I) :':;;: (II = Ch/(2(M K b) 112).

Standard modal analysis procedures can be used to estimatc the design responses of
linear isolation systems. Initial estimates of displacements and base shears can be
obtained from a simplified one-mass model because of the low participation factors
of higher modes. Linear isolation systems with high damping in the isolator have
non-classical modes, but usually the classical-mode approximation givcs conserva­
tive estimates of the response of the structure itsclf. Thc non-classical nature of the
modes may need to be taken into account when considering the response of nearly
tuned subsystems, as the classical mode approach can considerably undcrestimate
the response of subsystcms.

A summary of the major equations relevant to the design of structures with
linear isolators is given below.

The isoln1()1' 11\I~ Hlilflll,'~~ Kh 1II1(t d:lIl1l)ing coefficient Gil. and SlIppOI'lH a total
1ll:ISS M.

(I) As a first approximation. the fundamental mode period and damping of
a system with a high degree of linear isolation can be obtained by treating the
structure as rigid. Thcn

and moderate non-linearity factors, are likely to provide effective solutions. Some
systems with high non-linearity factors but also with high elastic-phase isolation
may also provide acceptably low high-frequency response. Systcms with rigid­
sliding type characteristics are generally unsuitable for these types of applications.
Figurc 5.3(a) provides guidance to the relative strength of higher-mode response
as a function of the elastic-phase isolation factor and the non-linearity factor.

Where high-frequency responses do not pose a major design problem, there
is likely to be a much wider range of acceptable non-linear isolation systems.
The main perfonnance criteria are then usually related to base shear and base
displacement, for which the trade-off curves of Figure 5.2 are relevant. Increased
effective period usually reduces base shear, but increases displacements, as shown
by the trade-off curves. Increased effective damping, or non-linearity factor, usually
reduces both base shear and displacement, at the cxpense of stronger higher-mode
responses. Systems with nearly elasto-plastic characteristics may appear attractive,
but usually some centring force is a desirable isolator charactcristic.

These charactcristics provide initial guidance to the type of isolation system
required. In some cases, it may be necessary to perfonn trial calculations for both
linear and non-linear systems. In many cascs other factors, such as the range of
isolation systems for which local suppliers or design expertise are available, may
detennine the selection.

5.2.2 Design equations for linear isolation systems

Tb2 =2.1 s.Tbl =I.08s

These parameters now give an elastic-phase isolation factor Tbl ! T, (U) ;;>:;; 1.8 while
the non-linearity NL = 0.31.

This situation can now be compared with that shown in case (iv) in Figure 2.7,
and discussed in the associated text, in order 10 assess the higher-mode responses.
The non-linearity factors are the same but the present example has an elastic­
phase isolation factor only slightly mOTe than half that of case (iv), because of the
dilTerent unisolatcd periods. As a result, case (iv) has reasonably low higher-mode
responses and acceptably low floor spectra, but the case being studied here still
has significant higher-mode effects. This can be seen by estimating the mode-2
to mode-I acceleration ratio from Figure 5.3(a). It is seen that this ratio has a
value of approximately 1.4 which can be substituted in equation (5.8) to give a
mid-height shear-bulge factor BF of 1.5, a value considerably more than for case
(iv). If this degree of higher-mode response is unsuitable, or if the real parameters
of the isolators under consideration are unable to satisfy the values of Kb1 , K b2

and/or Qy/ W required by the analysis above, then iteration must be perfonned to
achieve more useful parameters.

If it is assumed that the bilinear parameters Kb1 , Kb2 and Qy remain unaltered
when the base displacement is increased from Xb to 2Xb, then revised values of
the effectivc isolator period and damping, T~ and ~a, can be found readily, as
illustrated by Figure 5.4(b), which is an extension of Figure 5.4(a).

It is assumed above that the bilinear parameters remain unaltered when the peak
displacement increases from Xb to 2Xb. This may not be strictly true. As indicated
by Figure 3.24 in Chapter 3, there tends to be some change in Kbl and Kb2 with
increasing Xb, giving a small incrcase in Ta.There is probably a small increase in
~B also.

An early decision in the design of a seismically isolated structure is to determine
whether a linear or non-linear isolation system is required. The selection will be
governed partly by the nature of the design criteria. As discussed in the summary of
Chapter 4, non-linear isolation systems can usually produce lower values of first­
mode-dominated response quantities, such as base shears and displacements, while
linear systems are particularly effective at suppressing higher-frequency responses.
This is an important factor when the protection of contents or subsystems of the
structure is a critical design criterion.

When the protection of high-frequency subsystems is a major concern, lincar
isolalion systems, or non-linear syslcms with high clastic-phase isolation factors
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The maximum base displaccmcnl Xb and base shear Sb can be approximated
from

Xb ~ SD(Tb, Sb) (5. lOa)

Sb = MX b

= MSA(Tb,Sb). (5. lOb)

(2) More accurate modal responses can be obtained by obtaining the actual
modal frequencies and dampings, together with the panicipation factors. These can
be obtained by solving the standard eigenvalue problem

[K]</>, = wIIM]</>, (5.11)

where rKl and [MJ are the stiffness and mass matrices of the isolated system, and
Wi and tPi are the modal frequency and mode shape for mode i.

Chapter 4 provides perturbation expressions for the frequencies and dampings in
tcnns of the free-free modal expressions (equations (4.90) and (4.91». The modal
dampings can be obtained from

(5.12)

In general, damping produces coupling between the modes unless

is detuned from all the modes of the isolated structure:

rri¢rci ]'1"
2

1- (;:,(A(W"")
(5.16)

This equation applies to a system with N +2 degrees of freedom comprising an
N -mass structure mounted on an isolator represented by a base mass and spring,
with another degree of freedom contributed by the appendage.

The more complicated expression of Equation (4.226) is required when the
subsystem is tuned to mode k of the isolated structure:

(5.17)

The maximum modal displacement and acceleration of mode i at position rare
given by

j i= j.

These coupling tenns are ignored in the classical mode approach.
The participation factor of mode i at position r is given by

r . _ </>!lM]1
" - ¢!fM]¢;

Kri = rr;So(T;, ;;)

Xr; = friSA(T;,;d·

(5.13)

(5.14)

(5.15a)

(5.15b)

The tuned expression accounts for interaction between the structure and subsystem,
and also takes into account the generally non-classical nature of the mode shapes
of the combined isolated structure and subsystem.

For multi-mass subsystems, the general fonn of expression is given by Equation
(4.224), where the participation factors refJ.r.i for the detuned isolated modes have
similar fonns to the expressions given in (4.225). When there is multiple tuning of a
subsystem mode to several modes of the isolated structure, or of several subsystem
modes to an isolated structure mode, a more complicated approach is required, as
indicated by Igusa and Der Kiureghian (1985b).

(4) It is usually advisable to perfonn response-history analysis for a variety
of accelerograms relevant to the specified earthquake ground motions in order to
check the detailed design of the isolated structure.

Again, perturbation expressions for rrj are available from Chapter 4. As a first
approximation rrl :=:;; 1.0 and r ri :=:;; 0, j i= I.

(3) The maximulll rc~pon~cs of subsystems can be estimated using a modal
response spectruill approach. For ~illglc-degrec-of-freedom subsystems, the relevant
modal cOlllbillatioll rules lIrc HivCfl by !3(lllatioll (4.225) when the subsystem mode

5.2.3 Design procedure for bilinc;u isolation systems

It is ,1SSllIllCd thaI desigll-enrlhqu<lke Illotions arc available in terms of (lisplacemellt
fcspon~e spectra, e.g. EERL l~epo1"ls (1972· 5). Oftcn desil;;l1 motions are ~pccified

ill lcnllS of 5% (Imllpctllll'l'dclillioll rcsJ)ollsc spectra. These Illay he e0l1\lcl'Ied to
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the required ronn by using

T'
5D(T, n ~ -,CD(I,")S,(T, 0.05).

4rr
(5.18)

5.2 DESIGN PROCEDURES

The effective stiffness is the secant stiffness

The equivalent linear period based on this stiffness is

259

(5.20)

The damping-dependent coefficients Co(s) may be obtained from Section 5.1.3,
or may be available as part of the specification of the earthquake ground molion.

Design criteria will usually involve acceptable base shears and displacements,
and perhaps allowable shears al other levels of the structure and acceptable floor
response spectra. The estimation of the seismic response for a structure with bilinear
hysteretic isolation may proceed as follows.

TB = 2rr/ jK;jM

~ 2rr/ )(5,/ W)g/ X,

(

( '1"2 '1"2) ~")-1/2= T. 1+ g ~b2 - lbl "'
b2 47f2XI>

(5.21)

The equivalent viscous damping corresponding to the hysteretic damping is l;h,
where

(5.24)

(5.22)

(5.23)

Step 3 Use the earthquake displacement spectrum to find SD(T8. 1;8), which is
assumed to correspond to X b , and hence estimate Sb from the hysteresis loop. Note
that this approximation assumes that the structural flexibility and damping has little
effect on the first-mode period and damping, as the structure is regarded as rigid
to obtain Til and I;ll. Andriono and Carr (199Ib) include the effect of structural
flexibility in lheir proccdure which is otherwise similar to that givcn here.

If Ihc simplificd clllmnccd 1::1 CClltro spcctrum is used, these responses may be

rC<ld from thc tmdc-otr cUl'ves of Figure 5.2, or laken from Equations (5.4a) and
(5.4b). Por otlll,:r SpCCIlIl, Illl.: C<lllivrdcnt cxpressions dcveloped as indicated ;11 the
end of Seclioll :;, 1,iI l'llll Ill' ll~l'(l,

For the bilinear hysteretic system, the non-linearity factor NL, which is an
important parameter governing higher-mode response is simply related to l;h:

To obtain the total damping l;B, the viscous damping l;v must be added. Sometimes
l;v is added as a fraction of critical damping which is assumed not to change as Tn

changes. More correctly, l;, should be associated with a particular viscous damper
coefficient Cb, which gives a fraction l;1>2 of critical viscous damping at period '1b2 .
The corresponding fraction of critical viscous damping at period Ta is (TuITb2 Rb2.
This definition gives

(5.19)

Slep I Select a tfial isolation system. For design to a scaled EI Centro type
motion, the curves of Figure 4.5, which give base shear and base displacement as
a function of Qy/ W for various Tbl and Tb2 , provide guidance as to the possible
combinations of parameters which produce responses meeting the design criteria.

Some types of isolators have restrictions on the achievable ralios of strength
to stiffness, Qy/Kb1 and Qy/Kb2 , or ratios of pre-yield 10 post-yield stiffnesses
Kb1 /Kb2 , which may limit the possible combinations of parameters Qy/W, Tbl
and h2.

The responses tend to be more sensitive to varialions in Qy/ Wand T b2 than to
variations of Tbl. so it is usually sensible 10 select Qy/W and Tb2 ahead of Tbl .

It is often advisable to select Qy/W as, or greater than, the value (Qy/W)opt
which gives minimum base shear for the design-level earthquake motions. This
lessens the chances of Qy/ p. W falling in the range of rapidly increasing displace­
ments and shears as p. increases above Ihat for the design-level motion.

Step 2 Take a trial value of the base displacement Xb for the specified earthquake
motion. Figures 4.5(a)-(c) provide guidance to likely displacement responses for
El Centro type mOlions. Calculate Sb, Ta and l;B from the hysteresis loop which is
drawn for the chosen values of K bl , K b2 , Qy/W and X b _

Obtain the isolator force Sb from the hystcresis loop, the period Ta from the
secant stiffness, and the equivalent damping l;B from the area of the hysteresis loop
and the contribution from the actual viscous damping.

The relationships between Xb , Sb, Tn and l;B are as follows. For an assumed
X b , the bilinear loop gives thc base shear Sb as

and hence

S /W = (Q,) (I _'1;1) + 47f
2
Xb,

I> W T2 ",,21>2 1: b2
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Step 4 Check whether the base dispiacemcni and base shear of step 3 agree with
the assumed displacement and corresponding base shear of step 2. If satisfactory
convergence has not occurred, further iteration is required. New values of Ta and
(;6 can be calculated using the lalest values of Xb and Sb. Faster convergence may
be obtained by laking a new Xb with double the change from the previous iteration,
and returning to step 2 with this value.

Step 5 Check the final estimates of Xb and Sb with the design criteria. If the
values are not acceptable, or it is felt that improved values may be possible, select
a new trial isolation system. Generally, lengthening the periods, particularly 7[,2,
reduces shears but increases displacements. Increased equivalent damping, which
results from loops closer to rigid-plastic and yield levels closer to (Qy/ W)opI,
usually reduces base shears and displacements. Re-enter the procedure at step 2.

Step 6 An isolation system has now been found for which the isolator displace­
ment and base shear, predicted by the equivalent linearisation procedure and the
earthquake spectra, are acceptable. Now check that the higher-mode responscs are
also acceptable, using the procedure discussed in Section 5.1.5.

Calculate the elastic-phase isolation factor

An approximate overall shear profile can be sketched by adding a sinusoidal
variation to the first-mode triangular profile, from zero at the top to Sb at the base,
which passes through S(O.5h) at mid-height.

If the higher-mode effects are unacceptably large, they can usually be reduced
by increasing the elastic~phasc isolation factor Tl:>I/T1(U). This can be achieved by
stiffening the structure to obtain a shoneI' unisolated period 1'1 (U), or by reducing
the isolator clastic-phase stilTllcss Khl .

where ~h is as given in step 2.
Use these parameters and the curves of Figure 5.3(a) to estimate the ratios

between the second- and third-mode lOp-mass accelerations and the first-mode top­
mass acceleration.

From the second-mode to first-mode ratio XN,21XN.l' estimate Ihe mid-height
shear bulge factor SF, as in Equation (5.8) above.

The shear at mid-height is obtained from the bulge-factor

where T1(U) is the first-mode period of the unisolated structure.
Also obtain the non-linearity factor,

NL = (Jr /2) ~h

5(0.511) ~ SF 5] (0.5h)

I
~ SF - Sb.
-2

(,.25)

(5.26)

(5.27)

The equivalent linear system approach suggests that if the yield force Qy and
the stiffnesses K bl and K b2 can be varied in such a way that the yield-point still
lies on the same ~h locus, then the maximum base shear and base displacement
should be unaltered, as discussed in Section 5.1.6. Thus, in theory, the higher-mode
responses can be modified without affecting the first-mode response, by adjusting
the yield-point along a constant ~h locus, and adjusting Kb2 to retain the same
secant stiffness K B •

As discussed in step I, there may be physical limitations on the achievable
combination of parameters for a particular type of isolation system, so it may
not be possible 10 use this approach to adjust the higher-mode responses without
affecting the first-mode response. Also, the equivalent linearisation approach is an
approximation, so some changes may occur in the first-mode response on moving
along the constant ~h locus. If it is necessary for physical reasons to move off the
~h locus to achieve acceptable higher-mode responses, the iteration will need to be
re-entered at step 2.

Step 7 Repeat the calculations for any other required earthquake motions. Often
two levels of earthquake spectra are specified, such as 'design-level' and 'extreme­
level', or 'operating-basis' and 'maximum credible' motions. It is necessary to
check the relevant design criteria for the various levels of specified motions.

Step 8 Perfonn response-history analysis for a number of appropriate accelero­
grams to confinn the results obtained with the spectral approach for the equivalent
linear system. For non~linear isolation systems, such analysis is required 10 obtain
reliable estimates of floor spectra. The results may indicate that funher adjustments
to the isolation system are required.

5.3 TWO EXAMPLES OF THE APPLICATION OF THE
DESIGN PROCEDURE

5,3,1 Isolation of capacitor banks

This example of a seismic isolation design procedure is based on the retrofined
isolation of capacitor banks at the Haywards substation described in Chapter 6. The
isolation system was designed to withstand very strong earthquake motions, more
than twice El Centro amplitudes. The choice of isolator and damping components
for one of the several types of capacitor bank is described here.

The example illustrates the selection of a trial isolation system, the iteration
procedure required to estimate the base shear and displacement corresponding to
the specified earthquake spectrum, modifications of the trial isolation system to
obtain responses within the design specification, and an illustration of the varia­
tion of effective period and damping with amplitude, performed by cstimuting the
responses for ;1 1e.~s severe spcctrum.

The design lllotiOIlS wcrc spccificd ill terms of a 5% damped ;Icceleration spee­
trllill givcll by O.K11,ll!'r 101' Ill·doll<. grcater IIwl1 I s. This is a scaling of lhe
simplified Mllll\JIIH:t1 PI (\'1111(\ ~IWl'tllll1l of Figure 5.I(a) by Illultiplication by a
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1 1 1
-2~T2+T2
Tb1 r es

periods Tb1 and Tb2 of the overall sys1em are given by

The corresponding displacement spectra are

Tb
2
2 nQd

Tb~ - Tb
2
1 W

Q,/W~

T,=1.5s T,=2.0s

n=2 n=3 n=2 n=3
Tes (s) 1.09 0.89 1.09 0.89

TY$ (s) 6.91 5.64 6.91 5.64

Tb1 (s) 0.88 0.77 0.96 0.82

Tb2 (s) 1.47 1.45 1.92 1.89

Q,/W 0.0995 0.1330 0.0851 0.1178

(
0.84)SACf, 0.05) = T g.

Consider fir.~l I.:') s hClllilltlS willi two .~tcel (tampers. Take a trial displacemelll

SD(T,~) = 0.84~:~D(n (mm)

= 209TC[)(n (mm).

The iterative calculation of the responses of the vario'us systems can now begin.
As given previously

The yield-force ratio Qy/ W of the combined rubber-bearing and steel-beam
isolation system is given by

where Qy, Tbl , Tb2 and W = M g correspond to the overall system, Qd is the force
for an individual damper, and 11 is the number of dampers.

Various periods and yield-force ratios relevant to this example are summaris~

below.

L = 5.270Jfu

Qd = 11.067./D5/x

where x (mm) is the design displacement corresponding to a strain of ±0.03 which
gives a full-displacement plastic fatigue life of 80-100 cycles, D (mm) is the base
diameter, and L (mm) is the total length. The force Qd (kN) corresponds 10 the
zero-displacement point on the bounding hysteresis loop, which is somewhat less
than the yield force of the bilinear loop.

With x taken as 200 mm and Qd as 10 kN, these equations produced damper
dimensions of D = 44 mm and L = 494 mm. These values were rounded to
D = 45 mm and L = 500 mm, which gave x = 200 mm and Qd = 10,6 kN.
Tests of these dampers produced elastic and post-yield stiffness Ke = 560 kN/m
and Ky = 14 kN/m, rather lower values than predicted by the expressions in Tyler's
paper (Tyler, 1978).

The filter banks considered in this example had a mass M of 34 x 103 kg.
The elastic- and yielded-phase periods from the combination of two or three
sleel dampers was denoted Te, and Tys . Rubber bearings with combined peri­
ods .,~ = 1.5 s or 2 s were considered in parallel with the dampers. The period
of the 1I1lisoiated e'lpacitor hi\llks was TI(U) = 0.11 5, so the capacitor bank flex­
il)ili1ies could be ignored in llie cnlclllu1iolls. The elastic-phase and yielded-phase

factor of 2.15. The variation of response with damping was assumed to be given
by the curves of Figure 5.1(b).

Sevcrallypes of capacitor banks were involved, with masses between 20x 103 kg
and 34 x 103 kg when the retrofitted support frames were included. The light
vertical loads were insufficienl for Ihc lead-rubber bearings available al the time,
so a combination was selected of segmented rubber-steel-laminated bearings, to
provide horizontal flexibility, with steel conical taper-beam dampers.

Allowable base shears for the filter banks considered in this example were 0.32
W, with the rubber bearings able to accommodate 200 mm displacement. Bearing
periods of approximately 1.5-2 s could be achieved readily.

Previous work and the base-shear versus yield-force diagram of Figure 4.5(d)
suggested thai the optimum yield ratio QrI W for minimum base shear in earth­
quake motions corresponding approximately to the El Centro accelerogram is
around 0.04-0.05, for Tb2 --- 1.5-2.0 s. For the scaling factor of 2.15 associated
with the specified earthquake spectrum, the optimum value of Qy/ W increased to
about 0.08-0.12. Taking a target value of Qy/W of 0.10, the required total yield
forces for the dampers for Ihe various filter banks were approximately 16-40 kN. It
was decided to consider the option of two or three taper-beam dampers with yield

,,-f-Qrces of approximately 10 kN.
Experience showed that conical tapered-beam dampers with a taper along 2/3

of their length were reliable. The design equations are (Tyler, 1978)
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and

For the second iteration, double this value of 6.Xb to obtain the estimate of Xb•

The iteration procedure produces

6.Xb :::: Sl)(Ts , l;B) - Xb

:::: 30 mm.

~B :::: 0.171,
Sbl W :::: 0.320.

Try a new iteration beginning with double this displacement discrepancy. Then

X b :::: 188 mm. Sb/W :::: 0.429, TB :::: 1.33 S. ~B :::: 0.132,
Co(0.132) :::: 0.675, So(I.33 s. O. I32)=187 mm.

For practical purposes, this iteration has converged. The displacement is acceptable,
but the base shear is too large.

Consider another trial isolation system with longer-period bearings. Tr :::: 2.0 s,
which will reduce shears but increase displacements. Again, assume X b :::: 200 mm.
The iteration sequence produces

X b :::: 200 mm, Sbl W :::: 0.322. Tn :::: 1.58 s,
Co(O.l71):::: 0.605, 5D(1.58 s, 0.171) =199 mm

Convergence has occurred in one iteration, with the base shear and isolator
displacement just within their allowable limits. The elastic-phase isolation factor
TbdT1(U) :::: 7.5, which is very high, and the non-linearity factor NL:::: 0.27 is
low, so higher-mode effects should be small. It can be seen that in Ihis example,
TB remains unchanged between iterations for the same isolation system. This is not
a general feature of the iteration procedure. but rather of the particular parameter
values of this example.

Finally. to illustrate the dependence of the effective period and effective damp­
ing on earthquake size, we calculate the response to the simplified EI Centro spec­
trum with p. = I, i.e. the spectral displacement is given by So(TB , ~B) :::: 97
CO(~B)TB (mm).

Take X b :::: 100 mm for the first ileration, as the strength of the earthquake has
been approximately halved. Working through the iteration produces

Xb :::: 100 mm, Sbl W :::: 0.2083. 76 :::: 1.390 s, ~B :::: 0.2348,
CD(0.2348):::: 0.51,

while

SD(I.390 s, 0.2348) :::: 97 x 0.51 x 1.390 mm = 68.8 mm.

Doubling the change in X b appears likely to give a new estimate far too low. so
continue with X b :::: 68.8 mm.

Continuing the iterations. working down a column and then across for the next
iteration:

(S,! Wig

= 1.395 s.

Ta :::: 2Jr

From (5.21)

Ignore any viscous damping, which for this example is very low ('"" 0.01) because
of thc inherently light damping of the capacitor banks and the segmented rubber
bearings. Then from Equation (5.22)

_ ~ (Qy/W) (1 _T;l)
l;B - 7f (5b! W) ri
~ 0,0922,

Xt,:::: 200 mm. From Equation (5.19),

Q, ( Tb
2
1) 4.rr X b

SbIW=- 1--, +-,,-
W Tb2 gTb2

:::: 0.414.

From Figure 5. I(b), CD (O.0922):::: 0.79, so that

50(1.395 s, 0.0922):::: 209 x 0.79 x 1.395 mm

:::: 230 mm

Xb :::: 260 mm, Sb/W:::: 0.548, 16 :::: 1.382 s,

l;B :::: 0.069, Co(O.069) :::: 0.9, So:::: 259.6 mm.

X b (mm) 68,8 60,1 57,8 572

Sb/ W 0.1732 0.1634 0.1608 0.1601

'/6 (s) 1.265 L217 1.203 1.199

sa 0.251 0.251 0.250 0.250

CD(S') 0.49 0.49 0.49 0.49

So(TB• ~B) (mm) 60.1 57.8 57.2 57.0

The resllit has converged 10 llll e.~li1l1atcd displacement of 57 llllll for the smoothed
EI Ccnlro speclrulll. Wilh II h:l~t, shear Sb/W = 0.16. The crfeclive IJCrio<t is

1.33 s, ~n :::: 0.125,
~Xb:::: -6 mm.

Sill II' 0.452. '/il ::::
Sol U Is. 0.125) =194 111m

Thus convergence has been obtained.
Both the base shear and isolator displacement arc too large with this isolation

system. Increased damping can reduce both responses, so consider three dampers
ralher than two. Again. take Xh :::: 200 nun for the first trial. The iteration sequence
produces

Xl> :::: 200 1I11ll.

Cl}(~I\) 0.7.
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TB = 1.20 S, with an effective damping of 25% of critical. The effective period is
shorter for the reduced design mOlion, bUllhe damping has increased from the value
of 17% for the larger motion. The effective period must reduce as the amplitude
of mOlion decreases. but the effective damping may increase or decrease.

Approximately halving the design mOlion has halved the base shear, but the
displacement has reduced 10 less Ihan 30% thai for the stronger excitation. Often
it is the displacement rather than the base shear that scales approximately linearly
with earthquake size. Note Ihal in Ihis example the value of the effective damping
converged quickly, while the effective period changed between iterations, unlike
the calculations for the response of the same system to the stronger excitation.
where the effective period converged immediately and the damping varied between
iterations.

5.3.2 Design of seismic isolation for a hypothetical eight·storey shear
building

Design brieffor hypo/he/ical building

A hypothetical building of the type which might benefit from seismic isolation is
proposed for illustrative purposes. The building is supposed to have eight storeys
and a variety of inlended uses. which impose architectural and structural design
conslraints. The intended occupancy for storeys 2 to 7 is professional, including
medical. legal and specialist consultants, with the main emphasis on medical and
related services; speciality shops are to be provided in the first storey and dining
facilities in the eighth storey. To enhance these facilities, large display windows
are proposed on two sides of storey I and large picture windows on three sides
of storey 8. Extensive double-glazing for storeys 2 to 7 will take advantage of the
excellent views from two sides of the building, above storey 3. Verandahs on the
two public-access sides of storey I will enhance displays, provide rain shelter, and
protect those using exits.

Required building facilities include a sprinkler system with a large supply of
drinkable emergency water, and a stand-by diesel-electric plant for extensive emer­
gency lighting. a sprinkler pump, and low-speed operation of one lift. Essential
natuidl ventilation must be available in the event of failure of the air conditioning
system. A tank buried below an adjoining car park will provide emergency storage
for building wastes in the event of earthquake damage to nearby sewers.

The functional requirements, including potential changes in occupier needs and
thc architectural need for maximum access to exterior windows, call for a relatively
Ilexible structural fonn, namely a reinforced-concrete space frame. The building
dcsign adopted is therefore a regular eight-storey reinforced-concrete frame with
28 columns, namely six bays by three bays with bay lengths of 6 111 and storey
heights of 3.5 m. with a set of lifts and a stairway in the second and fifth bays
along thc building length.

A check on C(luiplllo..:rlt itelll~ for thc intended occupiers indicates that they C<ln
be givcll some protection fH)l1l canh<juakes by simple devices. for example by

suitable fixing or the use of resilient stops for equipment on anti-vibration mounts.
Similarly, local detailing can to some extent protect building plant, including lift
counterweight operation, the stand-by power plant, the emergency water supply
and other essential facilities. However. without isolation of the structure, direct
seismic loads do pose some threal to this equipment and it would be difficult to
avoid excessive damage to glazing. and interior damage which would also pose
some threat to the high-cost facilities and equipment.

The diversity of use gives an uncertain level of fire risk during earthquakes and
at other times. The costs of the non-structural features are comparatively high, as
would be the cost of an interruption to availability of services. Moreover, the loss
of the medical facilities would remove a valuable contribution to Civil Defence
activities during the immediate post-earthquake period.

A value for Ihe unisolaled first period using an appropriate empirical rule is
calculated as T.(U) ~ O.08x number of storeys ~ 0.64 s. which is in the range
of periods associated with the strongest acceleration responses in typical accelero-­
grams of the EI Centro type.

The option of seismic isolation of the building is therefore investigated as a
means of limiling the structural defonnations 10 the low values required. Moreover,
the resulling low loads and ductility demands would reduce structural costs. Seismic
isolation has also been shown (Section 4.5) to reduce seismic responses due to
lorsional unbalance.

Design earthquake

The hypothetical building is supposed to be situated in an area where it is appro­
priate to select a design-level earthquake. for a return period of 150 years, with
the severity and character of the 1940 EI Centro NS earthquake motion without
scaling; hence Pa = Pp = I. For the extreme earthquake. with a return period
of 500 years, acceleration amplitudes are doubled but frequencies are not altered,
giving the scaling factors Pa = 2.0 and Pp = 1.0.

It is further assumed that a major active fault passes within I km of the building
site, with an estimated return period for rupture of about 500 years. To provide
for increased demand on isolator displaccmenl due 10 movement of such a fault,
allowance is made for a maximum displacement 50% greater than that given by the
extreme earthquake with p. = 2.0. This agrees with the provisions of the Unifonn
Building Code (1991) (see Section 5.5).

Hence, if Xb is the isolator displacement for the design-level earthquake, the
extreme earthquake displacement is approximately 2Xb. A displacement allowance
of 3Xb includes possible effects of movement on the ncarby fault.

Preliminary design colcilla/iam:

The choice of isolation syslcm is based on considerations such as discussed in
Tables 2.1 and 2.2. in Figure 2.7 ,lIld in thc associated text. A bilinear isolation
syslem such ll~ pre~t'rlIcd in t',,~c (iv) of Figure 2.7 i~ cho~cn, wilh lcad ruhher
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bearings, or a combination of these with laminated rubber bearings, in mind as a
possible isolation system. This kind of isolation system has been shown to give
a good combination of seismic responses, together with the advantage thaI the
structure is locked in place during wind and small earthquakes.

Approximate loads for inlerior, side and comer columns are estimated as 300,
250 and 200 I. For standardisation, and as additional provision for vertical seismic
loads, bearings under comer columns are given the same load capacity as those
under side columns, giving a minimum bearing load of 250 t.

Preliminary design calculations are carried out according to the design proce­
dures described above (Section 5.2), choosing realistic initial parameters from the
known properties of the intended isolation system and the known acceptable seis­
mic displacement. Iteration procedures such as described in the example above are
carried out until convergence is obtained. If the 'trade-off' between base displace­
ment and the resulting base shear is unsatisfactory then the isolator parameters arc
adjusted and Ihe iteration procedure is repeated umil a satisfactory 'trade-off' is
obtained. This gives tentative values for the isolator parameters.

These parameters may now be used to estimate the general effccls of higher
modes on the distribution of shears over the height of the building, in accordance
with Section 5.2. Hence the shear distribution is indicated by combining the values
in Figure 5.3(a) with Equation (5.8). The general level of !loor spectra may be
obtained by interpolation between cases given in Figure 2.7 and Table 2.1. This
interpolation can be either on the basis of isolator parameters or on the basis of
modal acceleration ratios as given by Figure 5.3(a).

Since none of the cOnlents of the building are particularly vulnerable to seis­
mic attack, a certain degree of higher-mode response is tolerable. If the floor­
acceleration spectra for a given set of isolation parameters are too high, iteration
can be repeated with different values of the elastic-phase isolation factor I(Kb [)

and/or non-linearity factor NL; the 'yield-point locus' method described above
(Section 5.1.6) may be useful in choosing new values for these parameters.

Once preliminary isolator parameters have been obtained, a time-history analysis
should be perfonned for the detailed design. A nine-mass one-dimensional model
of the type shown in Figure 2.4 is adequate for dynamic analysis. Floor masses and
inter-storey stiffnesses are estimated as for the dynamic analysis of non-isolated
structures. A time-history dynamic analysis based on the average of five statistical
approximations to the design earthquake gives peak accelerations and peak shears
at each floor level. Also, floor accelerations at four mass levels, say 0, 3, 6, 9,
should be adequate for checking floor spectral values.

SlOps and resilient buffers

The gre:ltest uncertainty in the major responses of most isolated structures is the
maximum low-probability seismic displacement which will be demanded of the
isolators. As ,1 rcsul1 isolalor.s arc usually given considerable reserve capacity for
displacemcnls bcyoll(t even extreme design values, and structures usually have
a considerable reserve l,'l1Pill'ilY lil1' resbling increased seismic loads. Some al·

lowance is therefore made for the possibility that unusually large displacements
may occur.

Maximum use of reserve displacement and load capacities will usually call
for the use of resilient buffers to limit base-level displacements. These should be
provided where it is economically practical. Increased buffer resilience will usually
increase the effectiveness, but also the costs of these buffers, As a very approximate
guide to limiting impulsive loads on a building, the effective flexibility of the buffer
should not be less than that of the first two storeys of the building. For dynamic
analysis of structural responses the buffer may be modelled as a third elastic slope
KbJ which extends from the vertices of Ihe bilinear displacement loops.

Stops or resilient buffers have been provided for seismically isolated New
Zealand buildings. The William Clayton Building in Wellington has been pro­
vided with stops at ±0.15 m. The Police Station building, also in Wellington, has
been provided with resilient buffers for displacements of about ±0.35 m.

Other con.fideralions

A number of other considerations need to be taken into account when detailing a
seismically isolated building:

• The seismic gap.
It is necessary to make provision for clearances around the structure.
Drainage and exclusion of water and rubbish from the isolator region are
also necessary. Water exclusion barriers and other cover-plates should not
provide stiff or strong bridges across the seismic gap.

• Services,
It is necessary to detail connections for external services such as water,
gas, sewerage, power, signal lines and pedestrian and equipment access, to
accommodate the seismic motions and to ensure that the services and their
connections do not interfere with the operation of the isolation system.
Flexible couplings may be appropriate in some cases.

• Anchors.
Floor-acceleration spectra can be used when designing anchors for equip­
ment and facilities within the structure, and buffers for equipment which
is flexibly mounted. Barnes or subdivisions may need to be included in
lhe emergency waler supply tank, to prevent excessive wave action under
mode-l accelerations.

• Inspection proce(tures.
Construclion groups and inspcclOrs should be elearly instructed on Ihe in­
lcndc(t purpo~e of ull .~ll'ucllll'al features which have becn introduced because
seismic isollllioll tw,s heen used, Appropriate long-term inspection, rnaime­
nallce alit! ClllCI~\l'IICY procl.'dul'es li,r the building arc also recommended.

• Recol'dillg illstrlllllClllllllOll,
II is ICCOIl11l1('Il(kd lhut lIlt' IIl~tldlllliOIl or seismie·acceleration all(t isolalor·
ilisplllt'CIllt'I11 I\'ll ~llh'l ~ ~lllflll(1 Itt' \'Ollsidcre(1 S(l 111111 lile C\I1I1111Ullily of' seis-
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mie isolation engineers can build up good records of the perfonnancc of
isolation systems during actual earthquakes.

• Fire protection.
Further detailing related to the isolation system includes provision of fire
resiSlan<:e for the mounts. Under suitable conditions flexible fire-resistant
blankets may be adequate.

• Inspection.
There should be reasonable access for inspection of the isolation system,
and if necessary for the replacemem of isolation components. In practice
there may be a need for very occasional replacement of a component of the
isolation system for testing.

• Variations on the original design.
Panicular altemian should be paid to the possibility that minor design
changes or Ialer modifications of the structure. or ils surroundings, may
prevent Ihe full intended operalion of the isolation system. In particular Ihe
'seismic gap' mUSE remain secure. Some protection can be given by appro­
prime detailing of the interface of the e:derior of the structure wilh adjoining
unisolated fealUres. This is an educational issue which should ~me less
severe as seismic isolation becomes more common.

5.4 ASEISMIC DESIGN OF BRIDGES WITH SUPERSTRUC·
TURE ISOLATION

5.4.1 Seismic features with superstructure isolation

11le seismic design of a bridge structure must satisfy many conditions, including
some which are particular to its site. This section concentrates on faclors common
to Ihe design of many bridges. For many simple bridges, il has been found Ihat
seismic isolation of the superslruclUI-e gives improved seismic resistance, oflen
aI a reduced cost, while also providing effectively for thennal expansion of Ihe
superstructure.

The aim when seismically isolaling bridge superstructures is usually to protect
the piers and their foundations, and sometimes 10 proteci the abutments also. Thcre
is less frequent need for isolation 10 protect the superstructure because bridge
supcrslructures are inherently strong as a result of being designed for vehicle loads.

The supcrstrUClUre isolation syslems are designed 10 reduce the overall seismic
IO.tds, and 10 distribute them belter in relation to the strengths of the piers and
abutmcnts and their foundations. Longitudinal seismic displacements arc held to
moderate values to reduce the problems of supporting traffic across seismic SlipS in
thc deck, and also to reduce isolator-component problems, and structural problems
arising from largc displacements.

Superstructurc isolation systems arc designed, as far as is practical, to provide
l1l\Xlcrate Oexibility and high damping, torsional balance and an appropriale dis­
tributiOIl of scismic load... hclwCl'n the supcrstruclure supporls. In cases where a

long superstruclure has high transverse Oexibilily, an attempt should be made 10
equalise the transverse stiffnesses of the superstruclUre supports.

With superstructure isolation, the piers and abutmems are not isolated from the
ground motions. Piers then tend to respond to seismic excitation as independem
structures with some lOp conSlrainl. When a pier is relatively lall and heavy these
responses may make a substantial contribUlion to the seismic loads on the pier and
its foundations.

AUention is given here 10 commonly occurring simple bridge structures, with
moderate span lengths and pier heights. Discussions assume that the superstructures
are straighl and level. The number of bridge spans is typically belween 3 and 5.
Such bridge structures. with ralher short piers, are shown in Figures 6.22 and
6.31 (a), while a wider range of simple bridge SlruCIUres is illustrated by Blakeley
(1979). Much of Ihe following discussion would also apply when a superstructure,
coruinuous over about 5-7 spans. is a sepanue section of a longer bridge Slructure.

The overall fonn of bridges may be complicaled to provide for sloping or cUlVed
decks, as shown in Figures 6.3 and 6.1. For longer-span bridges, intermediate girder
support is often provided by steep arches, while for very long spans inlennediate
support is provided by lower-supported cable Slays or catenary cables. Emi et 01.
(1987) and Kalayama et 01. (1987) show thai cable stays and calenary cables allow
a high degree of 10ngilUdinal flexibility for superstructure motions. Moreover, the
interscclions of cable support lowers and the carriage-way girder provide conve­
nienl localions for longitudinal dampers.

When bridge piers are quite high il may sometimes be appropriale to adopt
overall isolation of the bridge structure, by allowing a momem~limiting stepping
aClion near Ihe pier bases. Such isolation was adopted for Ihe South Rangitikei
viaduct described in Chapter 6.

When soil stiffnesses, and hence also seismic motions, differ across a building
site the consequences are reduced by tying the lops of the foundations together.
However, for long bridges, where soil stiffness varialions may well be more ex­
treme, such foundalion interconnections are not practical.

The cost of providing seismic isolation is offen relatively low for bridges be­
cause linle struclural modification is required. In unisolated bridges many of the
interfaces between the superslruclurc and the supports must be designed for the
installation of horizontally flexible bearings, to accommodate longitudinal move­
ments between the superstrUClUre and mosl of the supports, caused mainly by ther­
Illal expansion. Indeed. sillce many unisolaled bridges arc compatible with flexible
superstructure bearings, il is ol'h.:n I)l'm;tical ,lIId relatively inexpensive to retrofit
Iheir supcrstrUClllreS with seismic iM)lllti\lll (Park l'I al. 1991).

5,4.2 Seismic rcspUIl"'c~ IIlllclllh'd hy slIllcrsfruclurc isolalion

1"(II"(or.~ (Q ('1/111 illl,t' wit It \ /I (1"/ \ (/I/I't1/1"/' hllltltil)lI

The ",y"'ICIll~ l:illl~IlI\"I'it Ill"" tIl! IllHI.'\' "'lIlli:r... tl'Ucltlrc ....\IJatlllll illtloducc i...olll
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with corresponding expressions for the reduced bilinear stiffnesses K~I' K~2 and
Kij. Primes are used for the parameters of composite isolators. The bilinear yield
value Qy is not changed by K p•

combine to give the parameters for the overall superstructure isolation system.
These isolator parameters may be expressed as effective stiffnesses, periods and
dampings for individual superstructure supports, and for the overall support system.

Figure 5.5 shows a pier of stiffness Kp and effective lOp mass Mp which
supports an isolator component of stiffness Kb and an associated superstructure
mass M. For the usual case, when the pier mass is much smaller than the
superstructure mass, the pier mass may be neglected when evaluating approximate
seismic responses of the superstructure. In this case the spring forces of the pier
and isolator component may be combined statically to give the composite spring
force for the support. Moreover, the pier mass makes no significant contribution to
mode I, as shown in Figure 5.5. Figure 5.5 also shows a second or 'pier' mode,
which has little displacement of the superstructure mass, for the usual case when
the superstructure mass is much greater than the effective mass of the pier.

Hence the parameters of linear and bilinear isolator components combine with
the horizontal elastic stiffnesses, at the tops of piers and abutments, to give indi­
vidual and overall support stiffnesses and dampings as described below.

We define the cyclic displacements of a pier (or abutment) and of the superstruc­
ture, at a support location, as Xp and X~ respectively. Corresponding defonnations
of the interface isolator components are Xb. Hence X~ = Xp + Xb.

When a linear, or bilinear, isolator is placed on a non-rigid pier or abutment
support, of horizontal stiffness Kp, the composite isolator stiffness, say K~, is less
than the isolator component stiffness Kb, as given by

(5.28)

M

lOr components which provide increased horizontal flexibility and damping at the
interfaces between a continuous superstructure and ils supponing piers and abut­
ments. The bridge piers, abutments and, if necessary. the superstructure, are given
protection by designing the isolation system to give reduced seismic loads, and a
bener distribution of the reduced loads between the superstructure supports. The
seismic loads are reduced by increasing the overall flexibility and damping of the
superstructure supports. The load distributions are improved by relating support
sliffnesses to substructure strengths.

With isolation for transverse seismic responses, overall seismic loads may also
be reduced by adjusting transverse stiffnesses 10 give improved torsional balance.
Moreover, high transverse damping suppresses the dynamic magnification of the
torsional unbalance, as discussed in Chapter 4. Finally, when the isolated section of
superstructure is long and slender in plan view, seismic loads may sometimes be re­
duced by adjusting the transverse stiffnesses of supports to be approximately equal.

Seismic gaps in the deck at the ends of a section of superstructure should be kepi
as small as is practical in order to simplify the problem of supporting traffic crossing
lhe gaps. Seismic gap lengths are reduced by designing the longitudinal isolation
system to limit superstructure displacements. When the overall support system
for the superstructure has moderate flexibility and high damping for longitudinal
responses, there may be a large reduction in seismic loads, but only moderate
displacements of the superstructure. Seismic gaps must also provide for any pre­
earthquake reductions in the gaps, which may arise from temperature changes in
the superstructure and from ground creep.

Reduced seismic displacements have additional benefits. Isolator components
wilh moderate displacements are less expensive, and lower costs are also associated
with their installation. Moreover, moderate superstructure displacements reduce the
structural costs of providing for relative displacements.

The ideal values for the stiffness and damping of various supports, which sat­
isfy particular design requirements considered above, will sometimes be in con­
tlict. Moreover, further limitations arise from the range of features available from
existing practical isolator components, particularly with regard to simultaneously
satisfying both longitudinal and transverse requirements. However, consideration
of the effects of isolation on various seismic responses should assist in selecting
isolator components which give a reasonable trade-off between various seismic
design requirements.

Superstructure isolation may be used to reduce or eliminate deformations of
substructures beyond their elastic range during design-level earthquakes. It is par­
ticularly important 10 avoid severe post-elastic defOlTI1ations at locations which are
difficult to inspect or repair, such as partly submerged piers and their foundations.

Mode 1 Mode 2

Parameters of slIperstrt/cfuI"e isolators

Wilh superstruCltlre isolation, the isol;l1or component parameters combine with the
p;lraillelers of the subslrUl.:l1Ircs (Ill whi<;h they are mounted to give a set of COIll­
posile isol;llor P:Ir":uHch.:rs III ~'lId\ ~lIPP()I't. and these sels of support p;l]";lllleters

'I\Villllll\S 1I1('1Jl!1 \'1 1111 i,olillcd bridgc sllpCrSIl'Ucturc of Illass M suppor!cd
by II picl' III 1"11 IlIll~~ MI' < M. Thc slirrnesses or the isol~ll()r componCll1
nllt! pin 111\' 1\10 lU1(1 1\1' lC\I"CClivcly. and lhc dampiTlgl:ocrHcicl1lS al1: Cb
Illul ('1' 1\'~I)I'\ IlvI'IV· 'I Iil' IWlI Il\"t!c~ of vihwlioll ~h\lwn (Ipply whcli ;1Ill:\ular
111(1111\'11111111 I'th'l t~ !tIlIV I,,· 11('l'll'elCll
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Wilh bilillcm' i\(Jlalion, lhc rcllllltHlShips between Ihe cyclic displacements, X~
and Xb, and Ihe correspondlnt! hy!>teretic dampings ~~ and ~h may be obtained
by COIl1P;II"I~ the force-di\I)l.lccrncnt loops, as given by Kbl and Kt,2 (Equation
(5.28» IIml Qyo with lhe cnr"c~I)Onding loop for a rigid support (Kp = (0), and the
~llllllkl' displacement Xli.

Thi~ gives

For a given value of X~, Ihe isolator component defonnation Xb• as given by
Equation (5.29). becomes progressively smaller as K p is reduced. In some cases
the reduction in Xb will cause an increase in Ko and SII. However. in all cases, the
values for the composite isolator, Kaand ~~. are reduced by reducing K p•

When allthc supcrslructure supports have the same longitudinal displacement X~

(or the same lr..tnsversc displacements yt,). the effective overall stiffness K' is ob­
tained by summing all the support sliffnesscs K" and Ka, as given by Equa­
tion (5.28). The effective period T' is then given by substituting K' in Equa­
tion (5.21).

A comparison between the force-displacement loops for individual supports and
the corresponding loop for Ihe overall support system (all wilh a displacement X~),

gives the overall hysterelic damping as a weighted sum of the support dampings s~.

When added to an estimated velocity damping ~b, this gives the effective overall
damping i;' as

placement lead to agreement between trial and resultant displacements and hence to
an approximate value for the design-cart'hquake displacement of the superstructure.

When a substructure is sufficiently flexible it greatly reduces the hysteretic damp­
ing of the isolator component which it supports, as indicated in Equation (5.30).

For bridges of moderate length. bilinear isolator damping may well be confined
to the usually stiffer and stronger abutments. When bilinear damping is introduced
at pier suppons it may be confined to acting in the transverse direction, for which
the pier is usually stiffer and stronger, as in the case of the King Edward Street
Overpass, Duncdin, New Zealand (McKay et al. 1990).

As with building isolation, bilinear isolators at superstructure supports may
provide little damping of higher modes. However, elastic analysis indicates that
velocity-damping at the pier suppons may provide effective damping of longitudi­
nal and lransverse pier modes, and hence a substantial reduction in their seismic
responses. Ag'lin, transverse velocity damping at all superstructure supports may
provide effective damping and reduced seismic responses for higher transverse
modes, In contrast. isolalor velocity-damping (viscous damping) is nol so effeclive
in damping higher building modes.

If a superstructure-isolaled bridge is very simple, with approximate torsional
balance. little superstructure flexure, and lillIe loading of piers by direct seismic
excitation, then a design procedure based on a spectral approach, as discussed above
in general terms, should give reasonable approximations to seismic responses.

For isolated bridges with less simple features, the final seismic design should
be based on a time-history analysis of the responses to design earthquakes, using
a sufficiently detailed bridge model. Such an analysis should give the effects of
the main features of the bridge model, such as superstructure flexure, irregular
substructure stifTnesses, and non-linear mechanisms which excite higher modes.

(5.29)

(5.30)

(5.31)

Since reductions in K p at individual supports reduce their stiffnesses and hys­
teretic dampings, the Kp reductions also increase the effective overall period T'
and reduce the effective overall damping s',

Since a usual aim of transverse isolntion is to obtain approximately equal support
displacements, initial estimates of the transverse stiffnesses of supports may usually
be based on equal displacements Yt,.

Responses 10 design earthquakes

The seismic responses to design earthquakes, for the first longitudinal and trans­
verse modes of an isolated bridge superstructure. may be evaluated by trial and
error in essentially the same way as the base responses are evaluated for an iso­
lated building. A trial superstructure displacemenl X~ (or Y~) is selected and an
effective period T' and damping i;' is derived, using Equations (5.22), (5.23). and
(5.28)-(5.31), The design-earthquake displacement spectrum value, for thiS period
and damping, gives the first resultant displacement. Further trial valucs for the dis-

5.43 Discussion

Some of the isolator components described in Chapter 3 have particular relevance
to isolated bridge superstructures. Typical clastic mounts such as laminated-rubber
bearings, lead-rubber bearings and sliding mounts such as PTFE bearings, have
the same flexibility for any horizontal direction. Again, lead-rubber bearings and
vertical conical-beam steel dampers provide hysteretic damping for any horizon­
tal direction, while lead-extnlsion dampers and tapered-slab steel dampers may be
applied separ..tlely for eilher horizontal direction. Similarly, velocity dampers can
be designed for singlc-axis or biaxial operation. Moreover with elastic or sliding
bearings at a support, \Iiding cOll\trainl\ can be applied to allow, say, only longi­
ludinal be:lring motion, \0 Ih"l Ihe \UPCI">lOlCturc is isolated only for longitudinal
motions.

I-Iystcrctic dall1l>crs hn\l'd 011 kilt! lmvc rcl:lIivcly low crecp rcsistance while
providing hi~h \t:lIl1pin~ 1l\I~Y~ dUIIll~ r.lptd \chmic ll1Qvelllcnh. 1'hi\ feature is
oneil iml)Ort:Ult lur hr"It/-I' IIPllltI .• tulIl\ hu C,(lUllplc. IClld-b;l\Cd dUlllpc~ may he
locatcd on hoth ••hIlBurn" ot II hltd~'l' \11 that tht.' nhullllcnh \h"t'I.· t.'(junlly III the
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hysteretic damping forces. However, the dampers have relatively low resistance to
slow length changes arising from superstructure temperature changes and ground
creep. Moreover, if the dampers are biaxial, as in the case of lead-rubber bearings.
the transverse damping forces are forsionally balanced, provided the abutments
have comparable or high transverse stiffnesses.

Examples of superstructure isolation systems in New Zealand which include
longitudinal dampers to protect lall slab-wall piers founded in moderate-strength
ground, are the Bannockburn bridge and the Cromwell bridge, in Central Otago
(McKay et 01. 1990). These bridges have partly submerged piers about 33 m
high. The Bannockburn bridge has both abutments founded on ground of mod­
erate strength. Each abutment is provided with three longitudinal lead-extrusion
dampers, and hence they share the seismically induced damping forces. Moreover,
inspection of the dampers indicates that the lower-force creep displacements, aris­
ing from slow changes in superstructure length and in abuunent spacing, are shared
by the dampers at each abutment. In the case of the Cromwell bridge, one abutment
has moderate strength, while the other abutment is founded on rock and is consid­
erably stronger. For this bridge, a set of 6 Type-U flexural steel-beam dampers, for
longitudinal operation, was provided at the rock-based abutment.

When detailing a bridge with a seismically isolated superslJUcture, care should be
taken to give as much continuity as possible. Buffers and links should be provided
to limit the maximum relative displacements between the superstructure and its
supports, and between sections of the superstructure if it is not cominuous over its
whole length, With such precautions some damage may occur in the event of an
extreme earthquake, but there should be no danger of collapse.

Care must be taken in detailing road surface links across isolation seismic gaps.
These must be designed to minimise the likelihood of the seismic gap becoming
blocked and exerting forces which may seriously dcgrade the aseismic perfonnance
of the isolation system. As with isolated buildings, bridge builders must be clearly
instructed regarding the aims and requirements of the isolation system, and bridge
controllers must be clearly instructcd as to thc maintenance which is required to
ensure Ihat the seismic isolation system may operate as intended.

5.5 GUIDELINES AND CODES FOR THE DESIGN OF
SEISMICALLY ISOLATED BUILDINGS AND BRIDGES

Since the early 1970s a number of guidelines and later codes have been writtcn
to assist and control the design of structures utilising seismic isolation. These arc
illustrated here by a number of examples from New Zealand and the United States,
first regarding buildings and then bridges.

Seismically isolatcd public buildings in New Zealand have been designed by
the Ministry of Works and Development (MWD) on thc basis of special studies,
consultation with other groups working in this field, and developing in-house guide­
lines. A review of the usc of tlexible mountings and damping devices, to provide
scismic i-;o1;ltioll for a widc ',lI1~C of bridges (Blakeley, 1979), idcntifies a range

of factors requiring atlelllion during design. A recent design procedure for isolated
buildings (Andriono and Carr, 1991a) gives distributed shears and thc resulting
displacements, with design canhquakes represented by their response spectrum
accelerations SA. The design approach, described in a companion paper by the
same authors (Andriono and Carr, 1991b), utilises effective periods and dampings,
eanhquake spectra and an isolator non-linearity factor, and has a general similar­
ity to the approaches described in Chapter 4, and is simplified and summarised
here.

In 1991lhe USA Unifonn Building Code (UBC) adopted, as an Appendix-Divi­
sion 111 a SCI of regulations 'Earthquake Regulations for Seismic-isolated Struc­
tures'. These requirements were developed from earlier versions, e.g. 'Tentative
Seismic Isolation Design Requirements', September 1986, which was circulated
by a Base Isolation Sub-commiucc on behalf of the Structural Engineers Associa­
tion of Northern California.

The UBC regulations for the design of seismically isolated structures are closely
related 10 their regulations for the seismic design of non-isolated structures. The
requirements particular to isolated structures can be related to material covered in
this book.

General control of the design is related to a simple static design procedure which
is used to find reliable maximum values for the isolator displacements and shear
forces, for a maximum credible earthquake based on the seismic zone and soil
classification. The isolator displacement is increased by a factor of up to 1.5 for
a site near an active fault. The isolator displacements, induding torsional effects,
must be accommodated by the seismic gap, and the isolator must remain stable,
but may be somewhat overloaded, at the maximum displacement.

Isolator displacements are made proponional to the effective isolator period
as in Figure 5.2(a). The displacement reduction factor 1/B for effective damp­
ing, as given in the UBC requirements, is proponional to the Cv values given in
Figure 5.I(b), and is therefore more conservative for large damping values than
the linear spectral values given by the reduction factor CD (Figure 5.1(b». This
use of relatively higher displacements at higher damping values is equivalent to
increasing our CF values for large non-linearity factors (which are proponional to
the hysteretic damping ~h)'

The UBC requirement~ for the load capacity of the foundations and structure
arc somewhat less conservative than those for the isolator. The base shear force is
distributcd over the structure in proporlion to its masses, as given by a constant
;lcceleration over lhe strllelllre, I.e. as given by a well isolated first mode.

When the fClItUI'CS of the design eHrlhqllakc, the structure, and the isolation
system satisfy a father strict SCi of cOllstr:lillts, then lhe final design may be bascd
on the ;looVe stillie cVilhmtiOIi of \ti~plw;:clllcnt~ :lIld loads. The constrainls may be
illtcrpretcd as f(lllow\, ill 1\'IItl~ llt fllctlll'.~ discu~scd ill this book:

• The dc~i~ll \'mlhqull"" l~ 1'1 ("1'11110 M,l', ~il1cC the con:-traint-; require /Ones of
high \1'1'lllintv, ~011~ 01 11I~11 ~11I'rlrtll lind \Iilfnc\\, llIId 110 lIctivc 1'111111 ncarby.
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• The mode-! response is almost rectangular, since the constraints require an
isolation factor greater than 3.0.

• Higher-mode accelerations of bilinear isolation systems are small or moderate,
since the constraints require a damping faclor not greater than 0.2, and hence a
non-linearity factor nOI greater than 0.3, which will lead to small higher-mode
response in conjunction with other conSlTainls which appear to ensure a rela­
tively high elastic-phase isolation factor (see discussion related to Figure 2.7).

1bese conditions for static design also limit the number of storeys. the overall
heigh!. and the degree of structural irregularity.

The code requires dynamic analysis for seismically isolated structures nOI com·
plying with the specified strict conditions, and may be used for any structure. TIle
dynamic responses may be obtained using either response spectra or time-history
analysis. On the basis of the displacements and loads given by dynamic analysis,
the displacements may be reduced by a small amount and the loads reduced by a
somewhat larger amount from the values given by the static design procedure.

The Office of Statewide Health Planning and Development has issued a guide·
line, 'An Acceptable Procedure for the Design and Review of California Hospi­
tal Buildings Using Base Isolation' (April 1989). This guideline gives somewhat
stricter procedures for isolated hospital buildings, which are designed in most re­
spects in accordance with the UBC regulations. The current status of design codes
is discussed by Mayes (1992).

The guide specifications for isolated bridge structures generally parallel the cor­
responding provisions for isolated buildings, including related static and dynamic
design procedures. However, there are a number of design requirements particu­
lar to bridges. These include the substantial non-seismic lateral displacements and
loads to which the bridge may be subjected. Particular attention is given to the
stability and the lateral load capacity of commonly used laminated-rubber bearings
which may have large total displacements, due to combined seismic and non­
seismic causes, but limited areas due to moderate unit loads. Features which are
particular to isolated bridges have been discussed above.

Designs for seismically isolated New Zealand bridges were generally undertaken
or reviewed by the MWD. Research and development work for the seismic design
of New Zealand bridges, non-isolated and isolated, has been strongly supported by
the National Roads Board with important results published in Road Research Unit
(RRU) Bulletins and in various papers and reports. For example, RRU Bulletins
41 to 44 review work undertaken from 197510 1978 (RRU, 1979).

An approach to the seismic isolation of the superstructures of simple bridges
was outlined by Blakeley (l979a), supported by charts giving maximum seismic
res!xmses of simple bridge models for a range of earthquake accelerations. The
bridge models had two equal piers and two equal abutments, each remaining clastic
during e:lrth<luake. The continuous superstructure was uniform :md the middle Sl>an
was 40% longer than lhe end ,pall'. Small pier masses and a small ground nexibility
were included. Supcr~tnlctul'c ddonlilltion" and angular momenta were lIeglccted.

Horizontally flexible isolators were included between the bridge superstructure
and its four supports. The charts gave·the maximum superstructure displacement
responses and the maximum shear loads on each support for a wide range of
isolator parameters for each of three general isolation systems. The first isolation
system had linear isolators at each SUPJX>rt, while the second and third had bilinear
isolators at the abutment tops and at the pier tops respectively.

The resJX>nses of the simple bridge model above may also be obtained using
the approaches to isolated structure responses given in our Chapters 4 and 5. With
elastic piers and abutments in the above bridge model, the first isolation system
gives the rigid superstructure a flexible linear sUPJX>rt, while the second and third
isolation systems give the superstructure a sUPJX>rt system which is bilinear for
horizontal displacements. Combined with the superstructure mass these linear and
bilinear supports give periods corresponding to Tb and to Tbl and Tbl, as defined
in Chapter 2. With estimated viscous damping ~b, the maximum seismic responses
of the linear bridge systems are given by the linear displacement and acceleration
response speclTa of design earthquakes. For the scaled EI Centro NS 1940 earth­
quake, the maximum resJX>nses of the bridge systems with bilinear isolation are
given by the 'spectra' of Figure 4.5, or the approximate spectra of Figure 5.2. The
overall isolation-interface shear forces may then be distributed among the sUpJX>rts
by applying the maximum superstructure displacement to the force-displacement
relationship for each support_

The parameter-study results given by Blakeley have been extended and refined
progressively by a number of researchers in the Department of Civil Engineering,
University of Canterbury, Christchurch, New Zealand. Published results include
Kwai (1986), Moss et al. (1986) and Turkington. et al. (1987). These studies include
more detailed models of a wider range of bridge structures, a wider range of isolator
parameters, and a wider range of design earthquakes, some of which give different
ground motions at the locations of different supports. These studies, and related
studies in other countries which arc involved in the seismic isolation of bridge
structures, arc leading to more effective and sometimes simpler design procedures
and guidelines.

As shown by Blakeley (1987), isolator components designed to provide high
mode-l damping must be located on supports which are not more flexible than the
associated isolator components, in order to achieve high damping. Hence the high
axial damping for the Bolton Street and Aurora Terrace overbridges in Wellington
(sec Chapter 6) is provided by abutment-mounted lead-extrusion dampers, and for
the Cromwell bridge by abutment-mounted steel-beam dampers. since each of these
bridges has stiff high-strellglh abutments and axially nexible, relatively low-strength
piers.

[II the USA. 'Guide Spccilicatiolls for Sei,,,mic Design of Highway Bridges',
which parallel the une I'Cguli'liol1" for the design of isolated building slructures,
were ;Idoptcd hy AASII H) III [991. 1\ commercially developed procedure for the
design of hrid~cs Willi sUI~'''llmIUIi'\\l'l\lIliclilly isolated by lead ruhher hearing.",
i, availllhk in til\" liSA Cf\lllvl'\, P/IXI l/~: Mayes I'laf. [1}l)2).
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A procedure for the design of Japanese highway bridges with seismically isolated
superstructures, referred to as the Menshin design method, is outlined by Matsuo
and Hara (1991).

Guidelines for the seismic isolation of bridges have also been produced recently
in Italy (Parducci, 1992). 6 Applications of Seismic

Isolation

6.1 INTRODUCTION

This chapler presents details of seismically isolated buildings, bridges and other
structures all over the world. We should like 10 thank our colleagues worldwide for
their help in enabling us to compile this information, for checking relevant material
in draft fonn, and for supplying photographs and tables.

In Ihis book we have attempted to be objective. This has been aided by the
fact that, up to 30 June 1992 when this manuscript was completed, we and our
organisation, the DSIR, have had no financial involvement in the patents, design,
manufacture and marketing of seismic isolation systems. From this objective point
of view, it has been a challenge to decide which of the many wonhy applications
of seismic isolation to include in this chapter.

Since beginning our studies of seismic isolation, some 25 years ago (1967),
we have been in more or less continuous contact with our colleagues in Japan,
the United States of America, and more recently Italy. We are thus well aware
of the situation in New Zealand and in these countries and the emphasis of this
chapter is placed on applications of seismic isolation in these locations. However,
as discussed by Buckle and Mayes (1990), seismic isolation has also been applied
in many other countries, as summarised in Table 6.1.

This table, together with Tables 6,2 to 6.8, gives an indication of the criteria
for choosing Ihe seismic isolation option, namely the likelihood of a seismic event
occurring, multiplied by the intensity of the anticipated event, multiplied by the
value or Ihe hazard of the structure and/or contents. In the text we have discussed
seismic applications under three broad headings, namely, buildings, bridges and
'delicate' or 'hazardous' structures.

An issue of prime importance is the performance of seismically isolated struc­
tures in severe earthquakes, but nonc of the structures discussed below has been
subjected to such a tes1. Of the bllil(lings and bridges seismic<llly isol<lted in New
Zealand !o dale, only onc, the Te Tdo bridge over lhe Rangitaiki River, has un­
dergonc Ihe cffects of II brge cllI'thqllake, This was lhe Edgeclllllbc eanh(IUakc in
March 19H7, RichIeI' nlll~\,lil\ldc 6,3, MM9, cpieelltre 9 km nOrlh of Ihe bridge. A
sll'Ong-molioli lIl'l'i'li'I0l-llliph hll'l11l'd II kill sOlllh 01" Ihe bridgc rccorde(l a peak
hOl'ii'ol1lHl gruulld Iltrdi'll1lll1l1 (II 0, I \g, Tlli.~ lwidl;.:c '[Jrovidc.~ Ilil cXlll1\plc or good
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performance of modem earthquake resistance technology, i.e. base isolation using
lead-rubber bearings' (Dowrick, 1987). However, one of the standard elastomeric
bearings elsewhere on the bridge was not properly restrained againsl sliding, and
was thrown out of position, so that it ceased supporting the deck (Skinner and
Chapman, 1987). The behaviour of the bridge was, therefore, not perfect.

In order that seismic isolation be effective, it must be stressed that it is the
responsibility of all the people concerned in the design, manufacture and usc of a
seismically isolated structure, to ensure that the system is maintained operative, and
particularly that the seismic gap is protected. As mentioned in Chapter 1, Ihis space
muSI be unclunered by waste material, and it must be respecled during subsequent
building alterations. The seismic gap must remain free at all times, so that the
structure can move by the requircd amount during lhe 15 or so seconds of a major
c:lrthquake, which Clm occur at ,U1Y unpredictable limc in the life of thc structure.

Table 6.l

Country

Canada

Chile

Olin.1

England

France

Ore«<
Iceland

lran/Iraq

Italy,."."
Mexico

New Zealand

Rumania

USSR

SOUlh Africa

USA

Yugoslavia

Applicalions of Seismic Isolation world-wide
(afler Buckle and Mayes, 1990)

Constructed facilities

Coal shiplo;l{kr. Prince Rupert, Be
Ore "hiploader, Guaoolda

2 houses (1975);

weigh station (1980):

4-slorey donnitory. Beijing (1981)

Nuclear fucl processing plant

4 houses (I977-82)

3-slorey school, Lambesc (1978)

Nuclear waste Slorage facility (1982)

2 nuclear power plants, Cruas and Le Pelliren

2 office buildings. Athens

5 bridges

Nuclear power plant, Karon River

12-slOrey building (1968)

See text and Table 6.8

See text and Tables 6.4 and 6.5

4-slorey school (Mexico City)

See text and Tables 6.2 and 6.3

Apanment

3 buildings, Sevaslopol

3-storey building
Nuclear power plant
See lext and Tables 6.6 and 6.7
3-storey school, Skopje (1969)

This is obviously an educational problem, which is currently severe because
seismic isola!ion is a relatively new technology. New owners/operators arc likely,
through ignorance, to abuse the seismic gap and thereby rcnder thc seismic isolation
system inoperative. It is suggested that permanent notices or plaques be situated at
or near the gap, that the state and relevance of the seismic isolation be stressed in
the 'ownership papers', and that engineers and building inspectors take particular
notice of the need for security of the gap.

6.2 STRUCTURES ISOLATED IN NEW ZEALAND

6.2.1 Introduction

In New Zealand, seismic isolation has been achieved by a variety of means: trans­
verse rocking action with controlled base uplift, horizontally ftexible elastomeric
bearings, and nexible sleeved-pile foundations. Damping has been provided through
hysteretic energy dissipation arising from the plastic dcformation of stcel or lead
in a variety of devices such as steel bending-beam and torsional-beam dampers,
elastomeric bearings with and without lead plugs, and lead-extrusion dampers (see
Chapter 3).

The New Zealand approach to seismic isolation incorporates energy dissipa­
tion in the isolation system, in order to reduce the displacements required across
the isolating supports, to further reduce seismic loads, and to safeguard against
unexpectedly strong low-frequency content in the earthquake motion. Combined
yield-level forces of the hystcretic energy dissipators range from about 3-15% of
the structure's weight, with a typical value of about 5%. Displacement demands
across the isolators range from about 100-150 mm for motions of EI Centro type
and severity, to about 400 mm for the Pacoima Dam record. Structural response
can often be limited to the elastic range in the design-level earthquake, with limited
ductility requirements during extreme earthquake conditions. Substantial cost sav­
ings of up to 10% of the structure's cost, togcther with an expected improvement
in the seismic performance of the structure. have resulted from the adoption of the
isolation approach. Some New Zealand applications are discussed by McKay et of.
(1990).

Bridges and structures which have been built in New Zealand are discussed in
this section. Table 6.2 shows the varicty of tcchniques used in the seismic isolation
of buildings, of which thc William Clayton Building in Wellington, started in 1978
and completcd in 1981, was the first in lhc world 10 incorporate IClld-rubber bear­
ings. This lllld othcr buildings are discussed in the text. Current work in progress is
the design of a retrofittcd seismic i'>Olation ~ystem for the New Zealand Parliament
Buildings (Poole and ('1cndOll, 1(91).

Tablc 6.3 ,hows Ihm !c;ld ruhher hearing i'>Ohuion is the Icchniquc flJ\lourcd
in bridges. 111e P"fll~'lllrll Hpplll':,lllliity ot klld rubbcr hcarings for bridge i'>Olation
lIrises fWIll lilt· tnll lhul t'lll~lOllIl'.I\' IWrlllIll-:S, Itwdc of lumil1utc(t 'led ;1Il<! rllhhcr as
dcscrihc(t ill CIIrlPll'. \,111\' 11l1I'llIt.,. 11Illll'~'t'IIlCd ledlllnlil~y Illi Illl' tlt'cnllllll()(talion
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Table 6.2 Seismically isolated buildings in New Zealand Table 6.3 Seismically isolated bridges in New Zealand

Building Height! Total Floor Isolation Dale Complcled Bridge Name Superstructure Length lsolalion System Date

Storeys Area (m1) Syslcm Type (m) Built

William ClaYlon 4 storeys 17000 Lead-f\lbber 1981 Mom Steel Truss 110 Sled UBs in flexlure 1973

Building. 11m bearings 2 South Rangitikei PSC Box 315 Steel lorsion barl 1914
WeliinglOfl viadoci rex!:.ing piers

Union House. 12 1400 Aexible piles 1983 3 Bolton Street Steel I Beam 11 Lead eXlrusion 1974

Auckland storeys and steel 4 Aurora Terrace Steel I Beam 61 Lead extrusion 1974

49 m dampers 5 Toetoe Sleel Truss 12 Lead rubber 1978

6 King Edward Street PSC Box " Steel Cantilever 1979
Wellinglon Central 10 11000 Aexible piles 1990

1 Cromwell Steel Truss 212 Steel flexural beam 1979
Police Stalioo storeys and lead

19818 Clyde PSC U-Beam 51 Lead-rubber
extrusion

9 Waiotukupuna Steel Truss 44 Lead-rubber 1981
dampers

10 Ohaaki PSC U-Beam 83 Lead-rubber 1981
Press Hall, Press 4 levels 950 Lead-rubber 1991 II Maungatapu PSC Slab 46 Lead-rubber 1981
House, Petonc 14m bearings 12 Scamperdown Steel Bo)( 85 Lead-rubber 1982
Parliament House, 5 storeys 26500 Retrofit of Original building 13 Gulliver Steel Truss 36 Lead-rubber 1983

Wellington 19.5 m elastomeric and 1921; 14 Do"~ Steel Truss 36 Lead-rubber 1983

lead-rubber retrofit proposed 15 Whangaparoa PSC I-Beam 125 Lead-rubber 1983

bearings 16 Karakatuwhero PSC I-Beam 105 Lead-rubber 1983

Parliament 5 storeys 6500 Retrofit of Original 11 Devils Creek PSC V-Beam 26 Lead-rubber 1983

Library. 16m elastomeric and 1883/1899; 18 Upper Aorere Steel Truss 64 Lead--nJbber 1983

Wellington lead-robber retrofit proposed 19 Rangitaiki (Te Teko) PSC V-Beam 103 Lead--nJbber 1983

bearings 20 Ngaparika Steel Truss 16 Lead-rubber 1983

21-24 Hikuwai No. 1-4 Steel Plate Girder 74-92 Lead--nJbber 1983-4
(retrofit)

of thennal expansion in bridges. Isolation can lhen be added al a small addilional 25 Oreti PSC I-Beam 220 l..cad-rubber 1984
cost by the removal of further constraints. by provision for larger displacements, 26 Rapids PSC I & V-Beam 68 Lead-rubber 1984
and by the incorporation of suitable lead plugs 10 provide high levels of hysteretic 21 Tamaki PSC I-Beam 40 Lead-rubber 1985
damping.

2' Deep Gorge Steel Truss 72 Lead-rubber 1984
29 Twin Tunnels PSC I-Beam 90 Lead-rubber 1985

6.2.2 Road bridges 30 Tarawera PSC I-Beam 63 Lead-rubber 1985

31 Moonshine PSC U-BelHn 168 Lead-rubber 1985
Since 1973, forty-eight road bridges llnd one rail bridge in New Zealand have been 32 Makarikn No. 2 Sleel Plate Girder 41 Steel Camilever 1985
seismically isolated, see Table 6.3. Four examples of seismic upgrading by the (rmo/it)
retrofitting of isolation systems arc included in this list. 33 Mllklltole (retrofit) Sleel Plale Girder 87 Lead-rubber 1986

By far the mosl common ronn of isolation system for bridges uses lead-rubber 14.35 KOPU:lroll N,), 1 & " Steel Plute Girder 25 & 55 Steel C;mtilever 1986-7
bearings, usually installed between the bridge superstructure and the supporting (rctroht)
piers and abutments. The lead-rubber bearing combines the funclions of isolalion

cfllllh",n! Ol'l'ffl'l!/
:lIKI energy dissipation in a single compact unit, while also supporting the weight

of lhe superstructure and providing (111 clastic restoring force. The lcad plug in the
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Table 6.3 (continued)

Bridge Name

36,37 Glen Motorway &

Railway

38 Grafton No.4

39 Grafton No.5

40 Northern Wairoa

41 Ruamahanga at

Te Ore Ore

42 Maitai (Nelson)

43 Bannockburn

44 Hairini

45 Limeworks

46 Waingawa

47 Mangaone

48 Porirua State

Highway

49 Porirua Stream

Key: P$C _ prestressed COllcrCIC.

UB = U-beam.

Superstructure Length Isolation System

Typ" (m)

PSC T-Beam 60 Lead-rubber

PSC T-Beam 50 Lead-rubber

PSC I-Beam 80 Lead-rubber

PSC I-Beam 492 Lead-rubber

PSC V-Beam 116 Lead-rubber

PSC I-Beam 93 Lead-rubber

Steel Truss 147 lead-rubber &

Lead extrusion

PSC Slab 62 Lead-rubber

Steel Truss 72 Lead-rubber

PSC V-Beam 135 Lead-rubber

Steel Truss 52 Lead-rubber

PSC T-Beam 38 Lead-rubber

PSC V-Beam 84 Lead-rubber

Date
Built

1987

1987

1987
\987

1987

1987
1988

1989

1990

1990

1992

1992

was isolated using sliding bearings with the damping provided by vertical-cantilever
structural-type steel columns. An example of the use of lead-rubber bearings in
bridges is illustrated in Figures 6.1 and 6.2, which show the Moonshine Bridge, a
168 m prestressed-concrete, curving bridge on a motorway in Upper Hutt.

centre of the elastomeric bearing is subjected to a shear defonnation under horizon­
tal loading, providing considerable energy dissipation when it yields under severe
earthquake loading, The lead-rubber bearing provides an extremely economic so­
lution for seismically isolating bridges.

Many unisolated New Zealand bridges use elastomeric bearings between super­
struelUres and their supports, to accommodate thennal movements. Little modifica­
tion to standard structural fonns has been necessary in order to incorporate the lead
plug to produce seismic isolation bearings, apart from the removal of some con­
straints and provision of a seismic gap to accommodate the increased superstructure
displacements which may occur under seismic loading. As well as providing energy
dissipation during large movements, the lead plug also stiffens the bearing under
slow lateral forces up to its yield point, reducing the displacements under wind and
traffic loading (Robinson, 1982),

Further infonnation on the seismic isolation of road bridges in New Zealand,
including case studies lmd design procedures, is given by Blakeley (1979), Billings
and Kirkcaldie (1985), and Turkington (1987).

The til'Sl bridge to be sci~mi(;ally isolated in New Zealand was the Molu Bridge,
buill in 1973, The lightweight replacement superstructure was a 170111 stccltruss
supporled by the cxiSlill~ n.:illtOll'cd COl1crete sl<lb-wall piers. The superstl'uctlll'e

Fi~\ln: 6.2

Figure 6.1 Moonshine Bridge, Upper Hutt, New Zealand

M'"Hl,llill\' lllhll-l\', lJIlI'I." IIIII!, showing lead !'llhl)CI' bearing IIntler Ihe
III.'nl1\~. 11Ihll,'~11'llnlllll "I"[I~
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Figure 6.3 shows a bridge over the Wellington Motorway which is fitted with
lead-extrusion dampers al the lower abutment. It is one of a pair of sloping bridges
which were seismically isolated by being mounted on glide bearings, Ihe restoring
force being provided by sleel columns. The advantage of the extrusion dampers is
that they lock the bridge in place during the braking of vehicles travelling downhill,
yet at earthquake loads allow the bridge to move. Thermal expansion forces can
be released by Ihe creep of the extrusion dampers. After a large earthquake it is
expected Ihal the bridges will no longer have the seismic gaps ideally positioned.
If necessary the bridges can Ihen be jacked to the ideal position or allowed 10 creep
back with the flexible columns providing the restoring force.

Figure 6.3 Aurora Terrace overbridge, WellinglOn City

6.2.3 South Rangitikei Viaduct with stepping isolation

The South Rangitikei Viaduct, which was opened in 1981, is an example of isolation
through controlled base-uplift in a transverse rocking action. The bridge is 70 III
tall, with six spans of prestressed concrete hollow-box girder, and an overull lenglh
of 315 1ll (Cormack, 1988).

Figure 6.4 shows lhe stepping isolalion schematically, and Figures 6.5 and 6.6
arc phOlOgwphs of the brid~e um!er construction, and of the first train 10 lise it.

_.-

-1~1tt(;_1IIIC

Figure 6.4 Schemalic of base: of slepping pier. South Rangilikei Viaduci

The stresses which can be transmitted illlo the slender reinforced-concrete H­
shaped piers under earthquake loading are limited by allowing them to rock side­
ways, wilh uplift at the base altemaling between Ihe two legs of each pier. The
extent of stepping, and lhe associaled lateral movement of the bridge deck, are
limited by energy dissipation provided by the hysteretic working of torsionally
yielding steel-beam devices connected between the bonom of the stepping pier
legs and the caps of the high-stiffness supporting piles. (The Type-E steel damper
used is shown in Figure 3.3.)

The stepping action reduces the maximum tension calculated in the tallest piers,
for the 1940 EI Centro NS record, to about one-quarter that experienced when the
legs arc fixed at the base; unlike lhe fixed-base Cllse there is lillie increase in base­
level loads for stronger seismic excitations. The dampers reduce the displacements
to aboLit one-half those in lhe umlamped case, and reduce the number of large
displacements to less than olle-(lIl:Ir'ler. The maximulll displacement at the deck
Icvel for the damped slcpping bridge i.~ abollt 50% greater than for the fixed-leg
bridge (Beck and Skillllcl', 1974).

The 24 energy di~sipalOr~ 0lk.'l'nte 111 II 1l01l1illill force of 450 kN with a desigll
~lroke of l:!O Illill. Till' 1Il1l~iIl1l1lIlllph't (lIthe leg:; i~ limile{! to 125 Illill by:;IOps.
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Figure 6.5 South Rangitikei Viaduct during construction

The weight of the bridge at rest is nOI carried by the dampers, but is transmitted to
the foundations through thin laminated-rubber bearings whose primary functions are
to allow rotation of each unlifted pier fOOL, and to distribute loads at the pier-pile­

cap interfaces.
The stepping action is very effective in reducing seismic loads on this bridge

because its centre of gravity is high, so that the non-isolated design was strongly
dominated by overturning moments at the pier feet. The hysteretic damping dur­
ing stepping is quite effective because the estimated self-damping of the stepping
mechanism is quite low, due to the relatively rigid pile caps. A chimney structure
at the Christchurch Airport was also provided with a stepping base. The resultant
cost saving was about 7% (Sharpe and Skinner, 1983).

Figure 6.6 Inaugural train on South Rangitikei Viaduct

6.2.4 William Clayton Building

The William Clayton Building in Wellington, slarted in 1978 by the New Zealand
Ministry of Works and Development and completed in 1981, was the first building
in the world to be seismically isolated on lead-rubber bearings. (See Chapter 3)

Details of a lead-rubber bearing for this building are shown in Figure 6,7. The
80 bearings are located under each of the columns of the four-storey reinforced
concrete frame building, which is 13 bays long by 5 bays wide with plan dimen­
sions of 97 m x40 m. Each bearing carries a vertical load of I to 2 MN and is
capable of taking a horizontal displacement of ±200 mm. Detailed descriptions of
the building have been given by Meggell (1978) and Skinner (1982). It is shown,
during construction and after completion, in Figurcs 6.8 and 6.9.

The pioneering nature of the building and its proximity to the aClive Wellington
fault dielated that <I conservalive <tesign appro.tch be taken. The design earlhquake
was taken as 1.5 El CClllro NS 1940, for which the calculated maximum dynamic
base shear was 0,20 till1e,~ the 101<11 huilding weight W. ;llld this was selected as
the design ,~I:lIic hilS!' shelll' fon:l'. '1'111.: w'liticial A 1 record. which is intended to
ro.:PI'CSCfIl I1C:11" fllllil IIltlllllll III II lIlUllnitutl!' R earlhquake, was I.:ollsidel'cd as the
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Figure 6.7 Diagram showing detail of lead-rubber bearing, William Clayton Building, Wellington
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294 APPLICATIONS OF SEISMIC ISOLATION 6.2 STRUCTURES ISOLATED IN NEW ZEALAND 295

'maximum credible' motion, producing a calculated maximum base shear ofO.26W.
Even though the calculated response of the seismically isolated structure was
essentially elastic for the design-earthquake motions, a capacity design procedure
was used. as required for a design with high ductility.

The bearing size and lead diameter were chosen after careful dynamic analysis.
Meggetl (1978) discussed this design in delail and found that accelerations. imer­
storey drifts and maximum base shear forces were approximately halved by the
introduction of the seismically isolated system. He concluded that reasonable values
for the shear stiffness of the elaslomeric bearing and lead-yield stiffness were

Kb(r)/W = 1-2 m-I (6.1)

giving
Tb2 =2.0-1.4 S (6.2)

ond
Q,I W ~ O.O4-ll.09 (6.3)

while in fact the bearings were measured with Kb(r)/W = 1.1 m- I and Qy =
0.07 W for 1.5 EI Centro.

Horizontal clearances of 1SO mm were provided before the base slab impacts on
retaining walls. This corresponds 10 the maximum bearing displacement calculated
for the AI record. wilh 105 mm calculated for 1.5 EI Centro. Water, gas and
sewerage pipes. external stairways and sliding gratings over the seismic gap were
detailed to accommodate the 150 mm isolator displacement.

Thus the lead-rubber bearings lengthened the period of the structure from 0.3 s
for (he frame struclUre alone, to 0.8 s for the isolated SlruclUre with the lead plugs
unyielded, and 2.0 s in the fully yielded stale (i.e. calculated from the structural
mass and post-yield stiffness of the bearings). The combined yield force of all the
bearings and lead plugs was calculated to be apprmtimately 7% of the structure's
'dead plus seismic live' load.

The maximum base shear for the isolated structure calculated for 1.5 EI Centro
was 0.20W, which is half the value of 0.38W for the unisolated structure. Only the
roof beam yielded for the isolated structure with a rotational ductility of less than
2 and no hinge reversaL For both 1.5 EI Centro and the Al record, the maximum
inter-storey drifts for the isolated structure were about 10 mm, about 0.002 times
the storey height, and were unifonn over the structure's height. For the un isolated
structure, the inter-storey drifts increased up the height of the building, reaching a
maximum of 52 mm. The markedly reduced inter-storey drifts should minimise the
secondary damage in the isolated structure, and they greatly simplified the detailing
for partitions and glazing.

As a first attempt at seismic isolation of a building with lead-rubber bearings,
the design of the William Clayton Building was very much a Icarnin~ eXIJCri.
encc. Thc desi~n was cOll~erv"live. and if it was rcpealed now, it is prObable that
more adv:mtages would be lakcll ot potcntial economics offered by lhe isolation

approach to seismic design. Nevertheless, the design analysis demonstrated the im­
proved seismic perfonnance which can be achieved through isolation of appropriate
structures. Moreover, in the light of subsequent tests on lead-rubber bearings, the
extreme-earthquake capacity could in principle be extended substantially simply by
increasing the base-slab clearance to 200 or 250 mm.

6,2.5 Union House

The 12-storey Union House (Boardman et of. 1983), compleled in 1983, achieves
isolator flexibililY by using flcxible piles within clcarance sleeves. It is situated in
Auckland alongside Wailemala Harbour. Poor ncar-surface soil condilions, consist­
ing of natural marine SillS and land reclaimed by pumping in hydraulic fill, led
to the adoption of long end-bearing pilcs, sunk aboul 2.5 m into the underlying
sandstone at a deplh of aboul 10-13 m below slreel level, to carry the weighl of
Ihe slructure. Allhough Auckland is in a region of only moderale seismic activity,
lhere is concern that it could be affecled by large eanhquakes. up to magnitude 8.5,
centred 200 kin or more away in the Bay of Plenty and Easl Cape regions near the
subduction-zone boundary between the Pacific and Indo-Australian plates. Such
earthquakes could cause strong shaking in the flexible soils al the site.

Isolation was achieved by making Ihe piles lalerally flexible with moment­
resisting pins at each end. The piles were surrounded by clearance sleel jack­
ets allowing ±150 mm relative movement, Ihus separaling the building from lhe
potemially lroublesome eanhquake motions of Ihe upper soil layers and making
provision for the large base displacements necessary for isolalion. An effeclive iso­
lalion system was completcd by installing steel lapered-cantilever dampers at the
lOp of Ihe piles al ground level to provide energy dissipalion and deflection con­
trol. The SIruClure was stiffened and strengthencd using external steel cross~bracing

(see Figure 6.10). The increased stiffness improved the seismic responses, giving
reduced inter-storey displacements, a reduced shear-force bulge at mid-heighl and
reduced floor spectra. Moreover, the cross-bracing provided the required lateral
strength al low cost. The reduced structure ductility was adequate with the well
damped isolator. The dampers are connected between the top of the piles sup­
poning the superstructure and thc otherwise structurally separated basement and
ground-floor structure, which is supported directly by the upper soil layers.

As Auckland is a region whcre curthquakes of only modcrate magnitude are
expected, the seismic design specifications for Union House are less severe than
for many other seismic;llly isol;ltcd struClures. The maximum dissipator deflections
in the 'maximum credible' EI CClllro mOl ion were ISO mm, with 60 mm in the
dcsign earthquake. The effective IJCriod of the i.~ollited structure W;lS about 2 s.
Maximum illtcr-storey dctkct ion.; were lypic:llly 10 mill for the maximum credible
ellrth<lllakc alld :; 1ll1ll f()I' lllc dl.'\ign cHr'lhqu:lke,

Union 1l0U\C i~ llil l'.\ruupk ot llll' l'l'om)mical u\e of seismic i\ol,l1ion in ,III
area of 11l0dCrlllc \l'l'llllnly. All llJlplOpllllll' ~trllctu"lll tilnll wn\ ChO\CIl to l:l~e

:Idv:mt:tgc ol till' I\'dm IItHl' ot ,t'I\IUI( h~I\'(', tlul'ldity dClIll1ll(l, llild \lrUl'llIrHI de
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6.2.6 Wellington Central Police Station

The new Wellington Central Police Station (Charleson ef 01., 1987), completed in
1991, is similar in concept to Union House. The IO-storey tower block is supponed
on long piles founded 15 m below ground in weathered greywacke rock. The near­
surface soil layer consists of marine sediments and fill of dubious quality.

Again the piles are enclosed in oversi7.c casings, with clearances which al­
low cOllsiderable displacements relative to the ground. Energy dissipation is pro­
vided by lead-extrusion dampers (Robinson and Greenbank, 1976), connected be·
tween the top of the piles and a structurally separate embedded basement (see
Figure 6.11). A cross-braced reinforced-concrete frame provides a stiff superstruc·
ture (see Figure 6.12). The flexible plies and lead-extrusion dampers provide an
almost elastic-plastic force-displacemem characteristic for the isolation system.
which controls the forces imposed on the main struclure.

The seismic design specifications for the Wellington Central Police Station are
considerably more severe than those for Union House in Auckland. The Police
Station has an essential Civil Defence role and is therefore required to be in op­
eration after a major eanhquake. The New Zealand Loadings Code requires a risk
factor R =: 1.6 for essential facililies. The site is a few hundred metres from the
major active Wellington fault, and less than 20 km from several other major fault
systems.

Functional requirements dictated that the lateral load-resisting structure should
be on the perimeter of the building. TInce structural options were considcred: a
cross-braced frame. a moment-resisting frame or a seismically isolated cross-braced

l-'igure 6.10 Union Hoose, Auckland City; note the external diagonal bracing

fannalians offered by the seismic isolation option. 1lle inherently .sti~ cross~braced
frame is well suited 10 the needs for a stiff superstruclUre in the seismIcally Isol~t~d
approach. Isolation in tum makes the cross-bracing re~iblc. because low ductility
demands are placed on the main structure. However, If very low floor s~clra are
required, it may be necessary 10 use more linear velocity dampers. An Im~nant

factor in the design of such isolation systems is the need for an appropriate al­
lowallce for the displacement of the pile-sleeve tops with respect to the fixed ends

of the piles. . . .
Other structural fonns were invesligated during the prelim mary deSIgn s~ages,

including two-way concrete frames, peripheral concrete frames, and a .cantllever
shear core. The cross-braced isolated structure allowed an Opel.' a~d hgh.t, st~c~
tuml fa~ade. and :1 maximum usc of precast elements. '!he seismically Isol.l~e(

option produced ilil c..timated c()'.t ....ving of nea~ly 7% 10 the I?tal ~onstrucllon

co..t of NZ$6,6 million (III 19M1). Hlcluding:1 savlllg In construction lIInc of three

mOlllh...
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Figure 6.12 Wellington Central Police Stalion; note the elllemal diagonal bracing

frame. This last option looked attractive from the outset because the foundation
conditions required piling, but Ihe perimeter moment-resisting frame was also con­

sidered at length.
The structure is required to respond elastically for seismic motions with a 450­

year return period. corresponding to a 1.4 times scaling of the 1940 EI Centro
accelerogram. The building must remain fully functional and suffer only minor
non~structural damage for these motions. This is assured by the low inter-storey
del1eclions of approximately 10 mm. Using an isolation system with a nearly
clastic-plastic force-del1ection characteristic, and a low yield level of 0.035 of
the building seismic weight, it was found thaI there was only a modest increase in
maximum frame forces for the lOOO~year return period motions, corresponding to
1.7 EI Centro NS 1940 or the 1971 Pacoima Dam record. The increllSC in force
was almost accommodated by the incre:lse from dependable to probable strengths

6.3 STRUCTURES ISOLATED IN JAPAN

appropriate to Ihe design and ultimate .load conditions respectively. It is possible
that some yielding will occur under the 1000-year return period motions. but the
ductility demand will be Jow and specific ductile detailing was considered unnec·
essary. The Pacoima Dam record poses a severe test for a seismic isolation system
because it contains a strong 1000g-period pulse, thought to be a 'fault-fling' compo­
nent, as well as high maximum accelerations. The Pacoima record imposes severe
ductility demands on many conventional slructures.

The degree of isolation required to o~ain elastic structural response with these
very scvere earthquake motions requires provisiOfl for a large relative displacement
between the top of the piles and the ground. A clearance of 375 mm was pro­
vided between the 800 mm diameter piles and their casings, to give a reasonable
margin above the maximum calculated displacements; 355 mm was calculated for
one of the 450-year fCturn period accelerograms. Consideration was also given to
even larger motiOflS. when moderately defonnable column stops might contact the
basement structure which has been designed to absorb excess seismic energy in a
controlled manner in this situation.

The large displacement demands on the isolation system and the almost
elastic-plastic response required from the energy dissipators Jed to the choice of
lead-extrusion dampers rather than steel devices as used in Union House. In total, 24
lead-exlrusion dampers each with a yield force of 250 kN and stroke of ±400 mm
were required. This was a considerable scaling-up of previous versions of this tYI>c
of damper used in several New Zealand bridges: the bridge dampers had a yield
level of 150 kN and a stroke of ±200 rom. The new model damper was tested
extensively to ensure the required perfonnance.

The seismically isolated option was estimated to produce a saving of 10% in
structural cost over the moment-resisting frame option. In addition. the seismi­
cally isolated structure will have a considerably enhanced earthquake resistance.
Moreover, the repair costs after a major earthquake should be low. Importantly.
the seismically isolated structure should be fully operational after a major earth­
quake.

6.3 STRUCTURES ISOLATED IN JAPAN

6.3.1 Introduction

The first seismically isolated structure 10 be completed in Japan was the Yachiyodai
Residential Dwelling. a two-storey building, completed in 1982. This building is
mounted on six laminated-rubber bearings and relies on the friction of a precast
concrete panel for the damping. Since 1985. more than 50 buildings hllve been
authorised. of I to 14 storeys in height. llley mnge from dwellings to tower blocks.
with l100r areas from 114 m2 to 38 000 Ill!. Detail~of buildings scismiclilly isolated
in Japan arc given ill Table 6.4 (Shimoda 19IN-1992: Sill·Ula. 1991. 1992: Seki.
1991. 19(2). Variou~ '>Ci"mic i"olation and daml)ing "yMenh hllVe been u-;cd. often
in hyhrid comhinatioll'" a" indiclllcd 11l Tahle 6.4 [lmj ih footllOlc. '!lle 11l0"1 popular
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Table 6.4 Seismically isolated buildings in Japan Table 6.4 (colI/inued)

Type Building Name Storey TOlal Isolation Licence

Floo' System Dale Type Building Name Siorey TOlal lsolalion Licence
Are> Floo' System Date
(m1) Are,

Dwelling Yachiyodai 2 114 EB+F 1982
(ml

)

Institute Research Lab 4 1330 EB+S 1985 Offi~ CP Fukuzumi 5 4406 EB+F 1989

Institute High-Tech Research Lab 5 1623 EB+S 1986 Apanmenl Employees Buildings 4 652 LRB+HDR 1989
LaIJoraIOl')' Oiles Tech. Centre 5 4765 LRB+E 1986 Offi~ Toho-Gas Centre 3 1799 SL+RS 1989
Dormitory likuyu.Ryo 3 1530 EB+V 1986 DonnitOl'y Tudanuma Donnilory 2 202 EB+S 1989
Institute Acoustic Lab 2 656 EB+S 1986 Dwelling M-300 Yamada·s 2 214 LRB 1989
Museum Elizabelh Sanders 2 293 EB+S 1986 Apartment Koganei-Apartment 3 714 LRB+EB 1989

(re-design) Computer Operation Centre 2 10463 LRB 1989

TcslModel Tohoku Universit)' 3 208 EB 1986 FOCtory Urawa-Kogyo 5 1525 HOR 1989
Apartment Apt. Hukumiya 4 681 EB+S 1986 Offi~ Kanritou 3 955 EB+V 1990
Officc Sibuya Simizu Building 5+BI 3385 EB+S 1987 Compuler Noukyou uniTe 3 5423 LRB 1990
Inslitute Research Lab No.6 3 306 LRB 1987 Offioe C-I Building 7+BI 37846 LRB 1990
Inslilute Tsulcuba Mulci-Zailcen 1 616 EB+S 1987 Offi~ Keisan Kenlcyusyo 3 627 EB+V 1990
Offi~ Tsuchiura bfaoch 4 636 LRB 1987 Offi~ Kasiwa Kojyo 4 2186 HOR 1990
Instilute Lab. 1 building 4 1173 SL+R 1987 Institute ACOUSlic Laboratory 2 908 EB+F 1990
Apartmenl Kousinzulca 3 476 EB+S 1987 DormilOTy Yamata-ryo 8 1921 EB+S 1990
Offi~ Tornnomon Building 8 3373 EB+S 1987 Dormitory Kawaguchi-ryo 4 659 LRB 1990
Apartment Itoh Mansion 10 3583 LRB 1988 Compuler Dounen Computer CenlTe 4 3310 EB+LD 1991
Dormitory lIinoe Donnilory 3 no EB+S 1988 Laboratory Andou Tech. Centre 3 545 LRB 1991
Institute Clean Room Lab 2 405 EB+V 1988 Dormitory Toyo Rubber Shibamata-ryo 7 3520 EB+S+oil 1991
Resl house Atagawa Hoyojo 1 140 SL+S 1988 Office Aoki Tech. Centre 4+81 4400 LRB 1991
Apartment Ogawa Mansion 4 1186 HOR 1988 Dormitory Dai Nippon Daboku 4 t 186 EB+LD 1991
Offi~ Asano Building 7 3255 LRB 1988 Ichigaya-ryo

Store Kusuda Building 4+81 1047 HOR 1988 Apartment Domani-Musashino 3 742 EB+S 1991
Dwelling Ichikawa residence 2 297 EB 1988
Computer Computer Centre 6 10032 HDR 1988

Key:
EB = ela!;IOmeric bearing

Office Sagamihara Centre 3 255 HDR 1988 LRB = lead-rubber bearing

Clinic GeTOmology Res. Lab. 2+81 1615 EB+S 1988
IlOR = high damping rubber hC;lring
SL =sliding syslclll (I'TI'E)

Dwelling M-300 Hoyosyo 2 309 LRB 1989 S =sleel damper

Apartmelll Harvest Hills 6 2065 EB+S 1989
v =vi,;colls dalllllCr
I' =friclion damllCr

Institute Acoustic Lab 2 656 EB+S 1989 HS =n'bber spring
Office Toshin Building 9+BI 7573 EB+S 1989 LD = Icad d:"npcr

Laboratory Dwell. Test Lab 3
IJ 1.112 = \):ISCltlClll<

680 EB+S 1989

Office MSB-21 Doluka 12+B 5962 LRO 1989
Institute Wind L;lbo.... IOry 3 555 I-IDR 19S9

WWW.BEHSAZPOLRAZAN.COM



6.3.2 The C-l Building, Fuchu City, Tokyo

6.3.3 The High-Tech R&D Centre, Obayashi Corporation

isolation syslems for buildings are laminated-rubber for the isolalion, with eilher
Sleel or lead providing the damping. .

The first seismically isolated bridge in Japan was completed in 1990 and is
mounted on lead-rubber bearings. Details of somc bridges seismically isolated in
Japan are given in Table 6.5 (Shimoda [989-1992; Seki, 1991, 1992; Saruta. 1991,
1992). Except for one mounted on a high-damping rubber bearing, all of these usc
lead-rubber bearings.

This reinforced-concrete structure, five storeys high. was completed in August 1986
(Ternmura et aI., 1988). It is equipped with a seismic isolation system consisting of
14 laminated-rubber bearings, with an axial dead load of 200 t. as well as 96 steel
bar dampers, of diameter 32 mm. It also has friction dampers as subdampers for
experimental purposes. The laminated-rubber bearings give the seismically isolated
structure a horizontal natural period of 3 s (sec Figures 6.13 and 6.14).

Seismic isolation has allowed a rcduclion of design strength and pennits a large
span structure with smaller columns and be:UllS. which in tum provides open space.
Key equipmenl. including :1 sUI>crcomputer. is installed on the top floor. During
the 1989 Ib:lmki eanhquake. the building clearly demonstrated the effectiveness of
seismic isolation. wilh a ten-fold redLtclion in roof acceleration.

)036.) STRUCllJRES ISOLATED IN JAPAN

This, currently (1992) the largest seismically isolated building in the world, has a
total area of more than 45 (H)() 012. of which the isolated parts (higher building)
have an area of 37 846 m2, a height of 41 01 and a weight of 62 800 I. II will be
used as a computer centre: seismic isolation was chosen to protect the equipment.

The building will COflsisl of a seven-floor superstructure. a penthouse and a
one-floor basement, with the composite structure being fonned of steel and steel­
reinforced concrete. It is mounted on 68 lead-rubber bearings for seismic isolation.
The bearings arc between 1.1 and 1.5 m in diameter. with lead plugs from 180 to
200 mOl in diameter (Nakagawa and Kawamura, 1991). Each bearing is surrounded
by [0 mm of rubber to prolect it from attack by ozone and fire damage.

At small displacements the natural period for the isolated building is expected
to be aoout 1.4 s. while at large displacements, about 300 mm. the period is about
3 s. This should give an adequate frequency shift for an earthquake of the kind
expected at the sile. The maximum base shear force at the isolators due to wind is
not expected to exceed 45% of the yield shear force of the bearings, so lhe building
should not move appreciably during strong winds.

J4J2 APPLICATIONS OF SElSMIC ISOLATION

Table 6_5 Seismically isolated bridges in Japan

Bridge name Site Super- Bridge Isolation Complelion
structure Length System (Scheduled)

Type . (01)

On-neloh Hokkaido 4-span 102 RB(12) 1991
Oh-hashi continuous LRB(18)
Bridge steel girder
Nagaki-gawa Akita 3-span 99 LRB(20) 1991
Bridge Conlinuous

steel girder
Maruki Bridge Iwale 3-span 122 LRB(8) 1991

Continuous
PC Girder

Miyagawa Shizuoka 3-span 104 LRB(iO) 1991
Bridge ContinllOOs

steel girder
MelropolilJln Tokyo 6-,,,,,, 138 LRB(iO) 1991
Highway Continuous
Bridge No. 12 PC slab
Hokuso Line Chiba 2-span 80 LRB(8) 1990
Viaduct Continuous
(Railway) sleel girder
Kanka Bridge Tachigi 6-span 296 LRB(iO) 1991

Continuous
PC girder

MalSuno-hama """. 4-span 211 LRB(12) 1991
Bridge Continuous

steel girder
Uehara Bridge Aichi 2-span 65 LRB(18) 1991

Continuous
sleel girder

Shirasuji Chiba 2-span 7. RB(4) 1993
Viaduct Continuous LRB(4) (scheduled)
(Railway) Sleel girder
Trans-Tokyo Tokyo Bay Io-span 800 LRB(18) 1994
Bay Highway Continuous (scheduled)
Bridge steel girder
Karasu-yama Tachigi 6-span 24' High- 1992
No. I Bridge Continuous damping (scheduled)

PC girder rubber (14)

Key:
EB • c:llISlomeric bearing V s viscous damper
LRB " lead-rubber bearing F '"' fnclion damper
HDR " high damping rubber bearing RS = rubber spring
SL • sliding Syslc:m (PTFE) LD • lead damper, " steel damper B un " ba-~mcnts
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Figure 6.13

Ficurc 6.14

ll'l··1
Isolation system used in the Obayashi High-tech R&D Centre, Tokyo
(photograph courtesy Obayashi Corporation)

Ob:lvashi IIi~h l..:ch R&D (elllrc (uhOlocranh COllrll::SV Ohavashi Como-

6.3.4 Comparison of three buildings with different seismic isolation
systems

A comparative study has been carried out (Kaneko er at., 1990) on the effectIve­
ness and dynamic characteristics of four types of base isolation system. namely:
laminated-rubber bearing with oil damper system; high-damping rubber bearing
system; lead-rubber bearings; and laminated-rubber bearings with a steel damper
system. The study was carried out by earthquake response observations of full­
sized structures, as well as by numerical analyses. The three buildings studied
were the test building at Tohoku University in Sendai, northern Japan, Tsuchiura
Office building northeast of Tokyo and the Toranomon building in Tokyo.

The test building at Tohoku University was seismically isolated in order to
be used experimentally in studies of performance; for comparison, an identical
building on the same campus was 'conventional', i.e. it had not been isolated. Both
buildings are 3-storey reinforced concrete structures 6 m x 10 m in plan. In the first
stage of the investigation, the isolated building was fitted with 6 laminated-rubber
bearings and 12 viscous dampers (oil) (see Figures 6.15 and 6.16), and earthquake
observation was conducted for a year. After that, the devices were changed to
high-damping rubber bearings, and observations continued. The natural frequencies
and damping ratios of each building were obtained by forced vibration tests. The
damping ratios of the isolated building with viscous dampers were about 15% and
those with high-damping rubber about 12%, which are respectively about 10 times
and 8 times larger than those of the unisolated building.

The Tsuehiura office building of Shimizu Corporation is a four-storey reinforced­
concrete structure 12.5 m x 12.5 m in plan. It is isolated by lead-rubber bearings
and the damping ratios were found to be anisotropic, being 9.9% and 12.7% along
two orthogonal directions.

The Toranomon building is eight-storey steel-framed reinforced concrete with an
irregular shape and large eccentricity. The isolation devices have been arranged to
reduce the eccentricity for earthquake loading. The building is supported by bearing
piles on the Tokyo gravel layer, about 22 m below the surface. The isolation devices
consist of 12 laminated-rubber bearings and 25 steel dampers, each consisting of
24 steel bars (see Figure 6.17). Eight oil dampers (four for each direction) are also
installed for small vibration amplitudes.

Accelerograms of the largest earthquake motions in the records of each building
can be summarised as follows. In the two systems studied on the test building at
Tohoku University, lhe maximum accelerations al lhe roof of lhe isolated build­
ing were "bOUl olle-third of lhose 011 lhe un isolated building. For the lead-rubber
bearing syslem ,II 'I:~uchillra, the maximum ,lcccicralion at the roof was about 0.6
times lhal at lhe base. The respollse of the TOfarlolllon building could not be clearly
evaluated because ollly small 'lI11plitude earlhquakes occurred and lhe steel damper
systelll waS slill ill llll' cll1~lil' Il'p-iou, TorsiOll"l resl}Qnses were sillall in all four
isohlled .~lructllrcs.
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•

Figure 6.15 Oil dampers and laminated-rubber bearings in Test Building at Tohoku
University, Sendai (photograph courtesy Shimizu Corponltion)

Figure 6.17 High-damping rubber bearing. steel dampers and oil damper in basement
of Bridgestone Toranomon Building. Tokyo (photograph courlesy Shimizu
Corporation)

"'igure 6.16 Test Buildings al Tohoku University. On Ihe left is the convell1ional build­
ing, and on Ille !'igh! i~ Ihe ~ei~rnically isolated building (photognlph cour­
tesy Shimi/ll C'orpol":llion)

6.3.5 Diles Technical Centre Building

The Technical Centre Building of the Oiles Corporation (Shimoda ef al. 1991)
received special authorisation from the Ministry of Construction, based on the
provisions under Article 38 of the Building Standards Law of Japan, since it was
the first building in Japan to be equipped with lead-rubber bearings for seismic
isolation, and it was completed in February 1987. It is a 5-storey structure of
reinforced concrete. with a total floor area of approximately 4800 m2 and a total
weight of 7500 t (see Figures 6.18 and 6.19).

Tests were carried out to verify the reliability of the base-isolated building under
an earthquake. The lests consisted of free vibration tests. forced vibration tests and
microtremor observations. The appropriateness and accuracy of the method were
also verified.

The results of dynamic analysis showed that the response acceleration of each
floor of the building was reduced to about 0.2!? even during strong earthquakes
(0.3-0.5g) at an input of 50 em S-I. The m<lximum response acceleration was
reduced to between 0.2 and 0.3!;' even under a velocity of 0.75 m S-I. The building
remained clastic since the shearing force for each storey was shown to be less than
the yielding force, while the maximum rc~pol1~e displacement was 370 mm.
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Oiles Technical Cenfer
[Base·lsolated Buildingl

6.3.6 Miyagawa Bridge

'\"

,.' I

MiY~lgaw:l Bridge, SltilllOkll Prefeclllre. showing bridge deck. isolation sys­
tem Illlel picl·~ (]lhOlO~raph cOllr,e~y Giles Corporation)

Figure 6.20

The Miyagawa Bridge, across the Keta River in Shizuoka prefecture, is the first
seismically isolated bridge constructed in Japan (Matsuo and Hara, 1991). The
three-span continuous bridge with steel plate girders of length 110m, is in an area
where the ground is stiff, and it is mounted on lead-rubber bearings (see Figures
6.20-<;.22).

In the traverse direction the bridge superstructure is restrained, allowing move­
ments in the longitudinal direction of ± 150 mm before restraints at the abutments
stop further displacement. The lead-rubber bearings were chosen and distributed
so that 38"!" and 12% of the total inertia force was allocated to each pier and
each abutment, respectively. The fundamental period of the unisolated bridge was
computed as 0.3 s, while the isolated design has a natural period of 0.8 s for small
amplitude vibrations, and 1.2 s for larger.

The system used for the design for seismic isolation is known in Japan as the
'Mcnshin design method' (Matsuo and Ham, 1991).

;~-
j

LRO

37.2 lcm/s'1 lEW IXI- Directionl

GL'15m~ -

"f Base 61.61cmis21-
Maximum ReCOIde<l Acceleralion Easlof Tokyo Earthqual<e

IEWIXI·Direclionl IMarch fBlh. 5:34 44-am 'l9QB1

Diagram of Giles Technical Centre showing seismic accelerations as mea­
sured on 18103/88 (courtesy Giles Corporation)

5FI43.0~""'21 I

3F 39.0 icm,s21 RC 2·Slorey Building- IBase·Fixedl
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Figure 6.18

~... .J

Figure 6.19 Giles Technic~t1 Centre, Tokyo (pholOgr'lIJh courtesy Giles Corporation)
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Figure 6.21

Figure 6.22

Lead-rubber bearing in Miyagawa Bridge showing transverse restraints
(photograph courtesy Oiles Corporation)

Miyagawa Bridge, Shizuoka Prefeclure, Japan (photograph courtesy Oiles
Corporation)

6.4 STRUCTURES ISOLATED IN THE USA

6.4.1 Introduction

The first use of seismic isolation in the USA occurred during 1979, when circuit
breakers were mounted on 7% damped elastomeric bearings. Since that time a
number of bridges and buildings have been buill or retrofilted with seismic isolalion.
The Foothill Communities Law and Justice Centre, on elaslOmeric bearings, was
the first ncw building in Ihe USA to be mounted on seismic isolalion. Tables 6.6
and 6.7 show buildings and bridges which have been seismically isolated in the
USA (Mayes, 1990-1992).

Table 6.6 Seismically isolated buildings in the United States

Building Height! Floor Area Isolation System Date

Storeys (m2)

Foothill Communities Law 4 17000 10% damped elastomerie 1985/6
and Justice Centre bearings

Salt Lake City and County 5 16000 Rubber and Lead-rubber 1987/8
Building (Retrofit) bearings

Sal! Lake City Manufacturing 4 93011 Lead-rubber bearings 1987188
Facility (Evans and Suther-
land Building)

USC University Hospital 8 33000 Rubber and Lead-Tlibber 1989
bearings

Fire Command and Control 2 3000 10% damped elastomeric 1989
Facility bearings

Rockwell Building (Retrofit) 8 28 000 Lead-rubber bearings 1989

Kaiser Computer Center 2 1091lO Lead-rubber bearings 1991

Mackay School of Mines 3 47011 10% damped elastomeric 1991
(Retrofit) bearings plus PTFE

'·Iawley Apartments (Retrofit) 4 I 900 Friction'pendul urn/sl ider 1991

Ch;lIll1ing I·louse Retirement " II) (i()() L.c:ld-rllbber bearings 1991
Ilome (Retrofit)

Long Beaeh VA I k\~llillil 12 1"1000 Lead-rubber bearings 1991
(Rell"Ofil)
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6.4.2 Foothill Communities Law and Justice Centre, San Bernardino,
California

This building, the first in the USA 10 be seismically isolated, in 1986. is mainly of
steel-frame construction with the basemem level consisting of concrele shear walls.
It is a (our-storey building wilh a tOial floor area of about 17000 m2 mounted on 96
'high damping' rubber bearings (see Figures 6.23 and 6.24)(Way, 1992). The 'high
damping' of 10-15% is obtained by increasing the amounl of carbon black. in the
rubber. Before the plans were finalised, estimates were made of the accelerJ.lions
and displacements of the structure when isolated and unisolated. For an un isolated
building with a struclural damping of 5%, it was estimated that the resonant period
would be 1.1 s, the base shear 0.8g and the rooftop would undergo accelerations

and displacements of 1.68 and 300 mm respectively.
For the isolated case with a conservative value of 8% for the damping, the

acceleration above the bearings was estimated to be 0.35g, while at the rooflOp the
acceleration was estimated at OAg with a displacement of 380 mm. The resonant

period had a value of 2 s.
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Table 6.7 Seismi<:ally isolated bridges in the Uniled States

Bridge Superstructure Bridge lsolalion Comple-
Iyp' Length Syslcm lion

(m) 0."

• Sierra Poinl Bridge. California LongilUdinal steel 190 LRB 1984/5
(U5101) (Retrofit) plate girders

• Santa Ana River Bridge. Sleel (russes 310 LRB 198617
California (Retrofit)

• Main Yard Vehkle Access Steel plale girders 80 LRB 1987
Bridge, California (Rclrofil)

• Eel River Bridge. California Steel through truss 185 LRB 1987
(US 101) (Relrofil) simple spans

• All American Canal Bridge, Continuous sleel 125 LRB 1988
California (Retrofit) plait girders

• Sexton Creek Bridge. Illinois Continuous steel 120 LRB 1990
plale girders

• Toll Plaza Road Bridge, Simple span steel 55 LRB 1990
Pennsylvania plate girder

• Lacey V. Murrow Bridge West Continuous concrete 340 LRB 1991
Approach. Washington (Retrofit) box girders

• Cache River Bridge, Illinois Continuous steel 85 LRB 1991
(Retrofit) plate girders

• Route 161 Over Dutch Hollow Steel plate girder 110 LRB 1991
Road, Illinois

• Wesl Sireet Overpass. New York Steel beam 50 LRB 1991
(Retrofit)

• US 40 Wabash Ri"er Bridge, Coolinuous sleel 270 LRB 1991
Indiana plate girders

• Metrolink Light Rail. SI Louis, Concrete box girder 65-280 LRB 1991
(7 dual bridges)

• Pequannock River Bridge, New Steel plate girders 260 LRB 1991
Jersey

• Blackstone River Bridge. Rhode Steel plate girders 305 LRB 1992
Island

• Bridges, 8764 E & W, Nevada Steel plate girders 135 LRB 1992
(Retrofit)

• Squamscotl River Bridge, New Steel plate girders 27B LRB 1992
Hampshire

• Olympic Blvd Separation, Steel plate girders 210 LRB 1992
California

• Carlson Blvd Bridge, California Concrete box girder 45 LRB 1992

• Clackamas Connector. Oregon Concrete box girder 305 LRB 1992

• Cedar River Bridge, Wa~hington Steel plate girders 160 LRB 1992

Key:
I.RB • t..c:ad-rubbcr llcann8'

r,'i~lIre 6,2)

313

h)(lltlill ('lIl1lllllllllhl'~ I i1W :m\! JU'hCC Cenlre (phologrnph coul1Csy Base
"\lIU1""1 ('lln~lI11jlllh. tll\ 11i110fl11Cd)
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6.4.3 Salt Lake City and County Building: retrofit

The Salt Lake City and County Building is a historic building, a massive five-storey
unreinforced masonry and stone structure with a 76 m high central clocktowcr,
which was completed in 1894. It is highly susceptible to earthquake damage, being
3 km from the Wasatch fault. It was retrofitted with seismic isolation, using a
combination of lead-rubber bearings and elaslomeric bearings (Bailey and Allen,
1989)

Figure 6.25 shows the far;ade of the building.
The retrofitting project began with an analysis of possible seismic isolation

systems, each of these to be carried out in conjunction with other structural changes
such as a steel space truss within the c!ocktower, various plywood diaphragms, and
anchorage of seismic hazards, such as chimneys, statues, gargoyles and balustrades,
around the exterior of the building.

The option of seismic isolation by means of a combination of elastomeric bear­
ings and lead-rubber bearings at the base of the building was chosen because it
would be least disruptive to the interior of the building; other options required
considerable demolition. Calculations indicated that this system would be adequate
to withstand the design earthquake.

The task of retrofitting was complex, and was made more difficult by inac­
curate detailing of the foundations on the original building plans, by variations in
the level of the building foundation, and by the requirement that the building be
damaged a~ little as possible, so that impact tools could not be used for cutting
through the stone. The original plan had placed 500 isolators below existing foun­
dations, but it was found that a massive concrete mat extended underneath the
four main tower piers. Isolators were therefore installed on top of the existing
footings, but the new first floor had to be raised 36 em, and hundreds of slots
had to be cut through existing walls above the footings in order to install the
isolators.

A major concern of the construction engineers was that an earthquake might
occur during retrofit, when part of the building was isolated and part not, and
when some walls had been removed. It was suggested (Bailey and Allen, 1989)
Ihat, in future, isolator locking mechanisms be employed during isolator installation
in areas of high seismicity.

A total of 443 isolators was used. All isolators were of Ihe same size, approxi­
mately 43 em square by 38 cm tall, to cut down on fabrication costs and to simplify
installation. Not all the isolators had lelld plugs, since computer analyses had indi­
c,lled unacccptably high lower shear for certain earthquake records. The isolators
wilh lead plug.~, approximalely half of lhe tot.d, were located around the perimeter
of the buildillg 10 give high damping for rot,lIi0l1:11 vibrations, and hence cut down
011 lorsional respollse.

1\ retaining Willi wn~ l'\lll.~tIlK·tl'tt round the building's exterior to ensure a
'100 mill ~eislllil' /oIlIP, JhlN 1I1('llIdlll~ H I:lrge .~.dcly factor as computer illl<llysis
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6.4.4 USC University Hospital, Los Angeles
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This is an eight-storey, 35 000 012 , steel-braced frame structure, with an asymmetric
floor plan, scheduled for occupation in 1991 (Asher et of. 1990). It is a 275­
bed teaching hospital, and is the first seismically isolated hospital in the world.
The owner had been made aware of the potcntial bencfits of seismic isolation
and requested that it be considered as an alternative during the schematic design
phase.

As no consensus document for isolation design procedures existed, the structural
engineer submitted proposed criteria for approval by the California Office of the
State Architect. Issues addressed by the criteria were: seismic input; design force
levels and essentially elastic behaviour: design displacement limits; and specific
analysis requirements. The scope of the analysis was set by the approved criteria
and extensive computation followed.

The seismic isolation solution arrived at is shown schematically in Figure 6.26,
namely a combination of lead-rubber bearings at the exterior braced-frame columns,
and elastomeric bearings at the interior vertical load-bearing columns. The com­
pleted hospital is seen in Figure 6.27.

The design displacement arrived at was about 260 mm, a value in good accor­
dance with those obtained by seismic isolatioo engineers in similar projects. All

had predicted only 12 cm lateral displacement of the building during the design
earthquake. A bumper restraint system was also installed as a back-up safely device.

'The project clearly demonstrated the feasibility of retrofitted isolation for a
building of this kind. where:

• shon periods result in high seismic forces
• the ratic of horizontal strength to weight is low
• ductility is low
• the risk of seismic collapse or cost of seismic repairs is unacceptable
• preservation has high cultural value
• the need to preserve exteriors and interiors limits scope for increasing strength

and ductility
• it is practical to modify for inclusion of isolators
• the structural fonn and proportions do not give uplift for isolator-allenuated

seismic forces
• adequate clearances for isolator and structure may be provided
• a practical isola!ion system gives an adequate reduction in seismic loads and

defomlations.

Figure 6.25 Salt Lake CilY and Counly Building. Utah: an historic builing retrofitted
with seismic isolation (photograph courtesy Dynamic Isolation Systems,
InCOl')Xlrated)

Figure 6.26
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Plnn of USC Ilo,pilill. I.os Allgcks, showing posilions of lead-rubber be<lr­
illgs nud ChlSIUllll'l ic Ill'iIl lng' (COUflcsy Dynamic Isolation Syslcms, lncor­
1)l1nlll'll)
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joints were detailed 10 allow a seismic gap 75 mm larger than the design displace­
ment.

Provision was made for inspection and replacement of the bearings if necessary.
This is currently common practice throughout the world, although in the future, as
experience with elastomeric bearings is gained, it will probably be found lhal lhcsc
bearings do nOI need replacement during the life of a building.

II was concluded (Asher et al. 1990) that, although the analysis procedures for a
seismically isolated structure are more complex than for a conventional fixed-base
structure. the actual design problems are no more complex than for an ordinary
building.

6.4.5 Sierra Point Overhead Bridge, San Francisco

Sierra Poilll Overhead Bridge. Sun Francisco. seismically isolated by
rclrotilling with lead rubber bcllrings (pholograph counesy Dynamic
bolalion SY~lCrll", Incoqxlnltcd)

Figure 6.28

The Sierra Poin! Bridge was the first bridge in North America to be retrofilled using
seismic isolation (Mayes, 1992). Originally built in 1956, it is 200 m long and 40 m
wide on slight horizontal curvature (see Figure 6.28). Dynamic analysis indicated
the bridge would sustain damage during a large design earthquake with horizontal
acceleration ofO.6g. TIle solution was 10 seismically isolate the bridge by replacing
the existing steel spherical pin type bearings with lead-rubber bearings. •

It was calculated thai, in an earthquake of magnitude Richter 8.3 on the San
Andreas Fault. 7 km from the sile, these bearings would lengthen the natural period
of vibration of Ihe structure so as 10 produce a six·fold reduction in real elastic
forces to a level within the clastic capacity of the columns. Restrainer bars were
added to prevent the stringers from falling off their connections to the transverse
girders. All work was done with no interruption of traffic on or under the bridge.

The bridge is expected to remain in service during and immediately after the
design event. (It did not receive a good test in the 1989 Lorna Prieta earthquake.
since the maximum ground acceleration was 0.09g.)

Completed USC Hospital. Los Angeles, California (photograph courtesy
Dynamic Isolation Systems, Incorporaled)

Figure 6.27
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6.4.6 Sexton Creek Bridge, Illinois
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6.5 STRUCTURES ISOLATED IN ITALY

321

This structure, carrying lIIinois ROUle 3 over Sexton Creek near the town of Gale
~n Alexander County. is ~e first new bridge in North America to be seismically
lsolat~ (1988). II was designed by the Illinois DepartmCni of Transponalion Office
of Bndges and Structures. It is a three-span continuous composite sleel plalc girder
superstructure on slightly curved alignment. supported on wall piers and seat-type
abutments. There are five 1.4 m deep girders in the 13 m wide cross-section, and
the spans are 40-50-40 m. The piers and abutments are founded on piled footings
(see Figure 6.29) (Mayes, 1990-92).

Feasibility studies were conducted, leading to alternative solutions. The SOlution
selected achieved the objective of reducing the seismic and non-seismic loads on
the piers as much as possible, because of the poor foundation conditions. Seismic
criteria for Sexton Creek included an acceleration coefficienl of 0.2g and a Soil
Profile Type Ill, in accordance with the AASHTO Guide Specifications for- Seismic
Design of Highway Bridges. The scheme chosen distribUied the seismic load de­
mands to the abutments using twenty lead-rubber bearings, with twenty elastomeric
bearings at the piers ('Force Control Bearings').

~ismi~ and wind forces at the piers were minimised through adjustments in
beanng stiffness at the piers and abutments. The real elastic base shear was reduced
toO.13W.

6.5.1 Introduction

The concept of seismic isolation, with an emphasis on energy absorption, has been
enthusiastically applied to bridges in Italy, but there are far fewer examples of
seismically isolated buildings.

The earliest records of bridges built in Italy go back two thousand years or
more. A wooden bridge is described in Caesar's Gallic Wars, Book 4, but bridges
spanning powerful rivers were usually built with stone piers llnd wooden super­
structures, such as the Flavian Rhine bridge at Moguntiacum, or Trajan's Danube
bridge, some 1120 m long (Cary, 1949). The modem technology of seismic isola­
tion has been incorporated into the Italian bridge-building tradition since 1974, as
shown in Table 6.8 (Parducci. 1992). in which details are given of over 150 bridges
seismically isolated in haly. A wide variety of isolating systems has been used, as
secn in Table 6.8, although the earliest applications were designed without mod­
em isolation criteria and certainly without official guidelines. A preliminary design
guideline was published by Autostrade Company in 1991. Generally, elastic-plastic
systems based on flexural defonnations of steel elements of various shapes ('EP'
in Table 6.8) were chosen. One such device is secn in Figure 6.30, while a de­

vice used in the Mortaiolo Bridge is described in detail below. Table 6.8 shows
that, even when two-way bridges are regarded as single structures, over 100 km of
bridge in Italy has been seismically isolated in some way.

Figure 6.29 Sexton Creel:. Bridge, ll1inois, filled with lead-nlbbcr bearings (photograph
counesy Dynamic Isolation Systems. IOCOl'pOr.lled)

An c1il\lll: pl>l\tll: lIcVIl:C u\Cd III the sci~l11ic i\Olutiol1 of bridges in haly
(1Ihl.lllllolr.lph nlurtc\)' A l'ilfl.hKti)
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Table 6.8 Bridges seismically isolated in Italy ~
N
N

No. of Name/Location Range of Total Superstructure Type Isolating System Date
Bridges Lengths (rn) Length (m) Completed

Somplago, Udine-Tarvisio 1240 Precast segmems EL (neoprene disc) 1974
5 Tiberina E45 1700 OL 1974
16 Udine-Tarvisio 240-900 7900 Box girder Long: elastorn. sleeves 1981-1986

Transv: elastom. discs
3 Udine-Tarvisio 400-830 1600 Box girder Long: EP dampers 1983

Transv: elas!om, discs
Cellino. Road SS251 580 Concrete beams EL (neoprene) 1983

3 Udine-Tarvisio 480-900 2100 Steel girder OL 1983-1986
Sesia, Trafori Highway 2100 OL 1984
Bruscata, Greco 70 Steel truss EL 1984
Pontebba, Udine-Tarvisio 960 Box girder EL (elastomer) 1984

2 Milano-Napoli 350-780 1100 Box girder EP (steel) 1985
>12 •Napoli-Bari 70-720 5700 PCB boxed, piers or Long: EP devices 011 abutments 1985-1988 ~
~

framed RC columns or on each span. Transv: EP on ii
pier ~

1 Slina 3. Udine-Travisio 160 Steel girders EL 1985 5z
1 Vallone, railway 240 Steel girders EL 1985

~

0
I Rivo1i Bianchi, Udine-Tarvisio 1000 Concrete beams Pneumatic dampers 1985 ~

~

2 Salerno-Reggio 600 1400 Concrete beams OL 1988 ~
3 Fiano-San Cesareo 300-1200 1850 Concrete beams RB + metal-shock 1986-1987 ~

"5 Fiano-San Cesareo 120-700 1400 Box girders RB + metal-shock 1986-1987 ~
6 Fiano-San Cesareo 100-650 1600 Box girdersJconcrele EL (rubber discs) 1986-1987 0

~

beams ~

continued Merlea! 5z

Table 6.8 (comilllled)
~

Xo. of NamclLocation Range of Total Superstructure Type Isolating System Date
~

~

Bridges Lcngths (m) Length (m) Completed
~
~

c, Fiano-San Ccsareo 300-700 1000 PCB Visco·elastic shock absorber 1986-1987 ~c
3 "Napoli-Bari 130-200 500 PCB LRB (long and transv) 1986 ~, .\1i1ano-Napoli 170 Concrete beams LRB 1986

~
~, Salerno-Reggio 350-900 1200 PCB OL 1987 0
~

Siuine, Trafori Highway 1800 PCB OL 1987 ~
Aqua Marcia. Milano-Napoli 325 Box girders Long: EP 1987 0

Transv: EL dampers 51
:'I.lOflte Vesuvio 6000 PCB EL dampers with mechanical 1987-1990 ~

dissipators !;

.- Roma-Firenze railway 200-2700 12400 Box girders OL 1987-1989

lonlrano. Salerno-Reggio 550 Box girders OL 1988

I Tagliarnento, Pontebbana 1000 PCB Visco-elastic 1988'

6 Roma-L'Aquila-Teramo 128-450 1800 Box girders EL (rubber + metal shock) 1988

I Calore. Casel1a (railway) 100 PCB EL dampers + mechanical 1988

dissipators
Granola. railway overpass 120 Concrete slab Bearings + EL buffers 1988, Viaducts, San Mango 600.640 1200 Steel girders OL 1988-1990
Morignano. A14 highway 450 PCB EP dampers 1989
"Lenze~Pezze, Napoli-Bari 300 PCB EP dampers 1989, Vinorio Veneto -Pian di Vedoia 210--2100 2300 PCB Long: Visco-elastic Trans: EP 1989
Pont Suaz, Aosta 240 PCB EP shock absorber 1989
flumicello. Bologna-Firenze 300 PCB OL 1989
Temperino, Roma-L'Aquila 830 PCB EP dampers 1989
S.Onofrio, Salerno-Reggio 450 PCB OL 1989 ~

N
~
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3 Roma-L'Aquila 230-1300 1800 Box girders OL+ RB 1989 ~

I::
1 'D'Amico. Napoli-Bari 250 Composite deck EP 1989
1 Viadotlo. Targia-Siracusa 23 Concrete beams EP 1989
3 Nllpoli-Bari (relrofillcd) 160-390 720 PCB EP 1989-1990
1 '3rd Line. Rama-Napoli 580 Concrete beams lRB 1990

7 •Milano-Napoli 100-200 1000 PCO EP 1~1991

1 SnnUt Barbara. railway overpass 120 Concrete slab EP 1990

1 Torn. Firenze-Pisa-Livomo 5000 Steel girders EP multidirectional 1990

3 Roma-L'Aquila 23o-S00 1200 Box girders Pneudynamic + RB 1990-1991
2 Salerno-Reggio 190. 390 600 Concrete beams OL 1990

1 Railway Rocca Avellino 400 Concrete beams OL 1990

1 55 206. Firenze-Pisa-Livomo 2500 Steel girders EP 1990

1 liasca. Trafari highway 1610 PCB Elastic buffers 1990

1 Vesuvio. 55 269 1860 PCB Elastic buffers 1990

3 Mcssina-Palcnno 900 900 Prestressed concrete box EP (long) 1990

girder >
9600 Prestressed concrete Sillbs EP wilh shock absorbers •Monaiolo. Livomo- 1990-1992

~Civitavecchio

S Antonio. Brelella 700 Preslressed concrete EP with shock absorbers 1991 ~a
2 Salerno-Reggio 350,500 850 PCB EP 1991 z

~

2 PN-Conigliano 500. 800 1300 Prestressed concrete EP 1991 0
~

1 Minuto. Fondo Valle Sele 1000 PCB Ol 1991 ~

3 Roma-L' Aquila-Teramo 200-300 700 Box girders Ol 1991-1992 ~

1 Poggio lbema. Livorno- 2500 PCB OL 1991-1992 ~
Civitavecchia §

3 Livomo-Cecina 600-1800 2800 PCB EP, EP+ RH 1991-1992 ~
comilllle,t m'er"m! isz

Table 6.8 Continued E:

'0. of NamelLocation Range of Total Superstructure Type Isolating Syslem Date
~c

Bridges Lengths (m) Length (m) Completed q
c
"'Rumeano, Via Salaria 340 PCB EP Retrofit rn

designed ~
0

Viadolto No 2, Tangenziale 240 PCB EP 1990
~

POIenza m

450 BOiled RC beams EL 1990
0

1 Angusta. Siracusa Z
7 'Salemo-R Calabria 100-500 1800 PCB with connecting EP Retrofit

~slabs designed
~

Fragneto 870 Steel boll girder with RC Ell devices on piers, with ST Designed

slabs long. Highest piers connected

Ponte Nelle Alpi. Via Veneto- 310 Steel boll girder with RC Long: EP with ST Designed

Pian di Vedoia slabs Tnmsv: EP on all piers

RB = Rubber bearings
LRll • Lead-rubber bearings
Re • Reinforeed COflcrete
PCB = I'reslrcsscd eoncrete beams

Kty:
EP • Elastic-plastic behaviour
EL • Elastic
OL • OleOOynamic system (EP equivalem)
SL • Sliding suppon
ST • Shock tnmsmiuer system associated with SL
'()II~:

V,;bert bridgts are two-way. tlley have been regarded as a singlt bridge in estimating the length.
Tht total length of isolated bridges is thuS greater than 100 km.
Of lhc more recent bridges (1985-1992). typical design values of the parameters are:

• Yield/weight ratio: 5-28%. with a representative value of 10%.
• ~luimu111 seismic displacemem: ±30 to ± 150 nUll. with a represcntative value of ±60 nllll.
• Peak ground acceleration: O.15-Q.40 g. with a representative value of 0.25 g.

Kno....n retrofits are indicated with an asterisk (.)
~

I);
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To date. only a few seismically isolated housing constructions have been designed
or built in Italy (Parducci, 1992). These are detailed below. Vulcanised rubber-steel
multi-layer pads are the seismic isolation system used.

length of tilt stondord
Section of tilt coottl'llOUS
suptrstructurt'; 432m

totol ltflgth of the brld!jt
IS owro~lmlJtety IQkm

HORTAIOLO BRIDGE

p--- -::---- --r----,

I I -<>-~-Q' I I"/-.;00 I I,,'-f, \ I r---j
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I \ L __ -J
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'I ""< C(<'>' ,
L~___ _~_~ _~ J
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B - 12·25_

(a) A sehcmalie diagnlill of MOf11lioio Bridge. (b) A ~hcm:ltic diagram
of one of the holmioll deviee~ u..cd in Ihe MOl1aiolo Bridge (COUrlcsy A
Pllrducci)
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6.5.3 The Mortaiolo Bridge

The Monaiolo Bridge, a major two-way bridge in the Livomo-Cecina section of
the Uvomo-Civitavecchia highway. was complctcd in 1992. The bridge crosses
the large plain composed of deep soft clay stratifications lying near Livomo, in a
region of seismic risk.

The bridge is 9.6 km long, with typical spans of 45 m (see Figure 6.3I(a»,
madc of preSlrcssed reinforced-concrcte slab, with elastic-plastic devices on all
the piers, shock-transmitter systems in the longitudinal direction, and a designed
peak ground acceleration of 0.25g. The elastic stiffness of the isolating device, in
a typical section, is 135 MN m-I

, the yield/weight ratio is 0.11 and the maximum
seismic displacement of the isolating system is ±80 mm (Parducci and Mezzi,
1991; Parducci, 1992).

=OAx 106 kg

= 2.0 s

= 13%

= 0.25g

= 180 mm

Buildings Della Marina Militare. Augusta (designed).

Isolatcd mass

Natural period

E(IUivalcnt dalllpilll!

Maximum groulld al;l;ckrnlioll

Maximum dc~igl1 di.~pllln'nll·111

(;) SIP Regional Adm;n;sua,ion Centre, Ancona.
Five 7-storey seismically isolated buildings.
Elastomeric bearings had diameter 600 mm, height 190 mm.

Type 'A': Isolated mass = 7.0 x 1()6 kg, 61 isolators

Type 'B': Isolated mass = 3.7 x Ilfi kg, 36 isolators

Horizontal stiffness = 114, 65 MN m- I

Natural periods = 1.5, 1.6 s

Design viscous damping = 0.06 (experimental ~ 0.12)

Maximum response spectrum acceleration = 0.5g

Maximum design displacement = 145 mm

A full scale test was carried out on a Type-'A' building; imposed displace­
ments were up to 107 mm, before instant release.

(ii) Nuovo Nucleo Arruolamento Volontari, Ancona.

lsolatcd mass = 0.5 x 1()6 kg

Natural period = 1.6 s .

Equivalent damping = 10%

Maximum ground acceleration = 0.5g ('single shock' quake)

Maximum design displacement = 85 mm

Centro Medico Legale Della Marina Militare, Augusta (designed).

Isolated mass = 0.2 x llfi kg

Natural period = 2.0 s

Equivalent damping = 10%

Maximum ground acceleration = O.25g

Maximum design displacement = 180 mm

6.5.2 Seismically isolated buildings

(iv)

(iii)
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Two equivalent isolating systems, manufactured by Italian finns, have been
utilised in the bridge. Although they are based on different mechanical systems,
they respond in the same elastic-plastic way. In both the devices the dissipat-

6.6 ISOLATION OF DELICATE OR POTENTIALLY
HAZARDOUS STRUCTURES OR SUBSTRUCTURES

6.6.1 Introduction

Seismic problems arise with lightweight. delicate or potentially hazardous structures
and substructures, such as life-support equipment in hospitals; important works of
artistic or religious significance. e.g. the big statue of Buddha at Kamakura, Japan:
equipment sensitive to vibration: and the radioactive components and associated
support systems of nuclear reactors.

An example of such a structure, where seismic isolation was installed because the
cost of the contents far exceeds that of the building. is the Evans and Sutherland
Building in Utah, which manufactures computerised flight simulator equipment
(Mayes, 1992). Another example is the Mark II detector for the Stanford Linear
collider at Stanford University, Palo Alto, California, which was provided with
seismic isolation in 1987 (Mayes, 1992). Four lead-rubber bearings were installed
under the detector, also supporting the 1500 t mass of the collider. The isolation
system was designed to reduce seismic forees by a factor of 10 and provide seismic
protection of this sensitive and expensive equipment at less than 0.4% of its cost.
Thc detector was not damaged during the 1989 Loma Prieta earthquake (Richtcr
magnitude 7.1).

Approximately bilincllr isolators, which usually provide most of the mode-I
damping, have been found to be practical and convcnicnt for the large-scale iso­
lation of buildings and bridges as sllch. However, when an aseismic design is
critically controlled by the responses of relatively lightweight substructures it is
often appropriate to restrict the isolators to moderate or low levels of non-linearity.
For such isolators it will sometimcs be appropriatc to provide 11 substantial part of
the mode-l damping by approximately linear velocity dampers.

These restrictions would not pl'Ccllldc the lise of moder;lte levels of bilinear
damping by means of metal yielding or by low sliding.friction forces. For ex­
:1Il11>le. the weight of an i,olatcd structure migll1 be c:uTled on luhricaled PTFE
bearings. Ilowcvcr, to Illillillli,c re,onallt appcllltagc dfcch during relatively frc-

ing behaviour is based on the hysteretic ncxural deformations of steel elements.

Figure 6.31(b) illustrates Ihe principle of opcmtion of one of these devices. Pro­
vision for relative tilting between the piers and superstructure is provided by a
spherical bearing. Damping is provided claslo-pluslically by the deflection of nu­
merous steel cantilevers arranged in a ring. A shock transmitter, a highly viscous
device based on an oil-piston system, is in series with Ihe isolator. The device is
shown under lest in Figure 6.32.

Figure 6.33 shows the Mortaiolo Bridge when nearly completed; further details
are given by Parducci and Mezzi (1991). who also show that the real incremental
cost of the isolating systems was only 4.8% of the bridge cost.

MMlainln (hIlIVI' Ill',11 l:\)tIlpletioll (l)hOlogr:lph coul1csy A Pltr(lucci)

One of the isolalioo devices used in the Monaiolo Bridge. under lest (ph0­
tograph councsy A Parducci)

......_~_...IrFI ROUSTRIALE JL-_........
Figure 6.32
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quem moderate earthquakes. such PTFE bearings should be supported by flexible
mounts, as in the laminalcd-rubber/lead-bronze bearings pioneered by Jolivel and
Riehli (1977). Further isolator components should include flexible clastic compo­
nenlS 10 provide centring forces, and sometimes substantial velocity damping. Both
the latter componenlS reduce the maximum extreme-earthquake base movements
for which provision must be made.

Nuclear power plants contain critical lightweight substructures essential for their
safe operation and shul-down. including control rods. fuel rods and essential pip­
ing. These can be given a high level of protection by appropriate seismic isolalion
systems. designed to give low levels of seismic response for higher vibrational
modes of major pans of the power plants. Furthcr serious seismic problems arise
with fast-breeder reactors in which critical components are given low strength by
measures designed to give high rates of heat transfer. For some breeder-reactor de.
signs it may be desirable to attenuate vcrtical as well as horizontal seismic forces.
In this case it may be practical to providc horiwntal allenuation for the overall
plant and vertical attenuation for the reaction vessel only. Since thc dominant vcr.
tical earthquake accelerations have considerably shorter periods than the associated
horizontal accelerations, displacements associated with vertical attenuation should
be much smaller than those for horizontal attenuation.

Early papers on nuclear power plant isolation, (Skinner el al. 19700. I976b),
concentrated on the protection of the overall power plant slructure but did not treat
the problems with lightweight substructures, which arise from the seismic responses
of higher modes of struclUral vibration. Structural protection may now be achieved
with simpler alternative isolator components; for example the use of lead-rubber
bearings may remove Ihe need for installing steel-beam dampers.

6.6.2 Seismically isolated nuclear power stations

Seismic isolation of nuclear structures is seen as a way 10 simplify design, to
facilitate standardisation, to enhance safety margins and possibly to reduce cost
(Tajirian et at.. (990). For example, it has been demonstrated that thc wcight of
a pool-type fast-brecdcr reactor can be reduced by half if horizontal isolation is
used. An exhibition at a recent conference (SMiRT-II, 1991) had an emphasis on
seismic isolation for nuclear structures.

By 1990 it was reported (Tajirian el al., 1990) that six large pressuriscd water
reactor units had been installed, with seismic isolation, in Franec and South Africa
and that several advanced nuclear concepts in the USA, Japan and Europe hnd also
incorporalcd Ihis approach.

Thc dcsign concepts for seismic isolalion of two liquid-metal reactors, with the
acronyms PRISM and SAFR, have been carried out in the USA. For thc PRISM
design, horizontal protection, for thc renctor module only, is providcd by 20 high­
dnmping c1aslOmcric bearings, while the SAFR design is unique in providing vcr­
lic"l as wcll as horizonlal isolation, by using bearings which are flexiblc, both 110r-

izontally and vertically. The entire SAFR building is supported on 100 isolators.
The seismic design basis for both plants is expected to cover over 80% of potential
nuclear sites in Ihe USA, and options for highcr seismic wnes have also been
invcsligated.

6,6.3 Protection of capacitor banks, Haywards, New Zealand

The AC Filter Capacitor Banks at Ihc Haywards HVDe Convertcr Stalion in thc
Hun Valley, New Zealand were built in 1965. Their earthquake resistance was
increased in 1988 10 Ihe current seismic design requirement using a base-isolation
method employing rubber bearings and hyslerelic steel dampers (Pham, 1991) (see

Figures 6.34 and 6.35). Design considerations for one of the structures have been
discussed in Chapter 5.

Owing to the light mass involved, lead-rubber bearings were found to be in­
appropriate and specially designed segmcnted rubber bearings wcre used. These
bearings have rubber layers bonded alternatively with steel plates in the conven­
tional manner. However the rubber layers are not continuous but divided into four
discs of 110 mm diameter each, as shown in Figure 3.14. This is to reduce the
rubber shear area, while maintaining stability, and hence reduce the shear stiffness
sufficiently to shift the nalural periods of the relatively light AC Filter Capacitor
Banks from 0.2-0.5 s to 1.8 s.

Dynamic shaking tests were done on I t bearings and static shear tests were
done on 5 I bearings of this design. Test results have indicated that the bearings met
the design specifications. To limit the displaccmcnts during large carthquakes and
provide lateral restraints during minor earthquakes and for wind loads, hysteretic
steel dampers were provided (sec Figure 3.3(b)).

Even with the base isolation, it was found that the insulators supporting the
capacitor stack would not have adequate seismic strength. To reduce the bend­
ing moment at the support insulators, the stacks are split into two halves, thus
effectively reducing the bending moment at thc support insulators by a factor of
two.

The specifications are as follows.

AC Filter Capacitor Hanks: a total of 18 banks of three differcnt Iypes with
individual masses varying from 20000 kg 10 32 000 kg. The heights of thc banks
vary from 6.6 OJ to 9.6 111.

Rubber Hearings: eaeh bank has four to six bearings rated at 5000 kg each. Each
bearing has 19 layers with a 101al height of 254 mm and a plan dimension of
4()() x 4()() mill. The shear stiffness is ratcd at 0.06 kN mm-1.

1),lInpcrs: c;lch bank is pmvided with two circular tapered-stcd dampers with a
basc diameter of 45 mm. a hcight of SOO mill and was dcsigncd for a yicld force Qr
of 10.6 kN.
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'-igure 6.34

Figure 6.35

Capacitor banks at Haywards HVDe convener Slation in the HUll Valley.
New Zealand. seismically isolated by rctrofilling with segmented rubber
bearings and steel dampers (photograph counesy of R.T. Hefford)

Dct:lil of rc1rofillcd seismic isolation system for Haywards. as sccn on the
lefl of FiguTC 6.30. NOle the IOw-s1iffness elas10meric bellring. 1he !>to:.'cl
e~1I11ilevcr d:unper :lIld 1he original concrete suppoTl

6.6.4 Seismic isolation of a printing press in Wellington, New Zealand

In 1988 Wellington Newspapers Ltd approached the DSIR seeking advice on earth­
quake protection for a proposed new printing press establishment to be built in the
WeliinglOn region al Petonc (Dowrick et aJ., 1991). The need for special protec­
tion of brittle cast-iron press machines had been demonstrated by the vulnerability
of paper-printing machines in the 1987 Edgccumbe earthquake. The site for this
project was chosen because of its ready access to rail and road transport. but turned
out 10 be traversed by Ihe Wellington faull.

To give the printing presses maximum prote<:tion from earthquakes, the building
required a seismic isolation system, and in addition Ihe building had to be as stiff
as possible up 10 the top of the presses 10 limit the horizontal deftections of Ihe
presses in all direclions. The originally proposed concrete walls were therefore
extended in heighl and lenglh around the ends of the press hall, and the mezzanine
ftoor was stiffened. Creating enough horizontal stiffness in the direction lateral to
lhe presses at the top platfonn level proved to be particularly difficult because
visibility required for operations necessitated the use of a horizontal steel truss
at this level (rather than using an opaque concrete slab). It was not practicable
to create a truss wilh the oplimum desired stiffness, but a workable solulion was
found (see Figure 6.36).

The dynamic analyses were carried out using a computer program for analysing
seismically isolated structures incorporating the non-linear behaviour of the special
isolating and damping system inlroduced below the ground f1oor. From the results
of thc first trial analysis, it was found that Ihe horizonlal acceleralions applied (0

the isolated slruclure, due 10 the very strong shaking caused by a rupture on the
Wellington fault. would be in the range approximately 0.4-0.6g. It would have
been both expensive and physically very difficult to give a high level of protection
to the press against damaging defleClions under such accelerations. particularly at
the upper plalfonn level. An addilional disadvan!age arose from the faci that it
was nOI feasible operationally to apply any lateral restrain! to the press at a level
midway belween the top platfonn and the mezzanine floor.

It was found practicable to provide protection against earthquake~generatedac­
celerations. transmitted through the structure. of about 0.38 at the top of the press
and 0.25g at the lower levels. The specially designed building housing the press
was mounted on lead-rubber bearings 460 mm thick. This reduced the estimated
loads and deflections on the press by a factor of 8-10 compared with the non~

isolated case (see Figures 6.37 and 6.38). As a result, the press should suffer only
modest d,l1nagc in earthquake shaking somcwhat stronger than that required by the
New Zealand carthquake codc for thc design of buildings.
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figure 6.38 Lead-rubber bearings in place in Press Hall

6.7 NOTE ADDED IN PROOF (JANUARY 1993)

An emerging trend ill the dl'vdoplllcnt of 'ei,mie isolation is Ihe lISC of systems
which incorponlte till" IX'IIl'ht, III llllllly dlllcrclIt i,olalor cOlllponent', for in'tanCc
IC:ld nlbhcr he,ll Ill}:' hlt/I'lhl" Wllh lI11~'h tllll1lPIll~) rubber heanng, :md/or IOgcther
with ~Iccl or VIWllll~ tllllllllt't' SUI II \\Itllhllllltll)th conkr the m:nimutll heneht of
each cOllll)t)lll'nt III Ih.· ,y~h III II II \\-holl'

• New Zealand Parliament House in Wellington, a building of importance for
New Zealand. built in 1921. is at present being retrofitted with seismic isolation
using a lead-rubber bearing system. The new New Zealand National Museum,
to be built on the waterfront in Wellington. will be seismically isolated, probably
using a similar system.

• Japan In addition to the bridges listed in Table 6.5. at least ten further new
bridges in Japan are to be seismically isolated. most of these using a lead-rubber
bearing system. The new Post Office Building in Tokyo is to be seismically
isolated using a lead-rubber system and will be twice the area of the C·l
Building. currently the largest seismically isolated building in the world.

• USA A largc number of bridges are being retrofitted with the lead-rubber
bearings white many buildings, including hospitals, are scheduled for seismic
isolation.

• Italy A number of new buildings wilh seismic isolatioll arc 'Oil the drawing­
board', wilh Illany of Ihesc being hospitals or olhcr buildings nceded in civil
cmergency. New hridges contlllue 10 he constructed with seismic isolation.

During the six months since the manuscript of this book was submitted, applications
of seismic isolation in New Zealand, Japan, the USA and Italy have continued to
progress at a significant rate.
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Index

Active isolation see Seismic isolation
Appendage responses see Secondary system

responses

Base displacement see Horizontal seismic
displacement

Base isolation see Seismic isolation
Base shear 6(F), 7, 26, 37, 138, 160, 163,

194,235,262,266
in 7 case sllldies and 7 classes of isolator

40-54, 42(F), 44(T)
ratio to weight 42(F). 44(T), 162, 163(F),

294
Iec also Shear distribution

Bearings
elaSlomeric (rubber or laminated-rubber)

57, 57(T), 85-%, 86(F). 87(F),
88(F), 92(F), 94(F), 220. 220(F),
221, 221 (F), 225, 253, 262, 268,
275, 278, 283, 284(T). 290, 299,
300(T), 302(T). 303, 304(F). 305,
311, 311m, 313, 314(F), 317, 311(F),
320, 322(T), 326,331

and modification 10 fonn lead-rubber
bearing 58. 97, 98(F), 10 I(1'), 284

high-damping 57, 57(T), 110, 300(T),
302(T),303,305,313,314(F)

with lead bronze 330
lead-rubber (LRB) 57(1'), 58, 96-108,

98(F), 101(F), 102(F), I03(F). I05(F).
106(F), 107(F), 109(F). lGO. 225. 253,
268, 275, 279, 283, 284, 284('1').
2&5(1'). 286. 287(F), 300(T), 302('1'),
303, 305, 307, 308(F), 3()l)(F), 31 O(F),
311('1'), 312('1'), 315, 316(F), 317,
317(F), 319, 319(F), 320, 320(Fj,
322('1'),329,330,333, 33'1(1"), 33~(I;j

lY I'FE sliding III. 112,275,330
Buffers and stol's 55, 57('1'), II.~, 11(" 2M,

269,276, 21)l), 31(,

Case slUdies
7 linear-chain structures with different

isolation 12, 40-48, 44(1')
and gcncralisation to 7 classes of

isolation system 48-54
81 linear-chain structures with bilinear

isolation 12, 26, 186-199, 188(T),
192(F), 198(F)

secondary responses of various isolation
systems 217-225, 220(F), 222(F)

Choice of isolation system see Guidelines
Classical see Mode
Combination rules 212-213, 256

CQC 37, 231
SRSS 37, 196-199,204,212

Contents see Secondary system responses
199,329

Correction factor 26, 44(T), 165-169,
168(F), 247(F), 248

Costs 2, 3, 21, 55, 116, 241, 242, 270, 271,
272,283,294,299,315,329,330

Coupling parameter see Secondary system
responses 207

Damper
Coulomb 9, 9(F), 24(F), 81, 84, 160, 173,

174(F)
friction 57(1'), 58, 160, 300('1')
hydraulic 110
IC:ld extrusion (LED) 57('1'), 58, 79(F),

80~85, 82(F), lGO, 275, 283, 284('1'),
285('1'),288, 288(F), 297, 297(F), 299,
300('1')

~tccl (~tccl beam) 57('1'), 58, 63-76,
66(17), 69(17), D(F), 75(F), IGO,
262, 275, 283, 284('1'), 285('1'), 295,
2%(1:),300('1'),303, 30'1(F), 305, 321,
.!21(F), 322('1'), 327(F), 32K(F), 329,
110, 111

Vi,\l'\'US \v\'I\l(.'lly \!tlmIK'I) IJ, ')(1'), 2~(n,
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Damper (COni.)
57.57(1), 110. 124.275.~,305.
306(F), 322(1)

$U also Bearings 3-4
Damping 4. 5(F}. 15. 19(F)

and energy dissipation 59. 121, 122,236.
283, 284, 289. 297. 329

base 120, 140-145. 149-151,236
coefficient 16,22, 23(F). 24(F), 124, 127,

I74(F). 255. 273(F)
classical see Mode
hysteretic 25. 44(T). 58, 128. 165, 236,

259, 274, 275. 290
mass-proponional 127.201
non-classical Sl!(! Mode
of isohuor components 55-58. 57(n
stiffness-proportional 127. 220
viscous 25. 120, 128.236.259.326.329

Damping factor (fraction of critical viscous
damping) 16.17.22.36,44(1),126.136.
147.259
'effective' or 'equivalent" JU Equivalent

linearisation
hysteretic 25, 44(T). 165. 259

Damping matri;>; 29
free-free 145, 173

Degree of isolation see [solation factor
Degree of non-linearity see Non·]jnearity

factor
Design detailing 7, 55. 64. 65. 67(F). 74. 96.

242, 266. 269. 294, 330. 333
Design displacemenl su Seismic gap
Design earthquake 4. 20. 164. 242-246.

244(F). 257, 261. 267. 274. 277. 283.
291. 295, 319. 333

Design guidelines su Guidelines
Devices see Bearings; Buffers; Dampers;

Gravily devices: lsolalors and isolating
systems; Piles; Springs

DSIR xi, xiii. 160.281. 333
Physical Sciences xiii. 10
Physics and Engineering Laboratory xi.

xiii. 10,63.77
Duhamel integral 17. 153

E:lrllM.{U:lkcs
artilicial 4. 246. 291
EdglX:umbe 281. 333
EI Ccnlro 1934 19(F)
III CCnlro NS 1940 4. 12. 18. 19<F).

40-48, 42(1'), 44(T), 160. IK6 11)1',

INDEX

220, 222, 234, 249, 283, 289
scaled EI Cenlro 160, 162, 163(F),

164. 16S, 166(F), 167(F).
168(F). 225, 242-246. 244(F).
247(F), 25fl(F), 261, 298

Loma Prieta 319. 329
Mexico City 4, 221
Olympia 19(F)
Pacoima Dam 4. 221, 225, 283, 298, 299
Parkfield 160. 225
Taft 19(F), 225

Earthquake spectrum see Response spectrum
EfflX:live period; Effeclive stiffness; Effec­

tive damping factor see Equivalent lin­
earisation

Equalion of mOlion 16, 29, 56, 124. 136,
145. 152-155. 170. 173. 175, 183-185

Equivalent linearisalion 23(F), 24-26, 24(F),
44(1). 48. 121, 160, 165-169. 166(F),
167(F), 168(F). 236, 247(F). 248,
251-254. 252(F), 259, 261-266

Energy dissipalion see Damping
Extreme earthquake evenl see Design

earthquake
Extrusion 77-&4, 77(F), 79(F), 82(F), 83(F)

see also Damper, lead-extrusion

Fatigue 64, 74-76, 75(F), 80, 85. 106
Flexibility (inverse of stiffness) 4. 5(F). 10

in 7 structures 40-48. 42(F), 44{T)
in 7 classes of iSOlating syslem 48-54.

5O(T)
in 81 struclUres on bilinear isolators

186--199, 188(1)
of common isolator components 55-58,

57(1)
Floor (response) spectra 12, 18.27. 34(F).

158. 161, 181,200,218-225.235.236,
238, 240. 254. 268. 295
of 7 structures 40-48. 42(F), 44{D
of various isolation systems 218-225.

220(F)
see abo Secondary system responses

Force-displaccment loop (load versus dencc­
tion hysteresis loop) 22-25, 40-54. 44(F).
5O(D. 237
for bridge 274
for small displacements 108. 109(F)
of bilinear isolator 9, 9(1"), 24(F). 25. 56.

160.251-254. 252(F)
of eXlrusion damper 81. 82(F)

INDEX

of lead-rubber bearing 101, IOI(F). 102.
103(F)

of linear isolator 9, 9(F), 22, 23(F)
of PlrE bearings III, 112
of rocking slruclure 113
of rubber bearing 94(F). 101, 101(F)
of typical melal 59
of steel damper 68-72. 69(F). 73(F)

Foss's method 123, 151-159
Frequency (inverse of period) see Period

complex 126-160.205
Frequencyequalion 126. 127, 131, 145
Fundamental (first) mode 20, 32(F), 40-48,

42(F). 119, 121, 138, 149-151, 178(F),
182(F), 186, 188(1'), 192(F), 198(F). 235,
249, 250(F), 255, 278

GravilY devices
slepping and rocking 57(1'), 58, 63, 112.

113,283. 285(T). 288. 289(F), 290(F).
291(F)

rollers, balls and rockers 57, 57(T), 114
hanging links and cables 114,271

Guidelines 239-280
and design codes 276-280
and iterative procedures for design

257-261
for design of an isolated structure 13,

192(F), 239. 244(F), 247(F), 249,
25O(F), 251-254. 252(F)

for linear isolalion syslems 255-257
for bilinear isolation systems 257-261
for selection of isolation system compo-

nents 55-58
for seleclion of isolation systems 5O(T},

48-54
for lorsionally unbalanced struclures 226

Higher modes 12, 20-21, 23(F). 27-28,
40-54, 122-124, 128, 138, 148, 150.
161, 163, 165, 176-184, I78(F). IS2(F).
186-199, 188en. 192(F). 198(F). 235.
236.237.239.249. 250(F), 251. 253.
260, 265. 268. 275. 27B

Higher-mode attcnu;llor 23, 23(F), 15K
11017.er tlX:hni<lue 124. 149-151
lIoril.OOl:11 seismic di"IJ1:lCcmcnt 4. 19(1').

21. 37. 55. 90 92, 125{F), 11.1(1').
144(1'), 161,216, 247(1'), :!~6. 2~H. 2(,2,
2(j(1, 281. ~) I
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of 7 cases and 7 classes of isolators and
isolating systems 40-54, 42(F), 44(1),
5O(T)

su also Mode-shape; Seismic gap: Peak:
yalues of .. , ...

Hysteresis loop
and damping and energy dissipation su

Damping
(shear) force versus displacement see

Force-displacement loop
(stress versus strain) and (torque versus

shear) 59--<i2, 6O(F), 68-72

Interaction parameter (interaction coeffi­
cient) see S«ondary system responses
203. 2C11

Isolation factor (degree of isolation) (iso­
lation ratio) 4. 12, 28, 40-54, 44(1),
128-199, 134(F). 192(F), 219, 236, 237.
249, 250(F). 254. 260, 265. 268

lsolalor force 173. 174
Isolators and isolation systems 8, 9. 10,

40-54. 42(F), 44(D, 5O(T), 55-58. 57<D
Alexisismon 160
bilinear (simple case of non-linear) 9.

9(F), 23-26, 24(F), 40-48, 42(F),
44(T), 55-58. 57(T), 160-199, 163(1'),
166(F). 167(F). 168(F), I 74(F),
I78(F). 182(F), 192(F), 198(F),
251-254, 252(F), 257-261

damped linear 9. 9(F), 22, 23(F). 40-48.
42(F), 44(1). 55-58, 57(1), 123-160.
125(F). 131(F), 134(F), 144(F),235,
254-257

elastoplaslic 219. 22O(F), 221, 222(F)
Electricite de France 160. 220(F). 221,

222(F)
friction 122, 160. 220. 220(F), 222(F).

237
for scismic protection of capacitor b.1nks

261-266.331. 332(1'). 334(F)
for :1 hYPolhelical building 266-270
guide to selection ,1'/'/' Guidelines
nOll-line;lr. in gcncr:,l 22. 55-58. 57('1').

121. 1m
p:lramCICr\ 2226. 161-169. 163(1').

I lKl(I'), 167(1'), 1NI(F). 187. 188("11,
2)\).251 254, 2~K, 2(JS. 212-274

rC\lhClll fmholl 1fill. :!20C!,), 221. 222(F).
224

\,111111,')('1 Itll)
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sliding resilient friction 2-42. 160.
220(f), 221, 222(F)

see also Bearings; Dampers: Piles;
Gravity devices; Springs

Italy
seismic isolation in this country 65. 280.

281. 282(1). 322(f)
slruCtures seismically isolated 321

buildings 326
bridges 321(F). 322(1). 327. 327(F).

328(F)

Japan
seismic isolation in this country 1. 65. 85,

96,280,281, 282(T), 300(1). 302(T).
301.309,330

structures seismically isolated 329
buildings 299. 300(T). 303-308.

lO4(F), 306(F), 307(F), 308(f)
bridges 299, 302(1). 3QC)--310, 309(F).

310(f)

Lead extrusion damper (LED) see Damper
Lead-rubber bearing (LRB) see Bearing
Lifetime

of isolation system 9. 57. 276
of steel damper 75. 75(F)
of CJL:trosioo damper 84, 85

Maintenance. inspection. repair 3. 9. 55. 51,
S8, 64. 269, 272. 282, 299, 318

Mass ratio see Interaction parameter
M:lximum values of displacement, velocity.

accclcmlion see Peak values
Modal coupling 169-186, 178(F)
Modal decomposition 39, 136

see olso Modal filtering
Modal filtering (mode sweeping) 12. 40,

122. 161. 171-186, 178(F). 182(F), 187,
219.240

Modo
c1assicHI (in phase) 31, 35. 120, 127,

128-139, 149, 150. 156,255
fl'l.'C-frcc 119. 129. 131(F), 134(F), 135,

In, 185, 187.236,256
perturbation to free-free mode 119,

145-148
li~ed-b;I'iC 127. 128, 132

perturll.1tion to lixc<l-ba.'iC mode 159
fundamcntal .\1'(" Fund:Ullcnllll (fiN)

nuxlc

h'\DEX

higher su Higher modes
mode shape (mode profile) 30-33. 32(F),

133, 134(F), 144(F). 149-151, 178(F),
256

non-classical 120, 127, 140-145, 144(F),
151-160,200.236,240.255

of bridge 273, 273(F). 274
of elastic and yielded phases of bilinear

isolator 177-184, 178(F).237
of linear Structures with bilinear isolation

169-186.178(F)
primary--secondary, tuned and detuned

202-214,204(T)
secondary systems in structures with

linear isolation 214-217
secondary systems in StruCIUres with

bilinear isolation 217-225
10000iOllal 226-235. 228(F)

Models of StruclUres
bilinearly isolated system, treated as

'equivalently lillCar' 165-169
isolated bridge 273, 273(F), 279
non-unifonn linear structure on linear

isolator 145-148
secOlldary structure mounted OIl primary

struclure 199-226.201(F)
single mass OIl Coulomb damper 160--169
torsiOllally unbalanced Sl!UCIure 226-235,

228(F)
unifonn continuous shear beam or linear

chain on bilinear isolator 169-199,
174(F)

unifonn continuous shear beam or linear
chain on linear isolator 28, 29(F), 31,
119. 123-160, 125(F)

New Zealand (NZ)
Ministry of Worts and Development

(MWD) xii, 10.97
seismic isolation in this country 2, 63, 85,

97,113,269,275.276,278,279.281,
297,333

structures seismically isolated 282(T),
284{T). 285(n, 287(F). 288(F),
289(F). 290(F). 291(F). 292(F),
293(F). 296(F). 297(F), 298(F). 331.
332(F). 333. 3J4(F). 335(F)
buildings 284(T). 291-299. 292(1'"),

293(1'"), 296(F). 297(F), 298(F),
:m

INDEX

bridges 284-290. 285(T), 287(F).
288(F). 289(F), 29O(F), 291(F}.
299

delicate and hazardous stroctures
331-335, 332(F), 334(F), 335(F)

NOIl-classical see Mode
NOIl-classical damping parameler see Sec­

ondary system responses 203. 207
NOIl-linearilY 27. 121. 122. 181

factor 12. 24(F). 25, 27. 40-54. 42(F),
44(1). 161, 165. 181, 186, 187,
188(1'), 192(f}, 195, 220, 237, 249,
250(F), 251-254, 252(F), 259, 260,
265, 268

Non-unifonn slructure see Models of
structures

Overturning moments 37. I J4(F). 138
Orthogonality conditions 34,136,152,171,

176

Participation faclor 36, 38, 119, 120, 134(F),
136, 156-159, 171, 176, 183, 185,
204(T). 206, 209, 213, 228(F), 230, 232,
256

Peak values of displacement. velocity and
acceleratiOll 26. 36, 40-54. 42(F), 44(T).
137. 162-169. 163(F), 181. 186-199.
188(T). 192(F). 198(F). 236. 237, 247(F).
252,256

Perfonnance and/or testing of isolators or
systems 5,10,64, 66(F), 71. 75(F), 81,
82(F). 83(F), 94(F), 98(F), 101, 101(F),
102(F), 103(F), 105(F), 1000F), 107(F),
109(F). 281, 303, 305. 306(F). 307,
328(F), 329. 331. 334(F)
shaking-table tests 10,216.225

Period (inverse of frequency)
'effective' or 'equivalent' s("(' Equiva-

lent Iincarismion
clastic 161. 177, 187, 188('1'),263
post-yield 161, 177, 187, Ill!!(T), 263
natuml (fundlllnclllal) 4, 16. 28-33, 89,

I 19. 126. 147, 161. 305, 309. 311, 326
Pcriotl shift 4. 5(F). 7,15.55.21(,. 29·1. 29~,

303.309.313.319.331
Pile.~ (or colm1ll1') 57, 57(1"), 6" 114. :!X \,

2K4(T), 295, 21)(I(F), 297, :!II71l'J, )111(11'"

3U5
I'lll~ticit)' 59 (,2,60(1'), (,1(1'1, Il)

353

and dislocations 61~2, 61(F), 79. 81
of sleel 64
of lead 79-81,97, 104, 105(F)

Response history analysis (lime history
analysis) 160. 161-164, 170, 182(F). 183.
186,240.257,261.268.275,278

Response speclrum II. 15, 16-20. 19(F).
26. 161-169,236.243, 244{F). 256. 275.
278, 326

Retrofit 2, 271, 283, 284(F), 285(F), 311,
315, 316(F), 319, 319(F)

Scaling procedures
for steel-beam dampers 64. 68-74. 69(F).

70(T)
for ear1hquakes s~e Earthquakes. scaled

EI Centro
Secondary system responses 12. 18. 27,

34(F), 120, 122. 158, 161, 181. 199-226,
235,238,239,240,254,268,295
of 7 structures 4()-48, 42(F), 44(T)
Df various isolation systems 219-225,

220(F), 222(F)
Seismic displacement see HorizOlllal seismic

displacement
Seismic force 37, 137
Seismic gap (closely relaled 10 design

displacement) 2, 4. 55, liS. 243, 269,
270, 272, 276, 277, 282. 286, 288, 295,
299,309,318,322(T),326

Seismic isolation
active "is-a-vis passive 2, 116. 117
rationale, criteria and features 1. 3, 6(F),

4-8.16. 19(F). 21. 55. 240-242. 281.
316.317,329

reviews I
Seismic responses 33-40. 40-54. 161, 239.

271-275,305
of isol:ltcd bridge 274, 275
of 7 C:ISC~ and 7 Cl:lS~CS of isolnti()11

sy~tcl1\s 40-54. 42(F), 44('1'). 50('1')
of III lillc;lr-ch;lin ~Inlctllrc, on bilincar

i\Q1:Ilors 186 II,,). 192(r:), 198(f)
of to.... IOlllllly unh;ll.mced 'trtlClures

226 23~. 22X(H
1/'/' Ill\/> 11:1'1,' ~h(',u. SllCilr dl'tnhu

tlnll; llu1I1I"\I:.1 'CI'nIK dl~plm';(,lllcllt,

1'1'1I\" "'llluI'~ ••1 .• SI'lllllil.llY ~)'s

1\'111 It'~PIIIl~i'~; 1\l1~lllll
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Site conditions 3. 241, 243. 249. 270. 217,
291. 295, 297, 305, 309. 315. 319, 320.
327,333

Sh<M
bulge factor 194-199. 198(F), 250,

251(F).254
distribution 37, 40-48. 42(f), 44{T). 93,

133. 138, 143(F). 144(F). 194-199,
198(F), 235, 238. 247(F), 250(F). 254.
256, 260. 268

see also Base shear
modulus 59. 73. 74{F)

Spei;ual responses (spectral velocity, dis­
placement. acceleration) see Response
spectrom

Spring 16. 57, 57(1)
StiffllCSS

between masses of multimass structure
29(F). 149

'effective' or 'secant' (diagonal slope of
force-displaeemc:nt loop) see Equiv­
alent linearisation 9(F). 22, 23(F),
24(F). 25. 33, 166(F), 251-254. 252.
252(F).259

'effective' as defined in three alternate
ways 170-186

'effective' for bridge 273. 273(F)
of base 140. 148-151
of each phase of bilinear isolator 23.

24(F). 237. 262
of lead-ellarusion damper 82(F)
of lead-rubber bearing tOI. JOl(F), 108
of linear isolator 22, 23(F). 255
of real isolated structures 294, 326, 327,

331
of rubber bearing 88--90. 101(F)
of plastically defonned mctals see

Plasticity

INDEX

of steel dampers 72-74, 74(T)
Stiffness matrix 29

free-free 145, 173, 18S
clastic-phase 174
yielding-phase 174. 184

Stroke 66(F), 75, 75(P). 84, 85, 101. 106

Torsion 7, 13, 15, 123,226-235, 228(F), 238,
272.275,277,305

'Trade-off" between base shear and displace­
ment 8, 161. 246-249, 247(F), 259, 268,
272

Tuning parametcr see Secondary system
responses 203, 207

United States of America (USA)
seismic isolation in this counuy I, 243,

276,277, 281. 282(T), 311 (1), 312(T)
structures seismically isolated 330

buildings 311(1), 313-318, 313(F).
314(F), 316(F), 317(F). 318(F)

bridgcs 312(T). 319. 319(F), 320,
320(F)

Wave number 126-160, 131(F)
Wind and traffic loads 8. 22, 5O(T). 56. 58,

65,85,268,270,272,286,303,320.331
Worldwide use of seismic isolation xi, I, 13,

281, 282(T), 330, 335

Yield
displacement 24, 24{F), 72. 73(F)
force 24. 24(F), 72, 73(F), 161,262,283.

331
point 24. 24{F), 59-62, 6O(F), 72. 73(F),

251-254. 252(F), 261. 268
ratio 24, 24(F), 121, 161, 163, 187,237,

262,294.298
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