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Preface

The concept of performance-based design is well accepted in the current struc-
tural design practice of buildings. In earthquake-prone countries, the philosophy
of earthquake-resistant design to resist ground shaking with sufficient stiffness and
strength of the building itself has also been accepted as a relevant structural design
concept for many years. On the other hand, a new strategy based on the concept
of active and passive structural control has been introduced rather recently in order
to provide structural designers with powerful tools for performance-based design
(Kobori, 1993; Housner et al., 1994, 1997; Soong and Dargush, 1997; Kobori
et al., 1998; Hanson and Soong, 2001; Casciati, 2002; Johnson and Smyth, 2006).
Passive control systems are often used to meet flexibly the requirements posed by
this performance-based design. However, the structural engineers do not appear
to have the tools for the optimal selection and placement of these passive control
systems.

Although the use of structural control devices may reduce the overall earthquake
response, it is often the case that some local structural responses are amplified; for
example, member forces around the control devices. These phenomena should be
resolved in the actual structural design. In addition, it should be kept in mind that earth-
quake ground motions have a lot of uncertainties; for example, see Drenick (1970),
Anderson and Bertero (1987), and Takewaki (2006). In order to tackle this difficult
problem, smart installation of passive control devices or passive energy dissipation
systems is expected to play a vital role.

In this book, optimality criteria-based and optimal sensitivity-based design algo-
rithms are explained in detail for passive control and energy dissipation systems
in building structures. Displacement, acceleration, and earthquake input energy are
regarded as three major target indices for performance-based design. It is shown that,
once the building frames and passive control and energy dissipation systems are mod-
eled appropriately, the optimal quantity and placement of passive control and energy
dissipation systems are determined automatically and simultaneously.

The structural systems treated here are fixed-base shear buildings, fixed-base
moment-resisting frames, fixed-base three-dimensional buildings, shear build-
ings with and without tuned mass dampers on surface ground, and bending-shear build-
ings on surface ground. Since it is well known that the ground or soil under buildings
influences the seismic behavior of buildings with and without supplemental dampers,
the model including the soil–structure interaction effect has been desired. Both the
transfer functions and earthquake responses are introduced as the performance indices.
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Figure 0.1 Theoretical backbone of effectiveness of supplemental dampers

The design implication of dampers with load and model uncertainties is also
included, and the theoretical backbones of the effectiveness of passive control and
energy dissipation systems are finally explained from the viewpoint of earthquake
input energy. If the earthquake input energy criterion holds even approximately regard-
less of the existence of supplemental dampers and the supplemental passive dampers
can absorb the earthquake input energy as greatly as possible, the input energy to the
frame can be reduced drastically (see Figure 0.1). Although main frames are usually
designed so as to remain elastic in the case of using passive energy dissipation systems,
inelastic dynamic responses of building structures with viscous or hysteretic dampers
are also discussed from the viewpoint of the effectiveness of viscous and hysteretic
dampers.

The special character of this book may be described as follows. The aim of this book
is not merely the presentation of optimization results, but the detailed description of
how the optimal size and location are obtained simultaneously. The details of the
optimization processes are explained step by step. Therefore, structural engineers can
conduct programming by themselves to obtain the optimal size and placement. Most
aspects of the techniques explained have been recognized by the leading international
academic journals and are reliable. Moreover, the techniques explained are sometimes
used as reference key techniques in optimization of passive control systems, and the
comparison of these techniques with others is not difficult.

I hope that this book can provide structural designers and engineers with powerful
tools and guides for optimal and smart passive structural control.

Izuru Takewaki
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1
Introduction

1.1 Background and Review

Structural control has a long and successful history in mechanical and aerospace engi-
neering. However, in the field of civil engineering, it has a different background
(Housner et al., 1994, 1997; Kobori, 1996; Soong and Dargush, 1997; Kobori et al.,
1998; Rivin, 1999; Srinivasan and McFarland, 2000; Hanson and Soong, 2001; Burns,
2002; Casciati, 2002; Soong and Constantinou, 2002; Christopoulos and Filiatrault,
2006; Johnson and Smyth, 2006; Arora, 2007; de Silva, 2007). Building and civil
structures are often subjected to severe earthquake ground motions and wind distur-
bances with large uncertainties. Therefore, there is a need to take into account these
uncertainties in the theory of structural control and its application to actual structures.
Professor Soong presented five important areas impacted by structural control in his
keynote lecture (Soong, 1998) in the Second World Conference on Structural Control
held in Kyoto: (i) a systems approach, (ii) a deepening effect, (iii) a broadening effect,
(iv) experimental research, and (v) creative engineering. Among these five areas, the
broadening effect includes the effective use of passive dampers in building structures.
In this book, this aspect will be explained in detail.

In the early stage of development in passive structural control, the installation itself
of supplemental dampers in ordinary buildings was the principal objective. It appears
natural that, after extensive developments of various damper systems, another objec-
tive was directed to the development of smart and effective installation of supplemental
passive dampers.

Although the motivation was inspired and directed to smart and effective installa-
tion of supplemental passive dampers, research on optimal passive damper placement
has been very limited. The following studies may deal with this subject. Constanti-
nou and Tadjbakhsh (1983) derived the optimum damping coefficient for a damper
placed on the first story of a shear building subjected to horizontal random earthquake
motions. Gurgoze and Muller (1992) presented a numerical method for finding the

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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optimal placement and the optimal damping coefficient for a single viscous damper
in a prescribed linear multidegree-of-freedom (MDOF) system. Zhang and Soong
(1992) proposed a seismic design method to find the optimal configuration of viscous
dampers for a building with specified story stiffnesses. While their method is based
upon an intuitive criterion that an additional damper should be placed sequentially
on the story with the maximum interstory drift, it is pioneering. Hahn and Sathi-
avageeswaran (1992) performed several parametric studies on the effects of damper
distribution on the earthquake response of shear buildings and showed that, for a build-
ing with uniform story stiffnesses, dampers should be added to the lower half floors of
the building. De Silva (1981) presented a gradient algorithm for the optimal design of
discrete passive dampers in the vibration control of a class of flexible systems. Inaudi
and Kelly (1993) proposed a procedure for finding the optimal isolation damping
for minimum acceleration response of base-isolated structures subjected to stationary
random excitation. Tsuji and Nakamura (1996) proposed an algorithm to find both
the optimal story stiffness distribution and the optimal damper distribution for a shear
building model subjected to a set of spectrum-compatible earthquakes. Connor and
Klink (1996) and Connor et al. (1997) introduced an optimal stiffness distribution
and restricted the damper distribution to that proportional to the stiffness distribution.
They call this distribution a quasi-optimal distribution. Masri et al. (1981) presented
a simple yet efficient optimum active control method for reducing the oscillations of
distributed parameter systems subjected to arbitrary deterministic or stochastic excita-
tions. While they deal with active control, the result is informative to the development
in passive optimal control theories.

Rather recentlyTakewaki (1997, 1999) opened another door of smart passive damper
placement with the help of the concepts of inverse problem approaches and optimal
criteria-based design approaches. He solved a problem of optimal passive damper
placement by deriving the optimality criteria and then by developing an incremental
inverse problem approach. For many years, this research played a role as a pioneering
work in this area and many researchers referred this article and compared the results
by their methods with the result by Takewaki (1997). Subsequently, Takewaki and
Yoshitomi (1998), Takewaki et al. (1999) and Takewaki (2000) introduced a new
approach based on the concept of optimal sensitivity. The optimal quantity of passive
dampers is obtained automatically together with the optimal placement through this
new method.

After these researches, many related studies were developed (Moreschi, 2000;
Garcia, 2001; Singh and Moreschi, 2001, 2002; Garcia and Soong, 2002; Liu et al.,
2003; Silvestri et al., 2003, 2004, 2006; Uetani et al., 2003; Xu et al., 2003; Asahina et
al., 2004; Kiu et al., 2004; Lavan and Levy, 2004, 2005, 2006a, 2006b; Palazzo et al.,
2004; Park et al., 2004; Silvestri and Trombetti, 2004, 2007; Trombetti and Silvestri,
2004, 2006, 2007; Wongprasert and Symans, 2004; Xu et al., 2004; Liu et al., 2005;
Tan et al., 2005; Levy and Lavan, 2006; Marano et al., 2006; Attard, 2007; Aydin
et al., 2007; Cimellaro, 2007; Cimellaro and Retamales, 2007; Wang and Dyke, 2008;
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Paola and Navarra, 2009; Viola and Guidi, 2009). Most of them investigated new
optimal design methods of supplemental dampers and proposed effective and useful
methods.

There are several textbooks dealing with the design of passive dampers. Connor
and Klink (1996) introduced a concept of “motion-based design’’ and provided versa-
tile explanations on various passive and active control systems, namely visco-elastic
dampers, viscous dampers, tuned-mass dampers (TMDs), base-isolation systems, and
active control systems. Soong and Dargush (1997) explain the fundamental mechan-
ical aspects of passive dampers and present many practical examples of application
to realistic buildings. Hanson and Soong (2001) begin with basic concepts of pas-
sive dampers and present a few examples of application. Christopoulos and Filiatrault
(2006) deal with passive energy dissipation systems and base-isolated buildings. They
treat several different systems of supplemental dampers, namely metallic and friction
dampers, viscous and visco-elastic dampers, self-centering characteristic dampers,
TMDs, and so on. They also explain the energy principle and performance-based
design principle. De Silva (2007) collects many useful chapters for passive damper
systems and gives an up-to-date review.

1.2 Fundamentals of Passive-damper Installation

The three principal types of passive control system installed in building structures
are (i) story-installation-type supplemental passive dampers (viscous damper, visco-
elastic damper, hysteretic damper), (ii) TMDs, and (iii) base-isolation systems, as
shown in Figure 1.1.

In this book, story-installation-type supplemental passive dampers are principally
treated. TMDs are also treated partially. In order to present the fundamental basics for

story-installation type TMD base-isolation

Figure 1.1 Three principal installation types of passive damper.
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mechanical modeling of these story-installation-type supplemental passive dampers,
viscous and visco-elastic dampers are taken as examples.

1.2.1 Viscous Dampers

The passive damper system, as shown in Figure 1.2, including a viscous damper can
be modeled into two models. One is the dashpot and the other is the dashpot supported
by a spring (Maxwell-type model). Let c denote the damping coefficient of the dashpot
and ks denote the stiffness of the supporting spring. This supporting spring represents
the stiffness of the viscous damper device itself (e.g., oil damper) or the stiffness of
the surrounding supporting system.

As for the Maxwell-type model, the force–displacement relation in the frequency
domain can be described by

F(ω) = (KR + iKI)U (ω) = (kV + iωcV)U (ω) (1.1)

In Equation 1.1, kV and cV denote the stiffness of the spring and the damping coefficient
of the dashpot of the pseudo Kelvin–Voigt model transformed from the Maxwell-type
model.

The complex stiffness in Equation 1.1 may be derived as follows from the
formulation of the series model of the dashpot and the supporting spring:

KR + iKI = 1
1

iωc
+ 1

ks

(1.2)

viscous damper

cV

c
kS

kV

cV

F(ω)

U(ω)

force
kV

cV
displacement

Figure 1.2 Passive damper system including a viscous damper and its modeling into a dashpot model
and Maxwell model.
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After some manipulation, the real and imaginary parts of the complex stiffness in
Equation 1.2 may be expressed by

KR(ω) = kV(ω) = ksc2ω2

k2
s + c2ω2

(1.3)

KI(ω) = ωcV(ω) = k2
s cω

k2
s + c2ω2

(1.4)

It can be understood from Equations 1.3 and 1.4 that kV and cV are functions of the
excitation frequency.

1.2.2 Visco-elastic Dampers

The passive damper system, as shown in Figure 1.3, including a visco-elastic damper
can be modeled into two models. One is the Kelvin–Voigt model and the other is the
Kelvin–Voigt model with a support (e.g., Kasai et al., 1998; Fu and Kasai, 1998).
Let k denote the stiffness of the visco-elastic damper itself and c denote the damping
coefficient of the visco-elastic damper itself. On the other hand, ks denotes the stiffness
of the supporting spring. This supporting spring represents the stiffness of the visco-
elastic damper device itself (e.g., steel attachment of the visco-elastic material) or the
stiffness of the surrounding supporting system. It is well known that k and c of most
of visco-elastic materials depend on frequency, vibration amplitude and temperature,
and so on. Therefore, the treatment of visco-elastic damper devices is more difficult
than viscous dampers in general.

visco-elastic damper

c

kS

k

k

c

F(ω)

U(ω)

force

displacement

kE

cE

kE

cE

k

Figure 1.3 Passive damper system including a visco-elastic damper and its modeling into a Kelvin–Voigt
model and Kelvin–Voigt model with support.

WWW.BEHSAZPOLRAZAN.COM



c01.tex 26/8/2009 9: 45 Page 6

6 Building Control with Passive Dampers

As for the Kelvin–Voigt model with a support, the force–displacement relation in
the frequency domain can be described by

F(ω) = (KR + iKI)U (ω) = (kE + iωcE)U (ω) (1.5)

In Equation 1.5, kE and cE denote the stiffness of the spring and the damping coefficient
of the dashpot of the pseudo Kelvin–Voigt model transformed from the Kelvin–Voigt
model with a support.

The complex stiffness of this pseudo Kelvin–Voigt model may be derived as follows
from the formulation of the series model of the Kelvin–Voigt model and the supporting
spring:

KR + iKI = 1
1

k + iωc
+ 1

ks

(1.6)

After some manipulation, the real and imaginary parts of the complex stiffness in
Equation 1.6 may be expressed by

KR(ω) = kE(ω) = ks(k2 + kks + c2ω2)

(k + ks)2 + c2ω2
(1.7)

KI(ω) = ωcE(ω) = ωk2
s c

(k + ks)2 + c2ω2
(1.8)

It can be understood from Equations 1.7 and 1.8 that kE and cE are functions of the
excitation frequency.

1.3 Organization of This Book

In Chapter 1, the background of this book and the fundamentals of passive-damper
installation are explained. Furthermore, a comprehensive review in the field of design
of passive damper systems, especially story-installation-type systems, is conducted.

In Chapter 2, the optimality criteria-based design is presented for simple mass–
spring models (shear building models) which include a single criterion in terms of
transfer functions. The ratios of absolute values of the transfer functions evaluated
at the undamped fundamental natural frequency of a structural system are taken as
controlled quantities together with the undamped fundamental natural frequency. Aset
of optimality conditions is derived first. Then, in order to derive a solution satisfying
the optimality criteria, a formulation of incremental inverse problems is introduced.

Chapter 3 is focused on the optimality criteria-based design including multiple
criteria; that is, deformation and acceleration. Under the condition of constant quan-
tity of structural members, deformation and acceleration are optimized. An efficient
and systematic method is explained for the simultaneous optimization of story stiff-
ness distributions and damping coefficient distributions of dampers. The method is a
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two-step design method. In the first step, a design is found which satisfies the opti-
mality conditions for a specified set of total story stiffness capacity and total damper
capacity. In the second step, the total story stiffness capacity and/or total damper capac-
ity are varied with the optimality conditions satisfied. While deformation is reduced
both in the first and second steps, acceleration is reduced only in the second step via
increase of total damper capacity.

Chapter 4 introduces a concept of optimal sensitivity-based design of dampers in
moment-resisting frames. The damper systems are modeled by a viscous-type model
or a Maxwell-type model. The sum of the transfer function amplitudes is treated as
the design objective. As the quantity of dampers increases, the optimal placement
and quantity are determined automatically based on the optimal sensitivity. A non-
monotonic sensitivity case is also treated. A representative schematic diagram for the
optimization procedure explained in Chapter 4 is shown in Figure 1.4. While a different
algorithm was devised and a variation from a uniform storywise distribution of added
dampers was considered in Chapter 2, a variation from the null state is treated here.
This treatment helps designers to understand simultaneously which position would be
the best and what capacity of dampers would be required to attain a series of desired
response performance levels.

In Chapter 5, a method of optimal sensitivity-based design of dampers is explained
in three-dimensional structures. As in Chapter 4, the sum of the transfer function

performance
sensitivity analysis

highest sensitivity

add damper

performance
sensitivity analysis

highest sensitivity

highest sensitivity

add damper

add damper

performance
sensitivity analysis

repeat the procedure

initial stage
(bare frame) 

ratio is determined from
higher-order sensitivities 

Figure 1.4 A representative schematic diagram of optimization procedures explained in this book.
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amplitudes defined for many local interstory drifts is treated as the design objective.
The torsional effect of three-dimensional structures is included and the procedure for
finding the best placement of dampers is explained. A nonmonotonic path with respect
to damper quantity level is also shown in detail.

Chapter 6 deals with an optimal sensitivity-based design of dampers in shear build-
ings on surface ground under earthquake loading. It is well known that the soil or
ground under a structure greatly influences the structural vibration properties. It is
important, therefore, to develop an optimization technique for such an interaction
model. While some methods of active control have been proposed for such a model,
theories for passive control systems were proposed by the present author for the first
time and are explained here in detail.

Chapter 7 explains a concept of optimal sensitivity-based design of dampers in
bending-shear buildings on surface ground under earthquake loading. It is noted that
the bending-shear deformation is important in tall buildings or buildings of large aspect
ratios (height/width ratio). It is shown first that the dampers are effective only for shear
deformation and a procedure for finding the best damper placement is explained in
detail.

In Chapter 8, the optimal sensitivity-based design of dampers is presented in shear
buildings with a TMD on surface ground under earthquake loading. While the TMD
is very popular as a passive control device, no method of optimal design of combin-
ing the interstory-type supplemental viscous dampers with the TMDs has ever been
presented. The effect of the TMD system on the optimal placement of interstory-type
supplemental viscous dampers will also be explained.

Chapter 9 examines a new perspective of design of dampers in shear buildings
with uncertainties. Uncertainty analysis is one of the major subjects recently in the
structural design of buildings. The effects of uncertainties in dampers, main structures,
and earthquake ground motions on the design of building structures with passive
dampers are discussed in detail. In particular, the level of uncertainties in dampers
and earthquake ground motion is known in general to be larger than that in main
structures, and consideration of the effect of uncertainties in dampers and earthquake
ground motions on the design of passive control structures is extremely important in
the reliable design of such structures. A critical excitation method (Takewaki, 2006)
is introduced first for modeling the uncertainty in earthquake ground motions. Then
info-gap uncertainty analysis is introduced to measure the robustness of buildings with
passive dampers and a procedure is explained to take into account simultaneously the
load and structural model uncertainties.

In Chapter 10, the theoretical backbones of effectiveness of passive control systems
are explained using the constant input energy property (see Figure 0.1 in the Preface).
The dual formulation in the time and frequency domains will play an important role
in the verification of this constant input energy property.

In Chapter 11, the inelastic dynamic critical responses of building structures with
viscous or hysteretic dampers are explained and the effectiveness of passive dampers
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is discussed from the viewpoint of types of passive damper. Resonant sinusoidal waves
as approximate critical inputs and response spectrum-compatible waves are employed
as input ground motions.

It is very important and useful to remark that, while the present book deals with
supplemental viscous dampers only, the methods explained can be applied to sup-
plemental visco-elastic dampers. The procedure shown in Sections 4.6–4.9 is a good
example of that extension. Assume that the visco-elastic dampers can be modeled by
the Kelvin–Voigt model. When the quantity of visco-elastic dampers changes, the val-
ues of the stiffness and the viscous damping coefficient will change simultaneously.
In this case, it is appropriate to employ the viscous damping coefficient as the leading
(or primary) design variable and regard the stiffness of the Kelvin–Voigt model as the
minor (or dependent) variable. The procedure similar to that in Sections 4.6–4.9 can
be utilized almost in the same manner.

Figure 1.4 shows a representative schematic diagram for the optimization proce-
dures explained in this book. The optimization procedures in Chapters 4–9 are based
on the optimality criteria and related performance sensitivities. The damper placement
criteria are derived from these optimality criteria and performance sensitivities. In Fig-
ure 1.4, the initial design is a bare frame without supplemental dampers. Sensitivity
analysis of the objective function with respect to a design variable (damping coeffi-
cient of supplemental damper) is performed first for this bare frame and the highest
performance sensitivity is found. Then the damping coefficient of the supplemen-
tal damper is added to this story. This implies that the supplemental damper with the
highest performance sensitivity can decrease the performance most effectively and the
damping coefficient should be added in this supplemental damper. Again, sensitivity
analysis is performed next for the frame with a supplemental damper and the highest
performance sensitivity is found. If the multiple stories show the highest performance
sensitivity, then the damping coefficients of the corresponding supplemental dampers
are added. Again, sensitivity analysis is performed next for the frame with supple-
mental dampers and the procedure explained above is repeated until the required total
quantity of supplemental dampers is reached.
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2
Optimality Criteria-based Design:
Single Criterion in Terms of
Transfer Function

2.1 Introduction

Inverse eigenvalue problems and inverse eigenmode problems for undamped structural
systems have been investigated extensively and many important results have been
accumulated (e.g., Porter, 1970; Barcilon, 1982; Gladwell, 1986, 2004; Nakamura and
Yamane, 1986; Boley and Golub, 1987; Ram, 1994; Takewaki and Nakamura, 1995,
1997; Takewaki et al., 1996). It has been demonstrated that sophisticated mathematical
treatment can be developed in the inverse problems for undamped structural system
and various theories have been proposed. While the inverse problems for undamped
structural systems play a fundamental and important role in the development of inverse
problems for damped structural systems, damping effects on inversion of system
parameters are conspicuous and of great interest recently (Lancaster and Maroulas,
1987; Starek and Inman, 1995). In particular, when the magnitude of damping is fairly
large or damping system is nonclassical (nonproportional), the inverse problems for
undamped structural systems do not necessarily provide relevant information on design
of the corresponding damped structural systems.

In the first part of this chapter, a new analytical procedure is explained for redesign
of structural systems with an arbitrary damping system (viscous and/or hysteretic,
proportional or nonproportional) for target transfer functions. It may be appropriate
to call the present problem an incremental inverse problem. The ratios of absolute
values of the transfer functions evaluated at the undamped fundamental natural fre-
quency of a structural system are taken as controlled quantities together with the
undamped fundamental natural frequency. To the best of the author’s knowledge,

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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this kind of treatment has never been proposed. The following studies may be rel-
evant to this subject. Tsai (1974) proposed a technique to determine approximate
modal damping ratios as a classically damped model for a nonclassically damped
soil–structure system by matching amplitudes of transfer functions at several natural
frequencies in both models and solved a set of simultaneous nonlinear equations iter-
atively. Chen (1992) formulated an optimal design problem for a classically damped
model subject to constraints on natural frequencies and frequency responses at a fixed
frequency. The features of the present formulation are to be able to deal with any
damping system (e.g., viscous and/or hysteretic, proportional or nonproportional), to
be able to treat any structural system so far as it can be modeled with finite-element
(FE) systems and to consist of a systematic algorithm without any indefinite iterative
operation.

Since the amplitudes of transfer functions are not necessarily useful from physical
points of view until they are transformed into mean squares (statistical quantities)
by multiplication with the Fourier transform of a disturbance, only their ratios are
specified in this chapter. Then the undamped fundamental natural frequency plays
a role for adjusting the level of the amplitudes of transfer functions to a desired
level. An undamped fundamental natural frequency is a representative parameter of
overall stiffness of a structure, and specification of the undamped fundamental nat-
ural frequency is expected to provide a fundamental and useful index for structural
design.

Two two-degree-of-freedom (DOF) mass–spring models with viscous or hysteretic
dampers are introduced in order to demonstrate the effectiveness of the present tech-
nique. Furthermore, for six-DOF mass–spring models with viscous dampers, the
effects of damper placement on the level and overall configuration of transfer functions
are discussed.

In the second part of this chapter, a new formulation of optimality criteria-based
design of passive dampers is presented based on the incremental inverse problem
formulation explained in the first part. The problem treated here is to find the opti-
mal damper placement to minimize the sum of amplitudes of the transfer functions
evaluated at the undamped fundamental natural frequency of a structural system sub-
ject to a constraint on the sum of the damping coefficients of added dampers. For a
given shear building model with an arbitrary damping system, an optimal distribu-
tion of passive dampers is obtained automatically with the optimality criteria-based
sensitivity ratios of amplitudes of transfer functions at the fundamental natural fre-
quency as the target performance indices. The features of the present formulation are to
enable one to deal with any damping system (e.g., proportional or nonproportional),
to enable one to treat any structural system so far as it can be modeled with FE sys-
tems and to be a systematic algorithm without any indefinite iterative operation. It
should also be pointed out that, because the present formulation deals with a general
dynamical property (i.e. the amplitude of the transfer function), the results are general
and are not influenced by characteristics of input motions.
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2.2 Incremental Inverse Problem: Simple Example

As a simple example, consider a two-DOF mass–spring–dashpot model including
viscous dampers as shown in Figure 2.1(a). Let {m1, m2}, {k1, k2}, and {c1, c2} denote
respectively the masses, spring stiffnesses, and damping coefficients of dashpots. It is
assumed here that the masses {m1, m2} and damping coefficients {c1, c2} of dashpots
are prescribed. The design variables are the spring stiffnesses {k1, k2}.

Let u1 and u2 denote the nodal displacements of masses m1 and m2 respectively.
When this model is subjected to a base acceleration üg, the equations of motion for
this model may be written as[

k1 + k2 −k2
−k2 k2

]{
u1
u2

}
+

[
c1 + c2 −c2
−c2 c2

]{
u̇1
u̇2

}

+
[

m1 0
0 m2

]{
ü1
ü2

}
= −

[
m1 0
0 m2

]{
1
1

}
üg (2.1)

It is effective to discuss the equations of motion in the frequency domain. Let U1(ω),
U2(ω), and Üg(ω) as functions of frequency denote the Fourier transforms of u1, u2,

u1 u2

c1 c2

k2k1

m1 m2

ug

u1 u2

k2k1

m1 m2

ug

(a) viscous damper

(b) hysteretic damper

β1 β2

Figure 2.1 Two-DOF mass–spring model: (a) viscous damper model; (b) hysteretic damper model.
(Originally published in I. Takewaki, “Efficient redesign of damped structural systems for target transfer
functions,’’ Computer Methods in Applied Mechanics and Engineering, 147, no. 3–4, 275–286, 1997,
Elsevier B.V.).
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and üg respectively, and let ω denote a circular frequency. Fourier transformation of
Equation 2.1 may be reduced to the following form:([

k1 + k2 −k2
−k2 k2

]
+ iω

[
c1 + c2 −c2
−c2 c2

]
− ω2

[
m1 0
0 m2

]){
U1(ω)
U2(ω)

}

= −
[

m1 0
0 m2

]{
1
1

}
Üg(ω) (2.2)

In Equation 2.2, i is the imaginary unit. The Fourier transforms δ1(ω) and δ2(ω) of
the interstory drifts d1 = u1 and d2 = u2 − u1 can be expressed in terms of U1(ω) and
U2(ω) by {

δ1(ω)
δ2(ω)

}
=

[
1 0

−1 1

]{
U1(ω)
U2(ω)

}
(2.3)

Since the fundamental natural frequency of a structure usually plays an important
role, the steady-state response at this fundamental natural frequency is considered
here. Let ω1 denote the undamped fundamental natural circular frequency of the
model considered here and let us define new complex-value quantities Û1 and Û2 by

Û1 ≡ U1(ω1)

Üg(ω1)
and Û2 ≡ U2(ω1)

Üg(ω1)
(2.4)

In Equation 2.4, Ûi represents the value such that ω1 is substituted in the frequency
response function obtained as Ui(ω) after substituting Üg(ω) = 1 in Equation 2.2. This
complex-value quantity indicates the resonant amplitude of the floor displacement at
the fundamental natural circular frequency ω1. When a base acceleration input with
broad frequency-band is taken, this quantity is regarded as representing the response to
this input. In addition, new complex-value quantities δ̂1 and δ̂2 are defined by δ̂1 ≡ Û1
and δ̂2 ≡ Û2 − Û1. Owing to Equations 2.2 and 2.4, it is concluded that the quantities
Û1 and Û2 must satisfy the following equation:

A
{

Û1

Û2

}
= −

{
m1
m2

}
(2.5)

where A is defined by

A =
[

(k1 + k2) + iω1(c1 + c2) − ω2
1m1 −k2 − iω1c2

−k2 − iω1c2 k2 + iω1c2 − ω2
1m2

]
(2.6)

Differentiation of Equation 2.5 including multiplication of a matrix and a vector with
respect to a design variable kj provides

A,j

{
Û1

Û2

}
+ A

{
Û1, j

Û2, j

}
= 0 (2.7)
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Here and in the following, the symbol (·), j denotes the partial differentiation with
respect to the design variable kj. Since the matrix A is regular, the first-order sensi-
tivities of the complex-value quantities Û1 and Û2 are derived from Equation 2.7 as{

Û1, j

Û2, j

}
= −A−1A,j

{
Û1

Û2

}
(2.8)

The first-order sensitivities of the complex-value quantities δ̂1 and δ̂2 are derived by
substituting the relations δ̂1 ≡ Û1 and δ̂2 ≡ Û2 − Û1 into Equation 2.8 as{

δ̂1, j

δ̂2, j

}
= −

[
1 0

−1 1

]
A−1A,j

[
1 0
1 1

]{
δ̂1

δ̂2

}
(2.9)

The complex-value quantity δ̂i may be rewritten symbolically as

δ̂i = Re[δ̂i] + i Im[δ̂i] (2.10)

where the symbols Re[ ] and Im[ ] indicate the real and imaginary parts respectively
of a complex number. The first-order sensitivity of the quantity δ̂i may be formally or
symbolically expressed as

δ̂i, j = (Re[δ̂i]), j + i(Im[δ̂i]), j (2.11)

The absolute value of the complex-value quantity δ̂i is defined by

|δ̂i| =
√

(Re[δ̂i])2 + (Im[δ̂i])2 (2.12)

The first-order sensitivity of the complex amplitude |δ̂i| may be expressed as

|δ̂i|, j = 1

|δ̂i|
{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j} (2.13)

where (Re[δ̂i]), j and (Im[δ̂i]), j can be calculated from Equation 2.9.
Let us define a new quantity as the ratio between two interstory drifts defined by

α1(k) = |δ̂2(k)|
|δ̂1(k)| (2.14)

Linear increments ��1(k) and �α1(k) of the lowest eigenvalue �1(k) (square of the
undamped fundamental natural circular frequency ω1(k)) and α1(k) in Equation 2.14
may be described as follows:

��1(k) = ∂�1(k)

∂k
�k (2.15a)
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�α1(k) =
(
∂|δ̂2(k)|

∂k
1

|δ̂1(k)| − ∂|δ̂1(k)|
∂k

|δ̂2(k)|
|δ̂1(k)|2

)
�k

= 1

|δ̂1(k)|

(
∂|δ̂2(k)|

∂k
− ∂|δ̂1(k)|

∂k
α1(k)

)
�k (2.15b)

Equations 2.15a and 2.15b may be arranged to the following set of simultaneous linear
equations with respect to �k:⎡

⎢⎢⎢⎣
∂�1(k)

∂k

∂|δ̂2(k)|
∂k

−
(

∂|δ̂1(k)|
∂k

)
α1(k)

⎤
⎥⎥⎥⎦ �k =

{
��1(k)

|δ̂1(k)|�α1(k)

}
(2.16)

Equation 2.16 implies that, once the increments ��1(k) and �α1(k) are given and
the sensitivities ∂�1(k)/∂k and ∂|δ̂j(k)|/∂k of these increments are evaluated, the
increment �k of stiffness to be determined can be found. The concept of this procedure
can be found in Figure 2.2.

The first-order sensitivity of the lowest eigenvalue �1(k) is well-known (Fox and
Kapoor, 1968) in the field of structural optimization and is expressed as

�1(k), j = V(1)TK, jV(1) (2.17)

In Equation 2.17, V(1) is the undamped lowest eigenvector of the present model and
is to be normalized by

V(1)TMV(1) = 1 (2.18)

In Equation 2.18, M = diag(m1 m2). Differentiation of the definition ω1(k)2 = �1(k)
of the lowest eigenvalue with respect to the design variable kj leads to the following
expression of the first-order sensitivity of the undamped fundamental natural circular
frequency ω1(k):

ω1(k), j = 1

2ω1(k)
V(1)TK, jV(1) (2.19)

ˆ ˆ

stiffness Ω1 1

mode shape

Figure 2.2 Concept of incremental inverse problem.
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If the damping system considered is hysteretic as shown in Figure 2.1(b), then
the coefficient matrix defined by Equation 2.6 may be modified to the following
expression:

AH =
[

k1(1 + 2β1i) + k2(1 + 2β2i) − ω2
1m1 −k2(1 + 2β2i)

−k2(1 + 2β2i) k2(1 + 2β2i) − ω2
1m2

]
(2.20)

where β1 and β2 are the prescribed hysteretic damping factors.
A technique on how to predetermine the quantities ��1(k) and �α1(k) will be

shown in the following section.

2.3 Incremental Inverse Problem: General Formulation

For the general treatment of incremental inverse problems described above, consider
an n-DOF FE model. The model is not restricted to mass–spring–dashpot models. The
design variables in the present model are {k1 · · · km}, where m denotes the number
of the design variables. After some manipulation of mass, stiffness, and damping
matrices, Equation 2.2 may be generalized into the following form:

(K + iωC − ω2M)U(ω) = −MrÜg(ω) (2.21)

where K, C, and M are the system stiffness, damping, and mass matrices respectively
and r in the right-hand side of the equation is the influence coefficient vector for a
base acceleration input. Furthermore, U(ω) = {U1(ω) · · · Un(ω)}T represents the nodal
displacements in the frequency domain.

By applying a procedure similar to that in the previous section, Equation 2.5 may
be generalized into

AÛ = −Mr (2.22)

where Û = {Û1 · · · Ûn}T are the displacements evaluated at the undamped fundamental
natural circular frequency ω1; that is, Ûj = Uj(ω1)/Üg(ω1). The coefficient matrix A
is defined by

A = K + iω1C − ω2
1M (2.23)

The Fourier transforms δ̂ = {δ̂1 · · · δ̂m}T of the deformation quantities evaluated at the
undamped fundamental natural circular frequency are assumed to be derived from Û by

δ̂ = TÛ (2.24)

Here, T indicates the deformation–displacement transformation matrix. Depending on
whether T is a square matrix or not, δ̂ has to be chosen carefully. The procedure on how
to treat a square matrix T is discussed by Takewaki and Nakamura (1995). By applying
a procedure similar to that in the previous section, Equation 2.7 may be generalized into

A, jÛ + AÛ, j = 0 (2.25)
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From Equation 2.25, Û, j can be expressed in terms of the displacement quantities Û:

Û, j = −A−1A, jÛ (2.26)

An explicit expression of A−1 can be derived for a mass–spring model having a
tri-diagonal coefficient matrix A (Takewaki and Nakamura, 1995). However, in the
models without this property, numerical manipulation is required. From Equations 2.24
and 2.26, the sensitivity δ̂, j of deformation is expressed in terms of the displacement
quantities Û:

δ̂, j = −TA−1A, jÛ (2.27)

The linear increment of the absolute value |δ̂k (k)| of deformation may be
expressed as

�|δ̂k (k)| = ∂|δ̂k (k)|
∂k

�k (k = 1, · · · , m) (2.28)

A new quantity αk (k) as a ratio of deformations is defined by

αk (k) = |δ̂k+1(k)|
|δ̂1(k)| (k = 1, · · · , m − 1) (2.29)

This quantity will be referred to as the transfer function ratio. The linear increment of
this ratio αk (k) may be expressed as

�αk (k) = �|δ̂k+1(k)|
|δ̂1(k)| − |δ̂k+1(k)|

|δ̂1(k)|2 �|δ̂1(k)| = �|δ̂k+1(k)|
|δ̂1(k)| − αk (k)

|δ̂1(k)|�|δ̂1(k)|

(2.30)

The quantity �|δ̂1(k)| in Equation 2.30 is expressed in terms of �k in Equation 2.28.
Then, substitution of Equation 2.28 into Equation 2.30 provides the following set of
simultaneous linear equations of �k:{

∂|δ̂k+1(k)|
∂k

− ∂|δ̂1(k)|
∂k

αk (k)

}
�k = |δ̂1(k)|�αk (k) (k = 1, · · · , m − 1) (2.31)

Combination of Equation 2.31 with the definition {∂�1(k)/∂k}�k = ��1(k) of the
linear increment of the lowest eigenvalue yields the following set of simultaneous
linear equations with respect to �k:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂�1(k)

∂k
∂|δ̂2(k)|

∂k
− ∂|δ̂1(k)|

∂k
α1(k)

...

∂|δ̂m(k)|
∂k

− ∂|δ̂1(k)|
∂k

αm−1(k)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

��1(k)
|δ̂1(k)|�α1(k)

...

|δ̂1(k)|�αm−1(k)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.32)
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The first-order sensitivity of the absolute value |δ̂i(k)| of deformation is derived from
Equations 2.13 and 2.27.

Let α0 and αF denote the initial values of the transfer function ratios and the corre-
sponding target values. The linear increments of α to be specified in this formulation
are given as follows:

�α = 1

N
(αF − α0) (2.33)

As for the lowest eigenvalue, let �1(0) and �1F denote the initial value of the lowest
eigenvalue of the undamped model and the corresponding target value. The linear
increment of �1 to be specified in this formulation is given as

��1 = 1

N
(�1F − �1(0)) (2.34)

Since Equation 2.32 constitutes a set of simultaneous linear equations with respect
to the stiffness increments �k, regular repetitive application of Equation 2.32 in the
range (α0, αF) of the transfer function ratios and (�1(0), �1F) of the lowest eigenvalue
of the undamped model will provide a definite target design.

2.4 Numerical Examples I

2.4.1 Viscous Damping Model

A viscous damping model is discussed first. Consider the two-DOF mass–spring–
dashpot model shown in Figure 2.1(a). In the models to be considered in three
examples, the terminology “story’’ is used to indicate the position between two adja-
cent masses. The masses and viscous damping coefficients of dashpots are prescribed
as m1 = 1.0 × 105 kg, m2 = 0.8 × 105 kg, and c1 = c2 = 2.0 × 105 N s/m. The design
variables in this case are the spring stiffnesses k1 and k2. The partial derivatives of the
coefficient matrix A defined in Equation 2.6 with respect to design variables, k1 and
k2, are expressed as

A,1 =
[

1 0
0 0

]
+ iω1,1

[
c1 + c2 −c2
−c2 c2

]
− �1,1

[
m1 0
0 m2

]
(2.35a)

A,2 =
[

1 −1
−1 1

]
+ iω1,2

[
c1 + c2 −c2
−c2 c2

]
− �1,2

[
m1 0
0 m2

]
(2.35b)

The initial values of spring stiffnesses are taken as k1 = k2 = 4.0 × 107 N/m.
In addition, the initial lowest eigenvalue of the undamped model is taken as
�1(0) = 178 rad2/s2 and the initial value for the transfer function ratio is taken as
α01 = 0.554. These values have been obtained from the initial values of spring stiff-
nesses. The target values of the lowest eigenvalue and the transfer function ratio
are specified as �1F = 178 rad2/s2 and αF1 = 1.0. The increment ��1 of the lowest
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eigenvalue of the undamped model is specified as zero in this example. The number of
steps in the redesign process is prescribed as N = 50. In order to verify the accuracy
of this procedure for redesign, the eigenvalue analysis has been done and the trans-
fer function ratio has been calculated from Equation 2.5 for the model with the final
design variables. The maximum discrepancies (differences) of the lowest eigenvalue
and the transfer function ratio from the target values turned out to be 0.12% and 0.37%
respectively. This supports the validity of the present procedure for redesign.

Figure 2.3(a) shows the amplitudes of transfer functions defined by δ1(ω)/Üg(ω)
and δ2(ω)/Üg(ω) for the initial design and Figure 2.3(b) presents those for the target
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Figure 2.3 Amplitudes of transfer functions δ1(ω)/Üg(ω) and δ2(ω)/Üg(ω) in viscous damper model: (a)
initial design; (b) target design. (Originally published in I. Takewaki, “Efficient redesign of damped struc-
tural systems for target transfer functions,’’ Computer Methods in Applied Mechanics and Engineering,
147, no. 3–4, 275–286, 1997, Elsevier B.V.).
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design. It can be seen from Figure 2.3(b) that the amplitudes of transfer functions
δ1(ω)/Üg(ω) and δ2(ω)/Üg(ω) at the undamped fundamental natural circular fre-
quency (13.34 rad/s) in the target design attain almost the same value by the constraint
αF1 = 1.0. This clearly shows the validity of the present procedure.

2.4.2 Hysteretic Damping Model

A hysteretic damping model may be another representative model of damping. Con-
sider the two-DOF mass–spring model with hysteretic damping systems shown
in Figure 2.1(b). The nodal masses are prescribed as m1 = 1.0 × 105 kg and
m2 = 0.8 × 105 kg. The coefficients of the hysteretic damping system are prescribed
as β1 = β2 = 0.02. The hysteretic damping coefficients can be introduced by replacing
k1 + iωc1 and k2 + iωc2 in Equation 2.2 by k1(1 + 2β1i) and k2(1 + 2β2i) respectively.
The design variables in this case are the spring stiffnesses k1 and k2 in this example
also. The partial derivatives of the coefficient matrix A, derived by replacing k1 + iωc1
and k2 + iωc2 in Equation 2.6 by k1(1 + 2β1i) and k2(1 + 2β2i), with respect to design
variables can be expressed as

A,1 =
[

1 0
0 0

]
+ i

[
2β1 0

0 0

]
− �1,1

[
m1 0
0 m2

]
(2.36a)

A,2 =
[

1 −1
−1 1

]
+ i

[
2β2 −2β2

−2β2 2β2

]
− �1,2

[
m1 0
0 m2

]
(2.36b)

The initial values of spring stiffnesses are taken as k1 = k2 = 4.0 × 107 N/m.
The initial lowest eigenvalue of the undamped model is taken as �1(0) = 178 rad2/s2

and the initial value for the transfer function ratio is taken as α01 = 0.554. These are
the same as in the previous example for viscous damping. The targets of the low-
est eigenvalue and the transfer function ratio are specified as �1F = 178 rad2/s2 and
αF1 = 1.0. The number of steps in the redesign process is assumed to be N = 50. An
accuracy check demonstrates that the maximum discrepancies (differences) of the
lowest eigenvalue and the transfer function ratio from the target values are 0.12%
and 0.37% respectively in this example also. This supports the validity of the present
procedure for redesign.

Figure 2.4(a) presents the amplitudes of transfer functions defined by δ1(ω)/Üg(ω)
and δ2(ω)/Üg(ω) for the initial design and Figure 2.4(b) shows those for the tar-
get design. It can be seen that the amplitudes of transfer functions δ1(ω)/Üg(ω) and
δ2(ω)/Üg(ω) at the undamped fundamental natural circular frequency in the target
design attain almost the same value by the constraint αF1 = 1.0. This shows the
validity of the present procedure. Furthermore, it can be observed that the overall
configuration of the amplitude of the transfer function is different from that for the
model with viscous damping systems and that the relative value of the amplitude
of the transfer function at the undamped second natural circular frequency to that at
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Figure 2.4 Amplitudes of transfer functions δ1(ω)/Üg(ω) and δ2(ω)/Üg(ω) in hysteretic damper
model: (a) initial design; (b) target design. (Originally published in I. Takewaki, “Efficient redesign
of damped structural systems for target transfer functions,’’ Computer Methods in Applied Mechanics
and Engineering, 147, no. 3–4, 275–286, 1997, Elsevier B.V.).

the undamped fundamental natural frequency is larger than that for the model with
viscous damping systems. This indicates that damping effects in higher modes do not
decay rapidly in a model with hysteretic damping systems compared with a model
with viscous damping systems.

2.4.3 Six-DOF Models with Various Possibilities of Damper Placement

As an example of MDOF models, consider the six-DOF model shown in Figure 2.5.
All the nodal masses are assumed to be prescribed as m1 = · · · = m6 = 0.8 × 105 kg.
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Figure 2.5 Six-DOF model with various damper placements. (Originally published in I. Takewaki,
“Efficient redesign of damped structural systems for target transfer functions,’’ Computer Methods in
Applied Mechanics and Engineering, 147, no. 3–4, 275–286, 1997, Elsevier B.V.).

Four different models, called Model A, Model 12, Model 34, and Model 56, are
considered with various possibilities of damper placement. Every viscous damper is
to have the same prescribed value of damping coefficient: 1.5 × 106 N s/m. Model A
has the viscous dampers in all stories; that is, c1 = · · · = c6 = 1.5 × 106 N s/m. On
the other hand, Model 12 has the viscous dampers only in the first and second
stories; that is, c1 = c2 = 1.5 × 106 N s/m. As another model, Model 34 has the vis-
cous dampers only in the third and fourth stories; that is, c3 = c4 = 1.5 × 106 N s/m.
Finally, Model 56 has the viscous dampers only in the fifth and sixth stories; that is,
c5 = c6 = 1.5 × 106 N s/m.

The design variables are now the spring stiffnesses k1, . . . , k6. The initial values
of spring stiffnesses are taken as k1 = · · · = k6 = 4.0 × 107 N/m. The initial value of
the lowest eigenvalue of the undamped model is taken as �1(0) = 29.1 rad2/s2 and the
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Table 2.1 Initial values of transfer function ratios {αj} for Models A, 12, 34, and 56. (Originally
published in I. Takewaki, “Efficient redesign of damped structural systems for target transfer func-
tions,’’ Computer Methods in Applied Mechanics and Engineering, 147, no. 3–4, 275–286, 1997,
Elsevier B.V.).

Model A Model 12 Model 34 Model 56

α01 0.936 0.940 0.939 0.941
α02 0.820 0.844 0.807 0.828
α03 0.659 0.680 0.649 0.666
α04 0.461 0.477 0.464 0.457
α05 0.237 0.245 0.239 0.235

initial values of the transfer function ratios for Model A, Model 12, Model 34, and
Model 56 are given in Table 2.1. These values have been obtained from the initial
values of spring stiffnesses. The targets of the lowest eigenvalue and the transfer
function ratios are specified as �1F = 29.1 rad2/s2 and αF1 = · · · = αF5 = 1.0. The
same target value of the lowest eigenvalue enables one to compare four models with
the same overall stiffness. The number of steps in the redesign process is assumed to
be N = 50.

Figure 2.6 presents the spring stiffness distributions of the target designs obtained
for Model A, Model 12, Model 34, and Model 56. It can be observed and reasoned
that the spring stiffnesses in the lower stories in Model 12 become smaller than those
in Model A due to the existence of viscous dampers only in the lower stories and
the spring stiffnesses in the upper stories become larger in compensation for those.
Figure 2.7 shows the variation of spring stiffnesses in Model A. It is further under-
stood that the variation of the spring stiffnesses in the upper stories exhibits higher
nonlinearities with respect to the step number. Figure 2.8(a) indicates the amplitudes
of the transfer functions of the target design for Model A. It can be confirmed that the
amplitude of the transfer function in every story at the undamped fundamental natural
circular frequency attains almost the same value as desired and predicted. Figure 2.8(b)
shows the amplitudes of the transfer functions of the target design obtained for Model
12. Figure 2.9 presents the amplitudes of the transfer functions of the target designs
obtained for Model 34 and Model 56. It can be observed that, while the amplitudes
of the transfer functions in all stories at the undamped fundamental natural circular
frequency in Models 12, 34, and 56 attain almost the same value, the level is almost
three times that for Model A. This fact just corresponds to the fact that the damping
ratios in the lowest eigenvibration of Models 12, 34, and 56 are almost one-third
that of Model A (see Table 2.2) and that the amplitude of a transfer function at the
resonance frequency is inversely proportional to the damping ratio in a single-DOF
(SDOF) model. Furthermore, it can be observed that the damping effects in higher
modes (i.e., the amplitudes of transfer functions at the higher natural frequencies) are
quite sensitive to damper placement.
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Figure 2.6 Spring stiffness distributions of target designs for Model A, Model 12, Model 34, and Model
56. (Originally published in I. Takewaki, “Efficient redesign of damped structural systems for target
transfer functions,’’ Computer Methods in Applied Mechanics and Engineering, 147, no. 3–4, 275–286,
1997, Elsevier B.V.).

2.5 Optimality Criteria-based Design of Dampers: Simple Example

Consider, as an illustrative example, the two-story shear building model with added
viscous dampers shown in Figure 2.10. Let {m1, m2} and {k1, k2} denote the masses
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Figure 2.7 Variation of spring stiffnesses in Model A. (Originally published in I. Takewaki, “Efficient
redesign of damped structural systems for target transfer functions,’’ Computer Methods in Applied
Mechanics and Engineering, 147, no. 3–4, 275–286, 1997, Elsevier B.V.).

and story stiffnesses respectively of the shear building model and let {c1, c2} denote
the damping coefficients of the added dampers. Assume that {m1, m2} and {k1, k2} are
prescribed. The design variables are the damping coefficients c = {c1, c2} of added
dampers. It is also assumed here that the original structural damping is negligible
compared with the damping of the added dampers. This assumption can be removed,
if necessary, without difficulty. Let u1 and u2 denote the displacements of masses m1
and m2 respectively. When this model is subjected to a horizontal base acceleration
üg, the equations of motion for this model may be written as[

k1 + k2 −k2

−k2 k2

]{
u1
u2

}
+

[
c1 + c2 −c2
−c2 c2

]{
u̇1
u̇2

}
+

[
m1 0
0 m2

]{
ü1
ü2

}

= −
[

m1 0
0 m2

]{
1
1

}
üg (2.37)

Let U1(ω), U2(ω), and Üg(ω) denote the Fourier transforms of u1, u2, and üg
respectively, and let ω denote a circular frequency of excitation. Fourier transformation
of Equation 2.37 may be reduced to the following form:([

k1 + k2 −k2

−k2 k2

]
+ iω

[
c1 + c2 −c2
−c2 c2

]
− ω2

[
m1 0
0 m2

]) {
U1(ω)
U2(ω)

}

= −
[

m1 0
0 m2

]{
1
1

}
Üg(ω) (2.38)

where i is the imaginary unit. The Fourier transforms δ1(ω) and δ2(ω) of the interstory
drifts d1 = u1 and d2 = u2 − u1 are related to U1(ω) and U2(ω) by{

δ1(ω)
δ2(ω)

}
= T

{
U1(ω)
U2(ω)

}
(2.39)
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Figure 2.8 Amplitudes of transfer functions in target design: (a) Model A; (b) Model 12. (Originally
published in I. Takewaki, “Efficient redesign of damped structural systems for target transfer functions,’’
Computer Methods in Applied Mechanics and Engineering, 147, no. 3–4, 275–286, 1997, Elsevier B.V.).
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Figure 2.9 Amplitudes of transfer functions in target design: (a) Model 34; (b) Model 56. (Originally
published in I. Takewaki, “Efficient redesign of damped structural systems for target transfer functions,’’
Computer Methods in Applied Mechanics and Engineering, 147, no. 3–4, 275–286, 1997, Elsevier B.V.).
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Table 2.2 Fundamental natural circular frequencies and damping ratios in the lowest eigenvibration due
to complex eigenvalue analysis of target designs for Models A, 12, 34, and 56. (Originally published in
I. Takewaki, “Efficient redesign of damped structural systems for target transfer functions,’’ Computer
Methods in Applied Mechanics and Engineering, 147, no. 3–4, 275–286, 1997, Elsevier B.V.).

Model A Model 12 Model 34 Model 56

ω∗
1(rad/s) 5.45 5.41 5.42 5.51

h(1) 0.120 0.0384 0.0390 0.0422

ω∗
1: fundamental natural circular frequency due to complex eigenvalue analysis; h(1): damping ratios in

the lowest eigenvibration due to complex eigenvalue analysis.

u1

u2

m1

m2

k2

k1c1

c2

Figure 2.10 Two-story shear building model with supplemental viscous dampers. (I. Takewaki, “Opti-
mal Damper Placement for Minimum Transfer Functions,’’ Earthquake Engineering and Structural
Dynamics, Vol.26, No.11. © 1997 John Wiley & Sons, Ltd).

where

T =
[

1 0
−1 1

]
(2.40)

Let ω1 denote the undamped fundamental natural circular frequency of the model
and let us define new quantities Û1 and Û2 by

Û1 ≡ U1(ω1)

Üg(ω1)
and Û2 ≡ U2(ω1)

Üg(ω1)
(2.41)

As stated in Equation 2.4, Ûi indicates the value such that ω1 is substituted in the
frequency response function obtained as Ui(ω) after substituting Üg(ω) = 1 in Equation
2.38. Because {m1, m2} and {k1, k2} are prescribed, ω1 is a given value. It may be
convenient to introduce new quantities δ̂1 and δ̂2 defined by δ̂1 ≡ Û1 and δ̂2 ≡ Û2 −Û1
(see Figure 2.11). Judging from Equation 2.38, after substituting ω = ω1 and Equation
2.41, Û1 and Û2 must satisfy the following equation:

A
{

Û1

Û2

}
= −

{
m1
m2

}
(2.42)
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Figure 2.11 Amplitudes of new quantities δ̂1 and δ̂2 as transfer functions of interstory drifts defined
by δ̂1 ≡ Û1 and δ̂2 ≡ Û2 − Û1 (Û1, Û2: transfer functions of horizontal displacements). (I. Takewaki,
“Optimal Damper Placement for Minimum Transfer Functions,’’ Earthquake Engineering and Structural
Dynamics, Vol.26, No.11. © 1997 John Wiley & Sons, Ltd).

where

A =
[

(k1 + k2) + iω1(c1 + c2) − ω2
1m1 −k2 − iω1c2

−k2 − iω1c2 k2 + iω1c2 − ω2
1m2

]
(2.43)

It should be remarked here that the squares of the amplitudes of transfer functions are
useful from physical points of view because they can be transformed into response
mean squares (statistical quantities) after multiplication with the power spectral density
(PSD) function of a disturbance and integration in the frequency range. Since the
amplitude of the transfer function of an interstory drift evaluated at the undamped
fundamental natural circular frequency can be related to the level of this response
mean square, these amplitudes of transfer functions are treated here as controlled
quantities.

The problem of optimal damper placement (PODP) for a fixed shear building model
may be described as follows.

Problem 2.1 PODP Find the damping coefficients of added dampers minimizing
the sum of amplitudes of the transfer functions of interstory drifts evaluated at the
undamped fundamental natural circular frequency

V =
2∑

i=1

|δ̂i(c)| (2.44)

subject to a constraint on the sum of the damper damping coefficients
2∑

i=1

ci = W (W : specified value) (2.45)

The quantity V defined in Equation 2.44 represents the global flexibility and its
minimization is preferred from the view point of performance-based design.
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The Lagrangian L for Problem 2.1 may be expressed in terms of a Lagrange
multiplier λ:

L(c, λ) =
2∑

i=1

|δ̂i(c)| + λ

(
2∑

i=1

ci − W

)
(2.46)

For simplicity of expression, the argument (c) will be omitted hereafter.

2.5.1 Optimality Criteria

The optimality criteria for Problem 2.1 may be derived from the stationarity conditions
of L(c, λ) with respect to c and λ:(

2∑
i=1

|δ̂i|
)

, j

+ λ = 0 ( j = 1, 2) (2.47)

2∑
i=1

ci − W = 0 (2.48)

Here, and in the following, ( · ), j denotes the partial differentiation with respect to
cj. It should be noted that the damping coefficient of every added damper must
be a nonnegative value. If cj = 0, then Equation 2.47 must be modified into the
following form:

(
2∑

i=1

|δ̂i|
)

, j

+ λ ≥ 0 (2.49)

The optimality criteria, Equation 2.47, include a parameter λ. It may be convenient
from the viewpoint of construction of a systematic solution algorithm to express the
optimality criteria without this parameter. Let us define a new quantity defined by

γ1 =

(
2∑

i=1
|δ̂i|

)
,2(

2∑
i=1

|δ̂i|
)

,1

(2.50)

The alternative expression of the optimality criteria, Equation 2.47, may then be
reduced to γ1 = 1 by eliminating λ. If c1 = 0, then γ1 ≥ 1. If c2 = 0, then γ1 ≤ 1.

WWW.BEHSAZPOLRAZAN.COM



c02.tex 27/8/2009 14: 11 Page 34

34 Building Control with Passive Dampers

2.5.2 Solution Algorithm

Differentiation of Equation 2.42 with respect to a design variable cj provides

A,j

{
Û1

Û2

}
+ A

{
Û1, j

Û2, j

}
= 0 (2.51)

A,j in Equation 2.51 can be expressed as

A,1 = iω1

[
1 0
0 0

]
A,2 = iω1

[
1 −1

−1 1

]
(2.52)

Since A defined by Equation 2.43 is regular, the first-order sensitivities of Û1 and
Û2 are derived from Equation 2.51 as{

Û1, j

Û2, j

}
= −A−1A,j

{
Û1

Û2

}
(2.53)

The first-order sensitivities of δ̂1 and δ̂2 are then derived by differentiating δ̂1 ≡ Û1
and δ̂2 ≡ Û2 − Û1 (or Equation 2.39 after substituting ω = ω1) and using
Equation 2.53 as {

δ̂1, j

δ̂2, j

}
= −TA−1A,j T−1

{
δ̂1

δ̂2

}
(2.54)

The quantity δ̂i as a complex number may be rewritten symbolically as

δ̂i = Re[δ̂i] + iIm[δ̂i] (2.55)

where Re[ ] and Im[ ] indicate the real and imaginary parts respectively of a com-
plex number. The first-order sensitivity of δ̂i with respect to cj may then be formally
expressed as

δ̂i, j = (Re[δ̂i]), j + i(Im[δ̂i]), j (2.56)

The absolute value of δ̂i is defined by

|δ̂i| =
√

(Re[δ̂i])2 + (Im[δ̂i])2. (2.57)

Then, the first-order sensitivity of |δ̂i| with respect to cj may be expressed as

|δ̂i|, j = 1

|δ̂i|
{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j} (2.58)

where (Re[δ̂i]), j(= Re[δ̂i, j]) and (Im[δ̂i]), j(= Im[δ̂i, j]) are calculated from Equa-
tion 2.54.

A numerical example of this first-order sensitivity of |δ̂i| with respect to cj for a two-
story shear building model is presented in Appendix 2.A. Interested readers should
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examine the results shown in Appendix 2.A, which will be useful in understanding
the damping sensitivity.

Consider next the variation of γ1 defined in Equation 2.50. The linear increment
�γ1 of γ1 may be described as follows:

�γ1 =
(

1

B1

∂B2

∂c
− B2

B2
1

∂B1

∂c

)
�c = 1

B1

(
∂B2

∂c
− ∂B1

∂c
γ1

)
�c (2.59)

where

B1 =
(

2∑
i=1

|δ̂i|
)

,1

B2 =
(

2∑
i=1

|δ̂i|
)

,2

(2.60)

The increments �c must satisfy the following relation due to the constraint (2.48):

2∑
i=1

�ci = 0 (2.61)

Equations 2.59 and 2.61 lead to the following set of simultaneous linear equations
with respect to �c: ⎡

⎣ 1

B1

(
∂B2

∂c
− ∂B1

∂c
γ1

)
1 1

⎤
⎦�c =

{
�γ1

0

}
(2.62)

Note that (∂B2/∂c − γ1∂B1/∂c)/B1 in the left-hand side of Equation 2.62 is a 1 × 2
vector. Equation 2.62 implies that, once �γ1 is given and ∂B1/∂c, ∂B2/∂c are evalu-
ated, �c can be found. Let γ01 denote the initial value of γ1. The increment �γ1 is given
here as �γ1 = (1 − γ01)/N , where N is the number of steps. It should be remarked
that, if either one of c1 or c2 vanishes, the following relation must be satisfied. If
c1 = 0, then γ1 ≥ 1. If c2 = 0, then γ1 ≤ 1.

The derivatives ∂B1/∂c and ∂B2/∂c can be evaluated in the following manner.
Differentiation of Equation 2.58 with respect to ck leads to

|δ̂i|, jk = 1

|δ̂i|2
(|δ̂i|{(Re[δ̂i]),k (Re[δ̂i]), j + Re[δ̂i](Re[δ̂i]), jk + (Im[δ̂i]),k (Im[δ̂i]), j

+ Im[δ̂i](Im[δ̂i]), jk} − |δ̂i|,k{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j}) (2.63)

∂B1/∂c and ∂B2/∂c may then be expressed as follows:

∂B1

∂c
= { |δ̂1|,11 + |δ̂2|,11 |δ̂1|,12 + |δ̂2|,12 } (2.64a)

∂B2

∂c
= { |δ̂1|,21 + |δ̂2|,21 |δ̂1|,22 + |δ̂2|,22

}
(2.64b)
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(Re[δ̂i]), jk (= Re[δ̂i, jk ]) and (Im[δ̂i]), jk (= Im[δ̂i, jk ]) in Equation 2.63 are found from{
δ̂1, jk

δ̂2, jk

}
= TA−1A,k A−1A,j T−1

{
δ̂1

δ̂2

}
− TA−1A,j T−1

{
δ̂1,k

δ̂2,k

}
(2.65)

Equation 2.65 is derived by differentiating Equation 2.54 with respect to ck and using
the relation A−1

,k = − A−1A,k A−1. It should be noted here that, since the components
in the matrix A are linear functions of c, A, jk becomes a null matrix for all j and k.

2.6 Optimality Criteria-based Design of Dampers: General
Formulation

Consider an n-story shear building model. The design variables are the damping coef-
ficients {c1 · · · cn} of added dampers. The problem of optimal damper placement may
be stated almost in the same manner as in Problem 2.1 by replacing 2 by n.

Equation 2.38 may be generalized into the following form:

(K + iωC − ω2M)U(ω) = −MrÜg(ω) (2.66)

where K, C, and M are the system stiffness, damping, and mass matrices respectively
and r = {1 · · · 1}T is the influence coefficient vector for a horizontal base input.
Furthermore, U(ω) is defined by U(ω) = {U1(ω) · · · Un(ω)}T.

The optimality criteria are now expressed as follows. If c1 �= 0 and cj �= 0 ( j �= 1),
then γj−1 = 1. If c1 �= 0 and cj = 0 ( j �= 1), then γj−1 ≤ 1. If c1 = 0 and cj �= 0, then
γj−1 ≥ 1. If c1 = 0 and cj = 0, then γj−1 is arbitrary.

Equation 2.42 is generalized into

AÛ = −Mr (2.67)

where Û = {Û1 · · · Ûn}T (Ûj = Uj(ω1)/Üg(ω1)) and

A = K + iω1C − ω2
1M (2.68)

The transfer functions δ̂ = {δ̂1 · · · δ̂m}T of interstory drifts evaluated at the undamped
fundamental natural circular frequency are related to Û by

δ̂ = TÛ (2.69)

where T is the deformation–displacement transformation matrix (generalized version
of Equation 2.40). Equation 2.51 may be generalized into

A, jÛ + AÛ, j = 0 (2.70)

From Equation 2.70, Û, j can be expressed in terms of Û:

Û, j = −A−1A, jÛ (2.71)

WWW.BEHSAZPOLRAZAN.COM



c02.tex 27/8/2009 14: 11 Page 37

Optimality Criteria-based Design: Single Criterion in Terms of Transfer Function 37

It should be noted that an explicit expression of A−1 can be derived for a mass–spring
model (shear building model) having a tri-diagonal matrix A (Takewaki and Naka-
mura, 1995; Takewaki et al., 1996). From Equations 2.69 and 2.71, δ̂, j is expressed
in terms of δ̂:

δ̂, j = −TA−1A, jT−1δ̂ (2.72)

Now let us define a new quantity γj by

γj =

(
n∑

i=1
|δ̂i|

)
, j+1(

n∑
i=1

|δ̂i|
)

,1

( j = 1, · · · , n − 1) (2.73)

The linear increment of γj may be expressed as

�γj =
(

1

B1

∂Bj+1

∂c
− Bj+1

B2
1

∂B1

∂c

)
�c = 1

B1

(
∂Bj+1

∂c
− ∂B1

∂c
γj

)
�c (2.74)

where

Bj =
(

n∑
i=1

|δ̂i|
)

, j

(2.75)

Combination of Equations 2.74 with
∑n

i=1 �ci = 0 yields the following set of
simultaneous linear equations with respect to �c:⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1

B1

(
∂B2

∂c
− ∂B1

∂c
γ1

)
...

1

B1

(
∂Bn

∂c
− ∂B1

∂c
γn−1

)
1 · · · 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

�c =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�γ1
...

�γn−1
0

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.76)

The derivatives |δ̂i|, jk are derived from Equation 2.63. (Re[δ̂i]), j and (Im[δ̂i]), j in
Equation 2.63 are calculated from Equation 2.54 and (Re[δ̂i]), jk and (Im[δ̂i]), jk in
Equation 2.63 are found from Equation 2.65.

Let γ0 and γF denote the initial values of the quantities defined in Equation 2.73
and their target values. It should be noted that γF = {1 · · · 1}T. The linear increments
�γ = {�γ1 · · · �γn−1}T of γ to be specified are given as follows:

�γ = 1

N
(γF − γ0) (2.77)
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Compute ∆c from Eq.(2.76) using Eq.(2.77) 

If cj > 0 for all j

yesno

yes

no

end

Optimality criteria are satisfied for c + ∆c?

for cj � 0 (j≠1)

Remove the j-th column
and the (j-1)-th row

Update �0 and compute ∆�

Figure 2.12 Flowchart of the procedure for optimality criteria-based design of dampers.

The solution algorithm may then be summarized as follows:

Step 1 If cj > 0 for all j, compute �c from Equation 2.76 using Equation 2.77.
Step 2 If one of cj values vanishes, check whether the ratio γj−1 corresponding to

cj = 0 satisfies the condition γj−1 ≤ 1.
Step 3 Update γ0 for the model in (Step 2) and compute �γ by Equation 2.77.
Step 4 Remove the jth column in the coefficient matrix in the left-hand side in

Equation 2.76 and the (j − 1)th row in the same coefficient matrix
corresponding to cj = 0. The other �cj values (and cj values) are then com-
puted sequentially from the resulting reduced set of simultaneous linear
equations.

Step 5 Repeat from Step 2 to Step 4 until all the optimality criteria are satisfied.

If c1 = 0, the denominator of Equation 2.73 should be changed to Bj for another
story; for example, the story with the maximum value of Bj. Since the present solu-
tion algorithm does not include any indefinite iterative operation, it will provide
a definite target design (optimal design). Figure 2.12 shows the flowchart of this
solution procedure and Figure 2.13 explains the outline of the present optimization
procedure.
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Distribution of damping coefficients

Figure 2.13 Outline of present optimization procedure.
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Figure 2.14 Six-story shear building model with supplemental passive viscous dampers. (I. Takewaki,
“Optimal Damper Placement for Minimum Transfer Functions,’’ Earthquake Engineering and Structural
Dynamics, Vol.26, No.11. © 1997 John Wiley & Sons, Ltd).

2.7 Numerical Examples II

2.7.1 Example 1: Model with a Uniform Distribution of Story Stiffnesses

Consider a six-story shear building model as shown in Figure 2.14. All the masses are
assumed to be prescribed as m1 = · · · = m6 = 0.8 × 105 kg. Every story stiffness is to
have the same prescribed value: k1 = · · · = k6 = 4.0 × 107 N/m. The design variables
are now the damping coefficients c1, . . . , c6 of added viscous dampers. Every viscous
damper is to have the same initial damping coefficient: 1.5 × 106 N s/m. The undamped
fundamental natural circular frequency of the model is ω1 = 5.39 rad/s and the initial
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Table 2.3 Initial values of {γj} defined in Equation 2.73. (I. Takewaki, “Optimal Damper Placement
for Minimum Transfer Functions,’’ Earthquake Engineering and Structural Dynamics, Vol.26, No.11.
© 1997 John Wiley & Sons, Ltd).

j 1 2 3 4 5

γ0j 0.8795 0.6798 0.4438 0.2222 0.0627

Table 2.4 Final values of {γj} attained in optimal design. (I. Takewaki, “Optimal Damper Placement
for Minimum Transfer Functions,’’ Earthquake Engineering and Structural Dynamics, Vol.26, No.11.
© 1997 John Wiley & Sons, Ltd).

j 1 2 3 4 5

γFj 1.001 0.8548 0.5550 0.2726 0.0723
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Figure 2.15 Distribution of optimal damping coefficients obtained via the present procedure.
(I. Takewaki, “Optimal Damper Placement for Minimum Transfer Functions,’’ Earthquake Engineering
and Structural Dynamics, Vol.26, No.11. © 1997 John Wiley & Sons, Ltd).

values of γ are shown in Table 2.3. The target values of γ are γFj = 1 (for all j) and the
final values of γ attained in the optimal design are shown in Table 2.4. The number of
steps in the redesign process is N = 50.

The distribution of the optimal damping coefficients obtained via the present pro-
cedure is plotted in Figure 2.15. It can be observed that, in the optimal design, the
dampers are concentrated in the stories where the largest interstory drifts are attained
in the initial design (uniform distribution of damping coefficients) (see Figure 2.16).
This fact just corresponds to the conclusions in previous studies (Zhang and Soong,
1992; Tsuji and Nakamura, 1996). It has been disclosed automatically through the
solution algorithm explained in the previous section that unnecessary added dampers
should be removed downward from the top.

Figure 2.16 shows the amplitudes of the transfer functions for the initial design and
the optimal design. It can be observed that the amplitudes of transfer functions of
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Figure 2.16 Amplitudes of transfer functions for initial and optimal designs. (I. Takewaki, “Optimal
Damper Placement for Minimum Transfer Functions,’’ Earthquake Engineering and Structural Dynam-
ics, Vol.26, No.11. © 1997 John Wiley & Sons, Ltd).

interstory drifts have been reduced significantly, especially in the lower stories. The
objective function V has been reduced from 0.2139 (initial design) to 0.1351 (optimal
design).

2.7.2 Example 2: Model with a Uniform Distribution of Amplitudes of
Transfer Functions

Another shear building model with a different distribution of story stiffnesses is
considered as the second example. The distributions of masses and initial damp-
ing coefficients of added viscous dampers are the same as in the previous example.
The story stiffnesses of the shear building model have been determined so that it has
an undamped fundamental natural circular frequency ω1 = 5.39 rad/s and a uniform
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distribution of the amplitudes {|δ̂j|} of transfer functions of interstory drifts. This pro-
cedure can be conducted efficiently using an algorithm for an incremental inverse
problem (Takewaki, 1997a; Takewaki, 1997b) explained in Sections 2.2–2.4. The
distribution of story stiffnesses is shown in Table 2.5 and the initial values of γ are
shown in Table 2.6. For this model, the solution algorithm explained in the previ-
ous section has been applied. The number of steps in the redesign process is N = 500.
Figure 2.17 shows the distribution of the optimal damping coefficients. Different from
the previous example with a uniform distribution of story stiffnesses, the dampers are
not concentrated in the specific stories. This may result from the fact that the initial val-
ues of γ in Table 2.6 indicate nearly optimal values in this model and drastic reduction
of the objective function cannot be expected by the redistribution of added dampers.
Actually, the objective function has been slightly reduced from 0.2033 to 0.2027.

Table 2.5 Story stiffnesses {kj} in the second example. (I. Takewaki, “Optimal Damper Placement
for Minimum Transfer Functions,’’ Earthquake Engineering and Structural Dynamics, Vol.26, No.11.
© 1997 John Wiley & Sons, Ltd).

j 1 2 3 4 5 6

kj(× 107N/m) 5.131 4.810 4.260 3.476 2.444 1.100

Table 2.6 Initial values of {γj} in the second example. (I. Takewaki, “Optimal Damper Placement
for Minimum Transfer Functions,’’ Earthquake Engineering and Structural Dynamics, Vol.26, No.11.
© 1997 John Wiley & Sons, Ltd).

j 1 2 3 4 5

γ0j 1.021 1.042 1.062 1.071 0.8999
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Figure 2.17 Distribution of optimal damping coefficients. (I. Takewaki, “Optimal Damper Placement
for Minimum Transfer Functions,’’ Earthquake Engineering and Structural Dynamics, Vol.26, No.11.
© 1997 John Wiley & Sons, Ltd).
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2.8 Comparison with Other Methods

2.8.1 Method of Lopez Garcia

Lopez Garcia (2001) developed an efficient and practical method (the Simplified
Sequential Search Algorithm (SSSA)) of optimal damper placement and compared the
result by his approach with that of Takewaki (1997c) explained in Sections 2.5–2.7.
Figure 2.18 shows this comparison for four recorded ground motions. He concluded
that the efficiency of the damper configurations given by the SSSA is similar to the
efficiency of the damper configuration given by the optimal placement for minimum
transfer functions by Takewaki (1997c). This fact strongly supports the reliability of
the method by Takewaki (1997c) explained in Sections 2.5–2.7.
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Figure 2.18 Comparison between the SSSA and optimal placement for minimum transfer functions:
sum of interstory drifts for six-story structure (Reproduced with permission from D. L. Garcia, “A simple
method for the design of optimal damper figurations in MDOF structures,’’ Earthquake Spectra, 17, no.
3, 387–398, 2001. © 2001 EERI).
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MP-damping scheme (2) SP-damping schemeMP-damping scheme (1)

Figure 2.19 MP damping scheme and SP damping scheme.

2.8.2 Method of Trombetti and Silvestri

Trombetti and Silvestri (2004) developed an efficient mass-proportional (MP) damp-
ing system, as shown in Figure 2.19, and compared their system with the Takewaki
(1997c) approach developed for a stiffness-proportional (SP) system and explained in
Sections 2.5–2.7. They presented the comparison in terms of the maximum structural
displacement and the maximum damper forces for a six-story shear-type structure
subjected to three recorded ground motions: Imperial Valley, 1940, El Centro record,
NS component; Kern County, 1952, Taft Lincoln School record, EW component;
and Hyogoken-Nanbu, 1995, Kobe University record, NS component. It is noted
that the good performance of the MP damping scheme, within the class of Rayleigh
damping systems, applies to some nonclassical damping systems, as the top-story
mean-square response of the structure damped with an MP damping scheme is much
smaller than that of the same structure with added viscous dampers placed and sized
according to the optimization criteria proposed by Takewaki (1997c). It should be
noted that the optimization criteria proposed by Takewaki (1997c) only consider
dampers placed between adjacent stories (as is the case of the stiffness-proportional
(SP) damping scheme), while the MP damping scheme proposed by Trombetti and
Silvestri (2004) is characterized by dampers placed so that they connect each story to a
fixed point.

Careful treatment should be made on how this MP damping scheme is possible in
the practical situation of building construction.

2.9 Summary

The results are summarized as follows.

1. An analytical procedure has been explained for redesign of structural sys-
tems with an arbitrary damping system (viscous or hysteretic, proportional or
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nonproportional) for target transfer functions. Since the target transfer functions
as response parameters are specified, this problem is a kind of incremental inverse
problem. The ratios of absolute values of the transfer functions evaluated at the
undamped fundamental natural frequency of a structural system have been taken as
controlled quantities together with the undamped fundamental natural frequency.
Because amplitudes of transfer functions are not necessarily useful from physical
points of view, their ratios have been specified. An undamped fundamental nat-
ural frequency is a representative parameter of the overall stiffness of a structure
and specification of the undamped fundamental natural frequency is expected to
provide a fundamental and useful index for structural design. The features of the
present formulation are (i) possible treatment of any damping system stated above,
(ii) possible treatment of any structural system so far as it can be modeled with
FE systems and (iii) realization of a systematic algorithm without any indefinite
iterative operation.

2. An efficient and systematic procedure has been shown for finding the optimal
damper placement in structural systems with an arbitrary damping system (e.g.,
proportional or nonproportional). This problem is aimed at minimizing the sum of
amplitudes of the transfer functions evaluated at the undamped fundamental natural
frequency of a structural system subject to a constraint on the sum of the damp-
ing coefficients of added dampers. The optimal damper placement is determined
based upon the newly derived optimality criteria. The optimal location and size of
dampers have been obtained automatically via an incremental inverse problem. The
features of the present formulation are to be able to deal with any damping system
stated above, to be able to treat any structural system so far as it can be modeled
with FE systems and to consist of a systematic algorithm without any indefinite
iterative operation. It is also interesting to point out that, owing to the employment
of a general dynamical property (i.e., the amplitude of a transfer function), the
results are general and are not influenced by characteristics of input motions. The
efficiency and reliability of the present procedure have been demonstrated through
two examples of a six-story shear building model.

3. In the present formulation of optimal damper placement, an upper bound of the
damping coefficient of the added dampers in each story is not given as a design
constraint. However, that upper bound may be necessary because the maximum
power of a damper and the number of dampers that can be added to each floor are
limited in a realistic situation. In this case, the optimality conditions (i.e., Equation
2.47) must be modified. The present formulation is expected to be applicable to
such a case almost in the same manner. It should also be pointed out that, when opti-
mizing damper placement, the nonstationary nature of earthquake ground motions
may lead to results different from those obtained on the basis of the assumption of
stationary excitations.

4. The present formulation based on the optimality criteria and the incremental inverse
problem treatment exhibits a good performance compared with other methods.
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Appendix 2.A: Numerical Example of Damping Sensitivity
for a Two-story Shear Building Model

A simple numerical example is presented here for a two-story shear building model.
While structural damping was ignored in the formulation of Section 2.6, it is assumed
in this example that the damping system consists of the structural damping c1, c2 and
the supplemental damping c1, c2. Then, Equation 2.37 may be modified to

[
k1 + k2 −k2

−k2 k2

]{
u1
u2

}
+

[
c1 + c2 + c1 + c2 −c2 − c2

−c2 − c2 c2 + c2

]{
u̇1
u̇2

}
+

[
m1 0
0 m2

]{
ü1
ü2

}

= −
[

m1 0
0 m2

]{
1
1

}
üg (A2.1)

The coefficient matrix A in Equation 2.43 may be expressed as

A =
[

(k1 + k2) + iω1(c1 + c2 + c1 + c2) − ω2
1m1 −k2 − iω1(c2 + c2)

−k2 − iω1(c2 + c2) k2 + iω1(c2 + c2) − ω2
1m2

]

(A2.2)

Let us consider the first-order derivatives ∂V /∂c1 and ∂V /∂c2 at c1 = c2 = 0 (no
supplemental damper) of the objective function V defined in Equation 2.44. The struc-
tural parameters are m1 = 1.0 × 105 kg, m2 = 0.8 × 105 kg, k1 = k2 = 4.0 × 107 N/m,
c1 = c2 = 2.0 × 105 N s/m, and ω1 = √

178 rad/s (undamped fundamental natural
circular frequency). The coefficient matrix A for c1 = c2 = 0 can be obtained
numerically as

A = 1.00 × 107
[

6.22 + 0.534i −4.00 − 0.267i
−4.00 − 0.267i 2.58 + 0.267i

]
(A2.3)

Here, and in the following, the units are omitted for simplificity. The inverse A−1 is
derived as

A−1 = 1.00 × 10−6
[

0.0142 − 0.287i 0.00570 − 0.445i
0.00570 − 0.445i 0.0220 − 0.693i

]
(A2.4)

The transfer functions of displacements at ω = ω1 defined by Equation 2.41 can be
computed as

{
Û1

Û2

}
=

{−0.00190 + 0.0643i
−0.00230 + 0.0999i

}
(A2.5)
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The first-order derivatives (damping sensitivity) of the transfer functions of displace-
ments can be derived from Equation 2.53 as

{
Û1,1

Û2,1

}
= 1.00 × 10−6

{
0.0193 − 0.246i
0.0160 − 0.382i

}
(A2.6a)

{
Û1,2

Û2,2

}
= 1.00 × 10−6

{−0.00310 − 0.0750i
0.00920 − 0.118i

}
(A2.6b)

In this model, the transfer functions of interstory drifts can be obtained from
Equation A2.5 as

{
δ̂1

δ̂2

}
=

{ −0.001 90 + 0.0643i
−0.000 500 + 0.0356i

}
(A2.7)

The first-order derivatives of the interstory drifts can be computed from Equa-
tion 2.54 as

{
δ̂1,1

δ̂2,1

}
= 1.00 × 10−6

{
0.0193 − 0.246i

−0.003 30 − 0.136i

}
(A2.8a)

{
δ̂1,2

δ̂2,2

}
= 1.00 × 10−7

{−0.0308 − 0.750i
0.123 − 0.425i

}
(A2.8b)

Finally, the first-order derivatives ∂V /∂c1 and ∂V /∂c2 at c1 = c2 = 0 of the objective
function can be derived from Equation 2.58 as follows:

∂V /∂c1 = −3.82 × 10−7 (A2.9a)

∂V /∂c2 = −1.18 × 10−7 (A2.9b)

This implies that the increase of the supplemental damper c1 in the first story is
more effective than that of the damper c2 in the second story. A schematic diagram is
shown in Figure 2.20 of the relation of the gradient vector of the objective function
(performance) with the constraint on total damper quantity.

It should be remarked that the above-mentioned first-order derivatives ∂V /∂c1
and ∂V /∂c2 of the objective function are equal to those at the added damp-
ing c1 = c2 = 2.0 × 105 N s/m in the formulation of Section 2.5 without structural
damping.

WWW.BEHSAZPOLRAZAN.COM



c02.tex 27/8/2009 14: 11 Page 48

48 Building Control with Passive Dampers

c1

c2

higher
performance
(objective) 

equi-objective function line
passing through origin 

Figure 2.20 Schematic diagram of the relation of the gradient vector of the objective function
(performance) with the constraint on damper quantity.
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3
Optimality Criteria-based
Design: Multiple Criteria in
Terms of Seismic Responses

3.1 Introduction

In Chapter 2, the problem of optimal damper placement was discussed for a shear
building model with specified story stiffnesses. The amplitude of the transfer function
at the fundamental natural frequency has been treated as the performance to be min-
imized (Takewaki, 1997a; Takewaki, 1997b; Takewaki, 1998). The problem treated
in this chapter is to find simultaneously the optimal story stiffness distribution and
the optimal passive damper placement in a shear building model by minimizing the
sum of mean-square interstory drifts of the shear building model to stationary random
excitations or by maximizing the mean-square top-floor absolute acceleration from
the viewpoint of stiffness design. While the maximization of acceleration may give an
impression somewhat contradictory to the concept of performance-based design, the
minimization of acceleration will also be discussed by increasing the total quantity of
supplemental dampers.

While research on active and passive control has been developed extensively (e.g.,
Housner et al., 1994, 1997; Kobori, 1996; Soong and Dargush, 1997; Kobori et al.,
1998; Casciati, 2002; Johnson and Smyth, 2006), research on optimal passive damper
placement has been limited. In particular, research on simultaneous optimization of
stiffness and damping is very limited. Since the stiffness distribution and the damp-
ing coefficient distribution interact with each other very sensitively, simultaneous
optimization of both distributions is often complicated.

An efficient and systematic method is explained in this chapter for the simultaneous
optimization of story stiffness distributions and damping coefficient distributions of

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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supplemental dampers. The method is a two-step design method. In the first step, a
design is found which satisfies the optimality conditions for a specified set of total story
stiffness capacity and total damper capacity. In the second step, the total story stiff-
ness capacity and/or total damper capacity are varied with the optimality conditions
satisfied. While deformation is reduced both in the first and second steps, acceleration
is reduced only in the second step via an increase of total damper capacity. It is also
shown numerically that the deformation minimization and acceleration maximization
are almost equivalent. The features of the present formulation are (i) possible treatment
of any damping system (e.g., proportional or nonproportional, viscous type, Kelvin–
Voigt type or Maxwell type), (ii) possible treatment of any structural system so far as
it can be modeled with FE systems, (iii) possible treatment of any random excitations
(any configuration of spectral density functions) if stationary, and (iv) realization of a
systematic algorithm without any indefinite iterative operation.

3.2 Illustrative Example

Consider the two-story damped shear building model shown in Figure 3.1. It is assumed
here that structural damping is negligible compared with added viscous damping. Let
{m1, m2}, {k1, k2}, and {c1, c2} denote the floor masses, story stiffnesses, and story
damping coefficients respectively. Assume that {m1, m2} is prescribed. While only the
damping coefficients were the design variables in Chapter 2, the design variables are
{k1, k2} and {c1, c2} in this chapter.

Let u1 and u2 denote the displacements of masses m1 and m2 respectively. When
this model is subjected to a stationary random base acceleration üg with zero mean,
the equations of motion for this model can be written as[

k1 + k2 −k2
−k2 k2

]{
u1
u2

}
+

[
c1 + c2 −c2
−c2 c2

]{
u̇1
u̇2

}
+

[
m1 0
0 m2

]{
ü1
ü2

}

= −
[

m1 0
0 m2

]{
1
1

}
üg (3.1)

u2

üg

u1

m2

m1
c2

c1

k2

k1

Figure 3.1 Two-story damped shear building model. (I. Takewaki, “Displacement-Acceleration Control
via Stiffness-Damping Collaboration,’’Earthquake Engineering and Structural Dynamics, Vol.28, No.12.
© 1999 John Wiley & Sons, Ltd).
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Let U1(ω), U2(ω) and Üg(ω) denote the Fourier transforms of u1, u2, and üg respec-
tively, and let ω denote a circular frequency. Fourier transformation of Equation 3.1
may be reduced to the following form:

AU(ω) = BÜg(ω) (3.2)

where

A =
[

k1 + k2 + iω(c1 + c2) − ω2m1 −k2 − iωc2

−k2 − iωc2 k2 + iωc2 − ω2m2

]
(3.3a)

B = −
{

m1
m2

}
(3.3b)

U(ω) =
{

U1(ω)
U2(ω)

}
(3.3c)

The notation i denotes the imaginary unit.
The Fourier transforms �1(ω) and �2(ω) of the interstory drifts d1 = u1 and

d2 = u2 − u1 are related to U(ω) = {U1(ω) U2(ω)}T by{
�1(ω)
�2(ω)

}
=

[
1 0

−1 1

]{
U1(ω)
U2(ω)

}
≡ TU(ω) (3.4a)

T =
[

1 0
−1 1

]
(3.4b)

Let Ti denote the ith row of the matrix T. �i(ω) may then be described as

�i(ω) = TiA−1BÜg(ω) ≡ H�i (ω)Üg(ω) (3.5)

On the other hand, the Fourier transforms Ü(ω) = {Ü1(ω) Ü2(ω)}T of the floor
accelerations ü1 and ü2 relative to the base are related to Üg(ω) by

Ü(ω) = −ω2U(ω) = −ω2A−1BÜg(ω) (3.6)

The Fourier transforms ÜA(ω) of the absolute floor accelerations are then
expressed as

ÜA(ω) = Ü(ω) + 1Üg(ω) = (1 − ω2A−1B)Üg(ω) ≡ HA(ω)Üg(ω) (3.7)

where 1 = { 1 1 }T.
Let Sg(ω) denote the PSD function of the input üg(t). Using the random vibration

theory, the mean-square response of the ith interstory drift di can be computed from

σ2
�i

=
∫ ∞

−∞
|H�i (ω)|2Sg(ω)dω =

∫ ∞

−∞
H�i (ω)H∗

�i
(ω)Sg(ω)dω (3.8)
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where ( )∗ denotes the complex conjugate. On the other hand, the mean-square
response of the ith-floor acceleration may be evaluated by

σ2
Ai

=
∫ ∞

−∞
∣∣HAi (ω)

∣∣2
Sg(ω)dω =

∫ ∞

−∞
HAi (ω)H∗

Ai
(ω)Sg(ω)dω (3.9)

where HAi (ω) is the ith component of HA(ω) defined in Equation 3.7.
The first problem of displacement control may be described thus:

Problem 3.1 Displacement Control Find the story stiffnesses {k1, k2} and damper
damping coefficients {c1, c2} of the model which minimize f = ∑2

i=1 σ2
�i

subject to∑2
i=1 ki = W K ,

∑2
i=1 ci = W C , and 0 ≤ ki ≤ ki (i = 1, 2), 0 ≤ ci ≤ ci (i =

1, 2), where W K , W C , ki, and ci are the prescribed parameters.
The second problem of acceleration control may be stated thus:

Problem 3.2 Acceleration Control Find the story stiffnesses {k1, k2} and damper
damping coefficients {c1, c2} of the model which maximize f = σ2

A2
subject to∑2

i=1 ki = W K and
∑2

i=1 ci = W C and 0 ≤ ki ≤ ki(i = 1, 2), 0 ≤ ci ≤ ci(i = 1, 2).
It is well known that, as a structure becomes stiffer, the response acceler-

ation to seismic excitations with wide-band frequency contents becomes larger
in general. This property is utilized in Problem 3.2 within the context of
stiffness design (see Figure 3.9 shown later). Since smaller acceleration is pre-
ferred in the structural design in general, such a direction should also be
discussed carefully. This problem will be investigated in Section 3.6. The cor-
respondence of Problems 3.1 and 3.2 will also be discussed later in numerical
examples.

3.3 General Problem

Consider an n-story damped shear building model subjected to a stationary random
horizontal base acceleration üg with zero mean. The problem of finding the opti-
mal stiffness-damping positioning and sizing for displacement–acceleration (SDDA)
simultaneous control may be described as follows

Problem 3.3 SDDA Find the story stiffnesses k = {ki} and damper damping coef-
ficients c = {ci} which minimize the weighted sum of mean-square interstory drifts
and a mean-square top-floor absolute acceleration

f = a

(
n∑

i=1

σ2
�i

)
+ b(D0σ

2
An

) (3.10)
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subject to a constraint on the sum of the story stiffnesses
n∑

i=1

ki = W K (W K : specified value) (3.11a)

a constraint on the sum of the damper damping coefficients

n∑
i=1

ci = W C (W C : specified value) (3.11b)

and to bounding constraints on the story stiffnesses and damper damping coefficients

0 ≤ ki ≤ ki (i = 1, · · · , n) (3.12a)

0 ≤ ci ≤ ci (i = 1, · · · , n) (3.12b)

In this problem, ki is the upper bound of the story stiffness and ci is that of the damper
damping coefficient. The parameters a and b are weighting parameters on deforma-
tion and acceleration respectively, and D0 is a parameter for adjusting dimensions of
deformation and acceleration.

Problem 3.1 corresponds to the parameter set a = 1, b = 0 and Problem 3.2
corresponds to a = 0, b = −1. As shown in the later numerical examples, Prob-
lems 3.1 and 3.2 are almost equivalent. Therefore, the problem with the parameter
set of nonzero a and b may not lead to meaningful solutions in the present model.
However, treatment of objective performances in Problem 3.3 is expected to lead to
a unified approach for other structural systems. For example, an objective function
f = ∑n

i=2 σ2
�i

+ D0
∑n

i=1 σ2
Ai

may lead to generation of base-isolated structures.
Problems 3.1 and 3.2 are treated hereafter and Problem 3.3 with the parameter set of
nonzero a and b is not dealt with directly. Acceleration control may be considered in
Problem 3.1 via an increase of total damper capacity. Since the optimality conditions
for Problems 3.1–3.3 can be derived in a unified manner, the derivation is shown in the
following.

The generalized Lagrangian L for Problems 3.1–3.3 may be expressed in terms of
Lagrange multipliers λK , λC , α = {αi}, β = {βi}, µ = {µi}, and ν = {νi}.

L(k, c, λK , λC , α, β, µ, ν) = f + λK

(
n∑

i=1

ki − W K

)
+ λC

(
n∑

i=1

ci − W C

)

+
n∑

i=1

αi(0 − ki) +
n∑

i=1

βi(ki − ki)

+
n∑

i=1

µi(0 − ci) +
n∑

i=1

νi(ci − ci) (3.13)
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For simplicity of expression, the partial differentiation with respect to design
variables is hereafter denoted by ( ),j ≡ ∂( )/∂kj and ( ), j ≡ ∂( )/∂cj.

3.4 Optimality Criteria

The principal optimality criteria for Problems 3.1–3.3 without active upper and lower
bound constraints on story stiffnesses and damping coefficients may be derived from
the stationarity conditions of L (α = β = µ = ν = 0) with respect to k, c, λK , and
λC . The optimality conditions can be described as

f , j + λK = 0 for 0 < kj < kj ( j = 1, · · · , n) (3.14a)

f, j + λC = 0 for 0 < cj < cj ( j = 1, · · · , n) (3.14b)

n∑
i=1

ki − W K = 0 (3.15a)

n∑
i=1

ci − W C = 0 (3.15b)

If either one of the story stiffnesses and damper damping coefficients attains its
limit, then the optimality conditions should be modified to

f , j + λK ≥ 0 for kj = 0 (3.16a)

f , j + λK ≤ 0 for kj = kj (3.16b)

f, j + λC ≥ 0 for cj = 0 (3.17a)

f, j + λC ≤ 0 for cj = cj (3.17b)

3.5 Solution Algorithm

The present method consists of two design stages; that is, stage (i) and stage (ii)
(see Figure 3.2). In the first stage, an initial model with uniform story stiffnesses
and uniform damping coefficients is introduced for the specified sets of total stiffness
capacity and total damping capacity and an optimal design is found at the end of
redesign. In the second stage, a series of optimal designs is obtained sequentially for
various stiffness and damping capacity levels. It may be convenient to introduce new
parameters si = f ,i+1/f ,1 and ti = f,i+1/f,1 to express the optimality conditions. The
optimality conditions (Equations 3.14a and 3.14b) corresponding to 0 < kj < kj and
0 < cj < cj for all j can then be described as si = ti = 1 (i = 1, · · · , n − 1).
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The linear increments of si and ti may be expressed as

�si = 1

f ,1

⎛
⎝ n∑

j=1

f ,(i+1)j�kj +
n∑

j=1

f ,i+1
, j �cj

⎞
⎠ − f ,i+1

(f ,1)2

⎛
⎝ n∑

j=1

f ,1j�kj +
n∑

j=1

f ,1
, j �cj

⎞
⎠

(3.18a)

redesign step number                                  redesign step number

redesign step number                                  redesign step number

redesign step number                                  redesign step number

stage (i) stage (ii)

stage (ii)

stage (ii)

stage (ii)

stage (ii)

stage (ii)

ss stage (i)

stage (i) stage (i)

Total story stiffness capacity                       Total damping capacity

Total story stiffness capacity                       Total damping capacity

Total story stiffness capacity                       Total damping capacity

stage (i) stage (i)

WK0 WKF

WKF

WK0

WKF

WK0

Case (1)

Case (2)

Case (3)

WCF

WCF

WCF

WC0

WC0

WC0

Figure 3.2 Two-stage design procedure: Cases (1), (2), and (3). (I. Takewaki, “Displacement-
Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural
Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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�ti = 1

f,1

⎛
⎝ n∑

j=1

f , j
,i+1�kj +

n∑
j=1

f,(i+1)j�cj

⎞
⎠ − f,i+1

( f,1)2

⎛
⎝ n∑

j=1

f , j
,1 �kj +

n∑
j=1

f,1j�cj

⎞
⎠

(3.18b)

The linear increments of Equations 3.15a and 3.15b can be expressed as

n∑
i=1

�ki − �W K = 0 (3.19a)

n∑
i=1

�ci − �W C = 0 (3.19b)

Note that the constraints (Equations 3.11a and 3.11b) may be nonlinear functions
of {ki} and {ci} so far as their linear increments can be expressed mathematically.
Combination of Equations 3.18a and 3.18b with Equations 3.19a and 3.19b leads to
a set of simultaneous linear equations in terms of {�ki} and {�ci}. An example for a
two-story model can be expressed as

⎡
⎢⎢⎢⎣

f ,1f ,21 − f ,2f ,11 f ,1f ,22 − f ,2f ,12 f ,1f ,2
,1 − f ,2f ,1

,1 f ,1f ,2
,2 − f ,2f ,1

,2
1 1 0 0

f,1 f ,1
,2 − f,2 f ,1

,1 f,1 f ,2
,2 − f,2 f ,2

,1 f,1 f,21 − f,2 f,11 f,1 f,22 − f,2 f,12

0 0 1 1

⎤
⎥⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

�k1
�k2
�c1
�c2

⎫⎪⎪⎬
⎪⎪⎭

=

⎧⎪⎪⎨
⎪⎪⎩

�s1(f ,1)2

�W K

�t1(f,1)2

�W C

⎫⎪⎪⎬
⎪⎪⎭ (3.20)

In the first stage, the model with uniform story stiffnesses and uniform damping
coefficients is employed as the initial model. The solution algorithm in the case of
kj < kj, cj < cj for all j may be summarized as follows:

Stage (i)
Step 0 Compute initial uniform story stiffnesses kj = k̂ ( j = 1, · · · , n) and initial uni-

form damper damping coefficients cj = ĉ ( j = 1, · · · , n) for the initial sums
W K0 and W C0 of stiffness and damping coefficients by setting k̂ = W K0/n and
ĉ = W C0/n.

Step 1 Calculate the parameters {s0i} and {t0i} for the initial model and obtain the
incremental parameters {�si} and {�ti} by setting �si = (1 − s0i)/N1 and
�ti = (1 − t0i)/N1, where N1 is the number of redesign steps in stage (i).

Step 2 Find the optimal story stiffnesses and damper damping coefficients by
sequential application of Equations 3.20 with �W K = 0 and �W C = 0.
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Stage (ii)
Step 3 Set the second sums W KF and W CF of the stiffness and damping coefficients

and calculate �W K and �W C by �W K = (W KF − W K0)/N2 and �W C =
(W CF − W C0)/N2, where N2 is the number of redesign steps in stage (ii).

Step 4 Find the optimal story stiffnesses and damper damping coefficients by
sequential application of Equations 3.20 with �si = 0 and �ti = 0 (for all i).

The flowchart of this solution procedure is shown in Figure 3.3(a) and the corre-
sponding schematic diagram is presented in Figure 3.3(b). The concept in stage (i) may
be somewhat similar to the concept of incremental inverse problems in the first part of
Chapter 2. However, in the present problem, optimality criteria are included and higher
order design sensitivities are required as in the second part of Chapter 2. In the present
algorithm, the first- and second-order design sensitivities of the objective function are
required. Those expressions for deformation control may be derived as follows.

First-order sensitivities:

(σ2
�i

), j =
∫ ∞

−∞
{H�i (ω)}, jH∗

�i
(ω)Sg(ω)dω +

∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jSg(ω)dω

(3.21a)

Compute initial uniform story stiffness        k � WK0 / n
and initial uniform damping coefficient       c � WC0 / n

ˆ

ˆ

Stage (i) 

Stage (ii) 

Calculate {s0i},{t0i} and ∆si � (1�s0i) / N1 ∆ti � (1�t0i) / N1

Find the optimal story stiffnesses and damper damping
coefficients by Eq.(3.20) with  ∆WK � 0  ∆WC � 0

Find the optimal story stiffnesses and damper damping
coefficients by Eq.(3.20) with  ∆si � 0  ∆ti � 0 (for all i)

Set the second sums

and calculate

WKF

∆WK � (WKF�WK0) / N2

∆WC � (WCF�WC0) / N2

WCF

Figure 3.3 (a) Flowchart of solution procedure in two-stage design method; (b) schematic diagram of
solution procedure in two-stage design method.
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Distribution of damping coefficients

Distribution of stiffnessesˆ

ˆ

∆WC � 0

∆WC � (WCF�WC0 ) / N2

∆WK � (WKF�WK0 ) / N2

∆WK � 0 ∆WK � 0

c�WC0 / n

k�WK0 / n

∆WC � 0

Stage (i)

Distribution of damping coefficients

Distribution of stiffnesses

Stage (ii)

∆WC � (WCF�WC0 ) / N2

∆WK � (WKF�WK0 ) / N2

Figure 3.3 (Continued )
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(σ2
�i

), j =
∫ ∞

−∞
{H�i (ω)}, jH

∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jSg(ω)dω

(3.21b)

Second-order sensitivities:

(σ2
�i

), jl =
∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω)dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{H�i (ω)}, jlH∗

�i
(ω)Sg(ω)dω +

∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jlSg(ω)dω

(3.22a)

(σ2
�i

), j
,l =

∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω)dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{H�i (ω)}, j

,l H∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, j

,l Sg(ω)dω

(3.22b)

(σ2
�i

),l
, j =

∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω)dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{H�i (ω)},l

, jH
∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)},l

, jSg(ω)dω

(3.22c)

(σ2
�i

), jl =
∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω)dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{H�i (ω)}, jlH

∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jlSg(ω)dω

(3.22d)

In Equations 3.21a, 3.21b and 3.22a–3.22d, the sensitivities of the transfer functions
are expressed as follows:

{H�i (ω)}, j = Ti(A−1), jB (3.23a)

{H�i (ω)}, j = Ti(A−1), jB (3.23b)

{H�i (ω)}, jl = Ti(A−1), jlB (3.23c)

{H�i (ω)}, j
,l = Ti(A−1), j

,l B (3.23d)

{H�i (ω)},l
, j = Ti(A−1),l

, jB (3.23e)

{H�i (ω)}, jl = Ti(A−1), jlB (3.23f )
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{H∗
�i

(ω)}, j = Ti(A−1∗), jB (3.24a)

{H∗
�i

(ω)}, j = Ti(A−1∗), jB (3.24b)

{H∗
�i

(ω)}, jl = Ti(A−1∗), jlB (3.24c)

{H∗
�i

(ω)}, j
,l = Ti(A−1∗), j

,l B (3.24d)

{H∗
�i

(ω)},l
, j = Ti(A−1∗),l

, jB (3.24e)

{H∗
�i

(ω)}, jl = Ti(A−1∗), jlB (3.24f )

Note that operations of complex conjugate and partial differentiation are exchange-
able. Furthermore, the first- and second-order sensitivities of A−1 may be described
as follows:

(A−1), j = −A−1A, jA−1 (3.25a)

(A−1), j = −A−1A, jA−1 (3.25b)

(A−1), jl = A−1(A,lA−1A, j + A, jA−1A,l)A−1 (3.25c)

(A−1), j
,l = A−1(A,lA

−1A, j + A, jA−1A,l)A
−1 (3.25d)

(A−1),l
, j = A−1(A,lA−1A, j + A, jA−1A,l)A−1 (3.25e)

(A−1), jl = A−1(A,lA
−1A, j + A, jA−1A,l)A

−1 (3.25f )

When the sensitivities of σ2
Ai

are computed, the transfer function H�i (ω) must be
replaced by HAi (ω) defined in Equation 3.7. Furthermore, the sensitivities of the
transfer functions HAi (ω) must be computed independently of Equations 3.23a–3.23f
and 3.24a–3.24f. As an example, {HAi (ω)}, j and {HAi (ω)}, jl can be obtained from
{HAi (ω)}, j = −ω2{HUi (ω)}, j and {HAi (ω)}, jl = −ω2{HUi (ω)}, jl , where {HUi (ω)} is
the ith component of HU(ω) = A−1B.

For a two-story model, A, j and A, j are expressed as

A,1 =
[

1 0
0 0

]
A,2 =

[
1 −1

−1 1

]
A,1 = iω

[
1 0
0 0

]
A,2 = iω

[
1 −1

−1 1

]
(3.26)

It is interesting to note that, if the matrix A is a tri-diagonal matrix as in the present
model, then the inverse of the matrix A can be expressed in closed form (Takewaki and
Nakamura, 1995) and the computational efficiency of the present method for models
with many degrees of freedom is enhanced greatly.
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Figure 3.4 Six-story damped shear building model.

3.6 Numerical Examples

ptConsider a six-story damped shear building model, as shown in Figure 3.4, subjected
to a stationary band-limited white noise üg(t) with zero mean whose PSD function is
given by

Sg(ω) = 0.01 m2/s3 (− 2π × 20 ≤ ω ≤ −2π × 0.2, 2π × 0.2 ≤ ω ≤ 2π × 20)

Sg(ω) = 0 otherwise

For a simple presentation of the proposed design method, a rather simple excitation
is dealt with. Application of the present method to more general excitations, such
as one with a Kanai–Tajimi power spectrum or one with a Clough–Penzien power
spectrum (Clough and Penzien, 1975), is straightforward. Only numerical integration
including PSD functions has to be modified. The floor masses are prescribed as mi =
32.0 × 103 kg (i = 1, · · · , 6). The following three examples are considered to
demonstrate the practical applicability of the present design method.

Example 3.1 Deformation Minimization Consider Problem 3.1 first. Only stage (i)
is considered in this example. The initial sums of stiffnesses and damping coefficients
are W K0 = 3.38 × 108 N/m and W C0 = 7.50 × 106 N s/m. The initial uniform
story stiffnesses and uniform dashpot damping coefficients are ki = 5.64 × 107 N/m
(i = 1, · · · , 6) and ci = 1.25 × 106 N s/m(i = 1, · · · , 6). The number of redesign
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Figure 3.5 Plot of story stiffnesses with respect to redesign step number (Problem 3.1; only stage (i) is
considered). (I. Takewaki, “Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’
Earthquake Engineering and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).

0

10

20

0 20 40 60 80 100 120

1
2
3
4
5
6

da
m

pi
ng

 c
oe

ff
ic

ie
nt

 (
x1

05 N
 s

/m
)

redesign step number

Figure 3.6 Variation of dashpot damping coefficients with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).

steps is N1 = 100. Integration in Equations 3.8, 3.9, 3.21a, 3.21b, and 3.22a–3.22d
has been made numerically.

Figure 3.5 shows the plots of story stiffnesses with respect to the redesign step
number. On the other hand, Figure 3.6 illustrates the variations of dashpot damp-
ing coefficients with respect to the redesign step number. It can be observed from
Figures 3.5 and 3.6 that story stiffnesses and dashpot damping coefficients exhibit
strong nonlinearities. Figure 3.7 shows the variations of parameters si = f ,i+1/f ,1

and Figure 3.8 presents the variations of parameters ti = f,i+1/f,1. It can be seen from
Figures 3.7 and 3.8 that the optimality conditions si = ti = 1.0 for all i are satisfied at
the end of stage (i). Figure 3.9 illustrates the objective function f (the sum of mean-
square interstory drifts) with respect to the redesign step number. It can be seen that
the objective function indeed decreases as the redesign proceeds. On the other hand,
Figure 3.10 shows the mean square of top-floor absolute acceleration with respect
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Figure 3.7 Variation of parameters si = f ,i+1/f ,1 with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.8 Variation of parameters ti = f,i+1/f,1 with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.9 Objective function f with respect to redesign step number. (I. Takewaki, “Displacement-
Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural
Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.10 Mean-square top-floor absolute acceleration with respect to redesign step number.
(I. Takewaki, “Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake
Engineering and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.11 Plot of story stiffnesses with respect to redesign step number. (I. Takewaki, “Displacement-
Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural
Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).

to the redesign step number. While the sum of mean squares of interstory drifts
decreases, the mean square of top-floor absolute acceleration increases. This means
that the shear building model becomes stiffer during this redesign. The undamped fun-
damental natural period of the model has been shortened from 0.621 s (initial design)
to 0.584 s. The computational errors in this numerical example are within 1.8 %.

Example 3.2 Acceleration Maximization Consider Problem 3.2 next. Only stage
(i) is considered in this example also. The initial sums of stiffnesses and damping
coefficients are W K0 = 3.38 × 108 N/m and W C0 = 7.50 × 106 N s/m. The initial
uniform story stiffnesses and uniform dashpot damping coefficients are the same as
in Example 1. The number of redesign steps is N1 = 100.

Figure 3.11 shows the plots of story stiffnesses with respect to the redesign step
number. On the other hand, Figure 3.12 illustrates the variations of dashpot damping
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Figure 3.12 Variation of dashpot damping coefficients with respect to redesign step number.
(I. Takewaki, “Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake
Engineering and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.13 Variation of parameters si = f ,i+1/f ,1 with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).

coefficients with respect to the redesign step number. Figure 3.13 shows the varia-
tions of parameters si = f ,i+1/f ,1 and Figure 3.14 presents the variations of parameters
ti = f,i+1/f,1. It can be seen from Figures 3.13 and 3.14 that the optimality conditions
si = ti = 1.0 are satisfied at the end of stage (i). Figure 3.15 illustrates the objec-
tive function f (mean square of top-floor absolute acceleration) with respect to the
redesign step number. It can be seen that the objective function indeed increases as
the redesign proceeds. On the other hand, Figure 3.16 shows the sum of mean squares
of interstory drifts with respect to the redesign step number. While the mean square
of top-floor absolute acceleration increases, the sum of the mean squares of interstory
drifts decreases. This means that the shear building model also becomes stiffer in
this redesign. The undamped fundamental natural period of the model has been short-
ened from 0.621 s to 0.583 s. The computational errors in this numerical example are
within 3.9 %.
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Figure 3.14 Variation of parameters ti = f,i+1/f,1 with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.15 Objective function f with respect to redesign step number. (I. Takewaki, “Displacement-
Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural
Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.16 Sum of mean squares of interstory drifts with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.17 shows the stiffness distributions for Examples 3.1 and 3.2. Figure 3.18
illustrates the damper damping coefficient distributions for Examples 3.1 and 3.2. It
can be observed that deformation minimization and acceleration maximization are
almost equivalent.

Example 3.3 Two-step Design (Deformation–Acceleration Control) Consider
Problem 3.1 again. An example for the two-step design method is presented. The
sum of mean squares of interstory drifts has been adopted as the objective function
throughout the redesign. Case (1) in Figure 3.2 has been employed here to reduce the
acceleration in stage (ii). The initial sums of stiffnesses and damping coefficients in
the stage (i) are W K0 = 3.38 × 108 N/m and W C0 = 7.50 × 106 N s/m. The initial
uniform story stiffnesses and uniform dashpot damping coefficients are the same as in
Examples 3.1 and 3.2. The number of redesign steps in stage (i) is N1 = 100. The final
sums of stiffnesses and damping coefficients in stage (ii) are W KF = 3.38 × 108 N/m
and W CF = 8.40 × 106 N s/m. The number of redesign steps in stage (ii) is N2 = 100.
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Figure 3.17 Stiffness distributions for Examples 3.1 and 3.2. (I. Takewaki, “Displacement-Acceleration
Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural Dynamics,
Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.18 Damper damping coefficient distributions for Examples 3.1 and 3.2. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.19 Plot of story stiffnesses with respect to redesign step number. (I. Takewaki, “Displacement-
Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural
Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.20 Variation of dashpot damping coefficients with respect to redesign step number.
(I. Takewaki, “Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake
Engineering and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).

Figure 3.19 shows the plots of story stiffnesses with respect to the redesign step
number. On the other hand, Figure 3.20 illustrates the variations of dashpot damping
coefficients with respect to the redesign step number. It can be observed from Figures
3.19 and 3.20 that story stiffnesses and dashpot damping coefficients exhibit strong
nonlinearities in stage (i). Figure 3.21 shows the variations of parameters si = f ,i+1/f ,1

and Figure 3.22 presents the variations of parameters ti = f,i+1/f,1. It can be seen from
Figures 3.21 and 3.22 that the optimality conditions si = ti = 1.0 are satisfied at the end
of stage (i) and those conditions continue to be satisfied during stage (ii). Figure 3.23
illustrates the objective function f (the sum of mean squares of interstory drifts) with
respect to the redesign step number. On the other hand, Figure 3.24 shows the mean-
square top-floor absolute acceleration with respect to the redesign step number. It
can be seen that the objective function (the sum of mean squares of interstory drifts)
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Figure 3.21 Variation of parameters si = f ,i+1/f ,1 with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.22 Variation of parameters ti = f,i+1/f,1 with respect to redesign step number. (I. Takewaki,
“Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.23 Objective function f with respect to redesign step number. (I. Takewaki, “Displacement-
Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake Engineering and Structural
Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.24 Mean-square top-floor absolute acceleration with respect to redesign step number.
(I. Takewaki, “Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake
Engineering and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).
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Figure 3.25 Story-wise distribution of mean-square interstory drifts of the model at the end of stage (ii).
(I. Takewaki, “Displacement-Acceleration Control via Stiffness-Damping Collaboration,’’ Earthquake
Engineering and Structural Dynamics, Vol.28, No.12. © 1999 John Wiley & Sons, Ltd).

indeed decreases as the redesign proceeds and that the mean-square top-floor absolute
acceleration decreases in stage (ii) via an increase of total damper capacity. From
Figure 3.24, designers can find the target value of total damper capacity satisfying the
acceleration constraint. The story-wise distribution of mean-square interstory drifts of
the model at the end of stage (ii) is shown in Figure 3.25. It is found that the model
at the end of stage (ii) (also in stage (ii)) has an almost uniform distribution of mean-
square interstory drifts. The computational errors in this numerical example are within
1.8 % in stage (i) and within 1.1 % in stage (ii).

If the interstory drift constraints cannot be satisfied only by an increase of total
damper capacity, then Cases (2) or (3) in Figure 3.2 will have to be utilized as another
design path.
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Figure 3.26 Multicriteria plot with respect to sum of mean-square deformations and mean-square
acceleration which is derived from Figures 3.9 and 3.10.
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Figure 3.27 Multicriteria plot with respect to sum of mean-square deformations and mean-square
acceleration which is obtained from Figures 3.15 and 3.16.

3.6.1 Multicriteria Plot

It may be useful to show the multicriteria plot with respect to the sum of mean-
square deformations and mean-square acceleration. Figure 3.26 presents that plot for
Example 3.1, which is derived from Figures 3.9 and 3.10. It can be observed that, as
deformation decreases, acceleration increases up to a certain stage but starts to decrease
from that point. Figure 3.27 illustrates that plot for Example 3.2, which is obtained
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Figure 3.28 Multicriteria plot with respect to sum of mean-square deformations and mean-square
acceleration which is derived from Figures 3.23 and 3.24.

from Figures 3.15 and 3.16. It is found that, as acceleration increases, deformation
does not change at first but starts to decrease from a certain point. Figure 3.28 shows
that plot for Example 3.3, which is derived from Figures 3.23 and 3.24. In stage (i), as
deformation decreases, acceleration increases, as in Figure 3.26. Then, in stage (ii),
as the total quantity of damper damping coefficients is increased, both deformation
and acceleration are reduced simultaneously.

It may be concluded that the multicriteria plot with respect to the sum of mean-
square deformations and mean-square acceleration provides structural designers with
useful information on trade-off of deformation and acceleration caused by seismic
excitations.

3.7 Summary

The results are summarized as follows.

1. An efficient and systematic design method has been explained for simultaneous
optimization of story stiffness and damping distributions in a shear building model.
Owing to the great dependence of the optimal damping distributions on stiffness
distributions, such simultaneous optimization often causes numerical problems.
This problem can be overcome by introducing a design problem to minimize the
sum of mean-square deformations to stationary random excitations subject to a
constraint on total stiffness capacity and that on total damping capacity. Another
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problem has also been posed to maximize the mean-square response of top-floor
absolute acceleration subject to the same constraints.

2. The optimal stiffness and damping distributions can be determined based upon the
optimality criteria derived here through the concept of incremental inverse
problems. It has been shown that deformation minimization and acceleration max-
imization are almost equivalent and the top-floor absolute acceleration can be
reduced effectively by increasing the total damper capacity. The efficiency and reli-
ability of the present two-step design procedure have been demonstrated through
examples.

3. Amulticriteria plot with respect to the sum of mean-square deformations and mean-
square acceleration provides structural designers with useful information on the
trade-off of deformation and acceleration caused by seismic excitations.
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4
Optimal Sensitivity-based Design
of Dampers in Moment-resisting
Frames

4.1 Introduction

In Chapters 2 and 3, a planar shear building model has been treated. The problem
considered in this chapter is to find the optimal damper positioning so as to minimize
the dynamic compliance of a planar moment-resisting frame. In contrast to the shear
building model treated in Chapters 2 and 3, the frame deformation influences the
performance of dampers. The dynamic compliance is defined as the sum of the transfer
function amplitudes of the interstory drifts evaluated at the undamped fundamental
natural frequency of the building frame as in Chapter 2. Such an objective function is
minimized with respect to various damper placements and sizing subject to a constraint
on the sum of the viscous damping coefficients of dampers.

A systematic algorithm is explained for the optimal damper positioning first for
frames with supplemental dampers modeled by a viscous damping system. The fea-
tures of the present formulation are (i) possible treatment of any damping system
(e.g., viscous-type or Maxwell-type, proportional or nonproportional), (ii) possible
treatment of any structural system so far as it can be modeled with FE systems, and
(iii) realization of a systematic algorithm without any indefinite iterative operation.
While a different algorithm was devised and a variation from a uniform storywise dis-
tribution of added dampers was considered in Chapter 2 (Takewaki, 1997a), a variation
from the null state is treated here (Takewaki, 2000). This treatment helps designers
to understand simultaneously which position would be the best and what capacity of
dampers would be required to attain a series of desired response performance levels.

In the latter part of this chapter, the corresponding algorithm is explained for the
optimal damper positioning for frames with supplemental dampers modeled by a

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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Maxwell-type damping system. The supporting spring of the supplemental damper
represents the stiffness of the damper itself or the stiffness of surrounding members.
The influences of these support-member stiffnesses on the response suppression level
and on the optimal damper positioning are also disclosed numerically.

4.2 Viscous-type Modeling of Damper Systems

The simplest model of a viscous damper system (e.g., an oil damper) is the viscous-
type model. The damper force is related to the relative velocity between the two ends
with a constant coefficient. In the practical structural design with the use of oil dampers,
a relief mechanism is often employed which changes the constant viscous damping
coefficient to a smaller value and the maximum damping force is limited. However,
this relief mechanism is not taken into account in this book. Furthermore, it is well
known that the stiffness of the damper system itself and the surrounding subassemblage
affects the performance of the dampers. This influence will be considered later in this
chapter through modeling into the Maxwell-type.

4.3 Problem of Optimal Damper Placement and Optimality Criteria
(Viscous-type Modeling)

Supplemental dampers described by the viscous-type model discussed in the previous
section are to be used in the building frame. Consider an n-story s-span planar building
frame with brace-type supplemental dampers, as shown in Figure 4.1(a). Let u(t)
denote a set of generalized displacements in the system coordinate system. The nodal
mass and the mass moment of inertia around the node are taken into account at every
node. M indicates the system mass matrix of the frame. All the member cross-sections
of the frame and Young’s moduli of the members are given and the system stiffness
matrix is described by K. For realistic modeling, the structural damping of the frame
is taken into account. The system damping matrix due to this structural damping is
assumed to be given and denoted by C.

Consider X-brace-type supplemental dampers, as shown in Figure 4.1(b). Each
damper is modeled by the viscous-type damper model. Let cVi denote the damping
coefficient of the added supplemental damper (one element) in the ith story. The set
cV = {cVi} are the design variables in this case. The undamped fundamental natural
circular frequency of the main frame is denoted by ω1.

When this planar frame without added dampers is subjected to a horizontal accel-
eration üg(t) at the fixed base, the equations of motion for this model may be
described as

Ku(t) + Cu̇(t) + Mü(t) = −Mrüg(t) (4.1)

where r is the influence coefficient vector. The influence coefficient vector is the
vector such that unity exists in the components corresponding to horizontal degrees
of freedom and zero is allocated to the other components.
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Figure 4.1 An n-story s-span planar building frame: (a) DOF in frame; (b) DOF in damper. (Reproduced
with permission from Structural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000,
I. Takewaki, Optimal Damper Placement for Planar Building Frames Using Transfer Functions, with
permission from Springer.).

As in Chapters 2 and 3, the frequency-domain formulation is useful and effective. Let
U(ω) and Üg(ω) respectively denote the Fourier transforms of the nodal displacements
u(t) and input acceleration üg(t) at the base. Fourier transformation of Equation 4.1
may be reduced to the following form:

(K + iωC − ω2M)U(ω) = −MrÜg(ω) (4.2)

where i is the imaginary unit.
Consider that the added supplemental dampers are included in the main building

frame. Then, Equation 4.2 may be modified to the following form:

{K + iω(C + CV) − ω2M}UV(ω) = −MrÜg(ω) (4.3)

where CV is the damping matrix due to the added dampers and UV(ω) are the
Fourier transforms of the generalized displacements uV(t) of the model with the added
dampers. The procedure of constructing CV is shown in Appendix 4.A.

New complex-value quantities Û will be defined by

Û ≡ UV(ω1)

Üg(ω1)
(4.4)

In Equation 4.4, Ûi indicates the value such that ω1 is substituted in the frequency-
response function obtained as UVi(ω) after substituting Üg(ω) = 1 in Equation 4.3. A
quantity similar to this quantity has been introduced and utilized in Chapter 2. Because
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Figure 4.2 Amplitude of transfer function δ̂i at ω = ω1 (fundamental natural circular frequency of
frame) of interstory drift in ith story. (Reproduced with permission from Structural and Multidisciplinary
Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki, Optimal Damper Placement for Planar
Building Frames Using Transfer Functions, with permission from Springer.).

M and K are completely prescribed, ω1 is regarded as a given value. By combining
Equation 4.3 after substituting ω = ω1 with Equation 4.4, the following relation for
Û may be obtained:

AÛ = −Mr (4.5)

In Equation 4.5, the coefficient matrix A indicates the following matrix:

A = K + iω1(C + CV) − ω2
1M (4.6)

Let δ̂i denote the transfer function at ω = ω1 of the interstory drift in the ith story (see
Figure 4.2). δ̂ = {δ̂i} can be derived from Û by using the relation δ̂ = TÛ, where T
is a constant transformation matrix from the nodal displacements into the interstory
drifts.

It may be meaningful to note that the transfer function amplitude squared can be
transformed into the mean squares of a response after multiplication with the PSD
function of an external disturbance and integration in the frequency range. Since
the transfer function amplitude of a nodal displacement evaluated at the undamped
fundamental natural circular frequency can be associated with the level of the mean
square of the response, this transfer function amplitude is treated in this book as a
controlled quantity.

Let us now consider the problem of optimal damper positioning for a frame (PODPF)
model.

Problem 4.1 PODPF Find the damping coefficients cV = {cVi} of added supple-
mental viscous dampers so as to minimize the following sum of the transfer function
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amplitudes of the interstory drifts evaluated at the undamped fundamental natural
circular frequency ω1

f (cV) =
n∑

i=1

|δ̂i(cV)| (4.7)

subject to a constraint on the sum of the damping coefficients of added supplemental
viscous dampers

n∑
i=1

cVi = W (W : specified value) (4.8a)

and to constraints on the damping coefficients themselves of added supplemental
viscous dampers

0 ≤ cVi ≤ cVi (i = 1, · · · , n) (4.8b)

where cVi is the upper bound of the damping coefficient of the added supplemental
viscous damper in the ith story.

This problem can be said to be related to the H∞ control in the sense that the
amplitude of the transfer function is controlled.

4.3.1 Optimality Criteria

Since Problem 4.1 is an optimization problem, the Lagrange multiplier method can play
an important role. The generalized Lagrangian L for Problem 4.1 may be expressed
in terms of Lagrange multipliers λ, µ = {µi}, and ν = {νi}:

L(cV, λ, µ, ν) = f (cV) + λ

(
n∑

i=1

cVi − W

)
+

n∑
i=1

µi(0 − cVi) +
n∑

i=1

νi(cVi − cVi)

(4.9)

For simplicity of expression, the argument (cV) in the function f (cV) will be omitted
in the following formulation.

The principal (or major) optimality criteria for Problem 4.1 without active upper
and lower bound constraints on damping coefficients of added supplemental viscous
dampers may be derived from the stationarity conditions of the generalized Lagrangian
L(µ = 0, ν = 0) with respect to the design variables cV and the Lagrange multiplier λ.

f, j + λ = 0 for 0 < cvj < cvj ( j = 1, · · · , n) (4.10)
n∑

i=1

cVi − W = 0 (4.11)
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Here, and in the following, the symbol ( · ), j denotes the partial differentiation with
respect to a design variable cVj. In the case where the constraints (Equation 4.8b) are
active, Equation 4.10 has to be modified into the following forms:

f, j + λ ≥ 0 for cvj = 0 (4.12a)

f, j + λ ≤ 0 for cvj = cvj (4.12b)

4.4 Solution Algorithm (Viscous-type Modeling)

A solution algorithm for Problem 4.1 is explained in this section. In the solution
procedure, the model without added supplemental viscous dampers, namely cVj = 0
( j = 1, · · · , n), is used as the initial model. This treatment is well suited to the situation
such that a structural designer is just starting the allocation and placement of added
supplemental viscous dampers at desired positions. The damping coefficients of added
dampers are increased gradually based on the optimality criteria stated above. This
algorithm will be called a steepest direction search algorithm.

Let �cVi and �W denote the increment of the damping coefficient of the ith-story
added damper in one cycle and the increment of the sum of the damping coefficients
of added dampers in one cycle, respectively. Once �W is given, the problem is to
determine simultaneously the effective position and amount {�cVi} of the increments
of the damper damping coefficients. In order to develop this algorithm, the first and
second-order sensitivities of the objective function with respect to a design variable
are derived and explained in the following.

Differentiation of the principal equation, Equation 4.5, with respect to a design
variable cVj provides

A,j Û + AÛ, j = 0 (4.13)

It is not difficult to show that the coefficient matrix A in Equation 4.5 is regular because
the transfer function exists at ω = ω1. Then the first-order sensitivities of the nodal
displacements Û are derived from Equation 4.13 as

Û, j = −A−1A, jÛ (4.14)

Once the nodal displacements Û and their derivatives Û, j are calculated and obtained,
the interstory drifts δ̂ = TÛ (see the procedure below Equation 4.6) and their
derivatives δ̂, j can be derived through simple manipulation.

The quantity δ̂i, the ith component in δ̂, may be expressed as

δ̂i = Re[δ̂i] + i Im[δ̂i] (4.15)

where the symbols Re[ ] and Im[ ] indicate the real and imaginary parts respectively
of a complex number. The first-order sensitivity of δ̂i with respect to the jth design
variable may be formally expressed as

δ̂i, j = (Re[δ̂i]), j + i(Im[δ̂i]), j (4.16)
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It can be understood from Equation 4.16 that Re[δ̂i, j] = (Re[δ̂i]), j and Im[δ̂i, j] =
(Im[δ̂i]), j hold. With the aid of mathematical manipulation, the first-order sensitivity

of the absolute value |δ̂i| =
√

(Re[δ̂i])2 + (Im[δ̂i])2 of δ̂i may then be expressed as

|δ̂i|, j = 1

|δ̂i|
{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j} (4.17)

where (Re[δ̂i]), j and (Im[δ̂i]), j are calculated from Equations 4.14 and 4.16 and the
relation δ̂, j = TÛ, j.

A general expression of |δ̂i|, j� is derived and explained in this section for developing
a solution procedure for Problem 4.1. Differentiation of Equation 4.17 with respect to
a design variable cV� provides

|δ̂i|, j� = 1

|δ̂i|2
(|δ̂i|{(Re[δ̂i]),�(Re[δ̂i]), j + Re[δ̂i](Re[δ̂i]), j� + (Im[δ̂i]),�(Im[δ̂i]), j

+ Im[δ̂i](Im[δ̂i]), j�} − |δ̂i|,�{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j}) (4.18)

(Re[δ̂i]), j� and (Im[δ̂i]), j� in Equation 4.18 are found from the second derivatives of
Û and the relation δ̂, j� = TÛ, j�.

Û, j� = A−1A,�A−1A, jÛ − A−1A, jÛ,� (4.19)

which is derived by differentiating Equation 4.14 with respect to a design variable
cV� and using the relation A−1

,� = −A−1A,�A−1 derived from the differentiation of

AA−1 = I. It is important to note that, since the components in the matrix A are
linear functions of the design variables cV, A, j� becomes a null matrix for all j and �.
Substitution of Equation 4.14 into Equation 4.19 leads to the following compact form:

Û, j� = A−1A,�A−1A, jÛ + A−1A, jA−1A,�Û

= A−1(A,�A−1A, j + A, jA−1A,�)Û (4.20)

The second-order derivatives |δ̂i|, j� are derived from Equation 4.18. (Re[δ̂i]), j and
(Im[δ̂i]), j in Equation 4.18 are calculated from Equation 4.14, and (Re[δ̂i]), j� and
(Im[δ̂i]), j� in Equation 4.18 are found from Equation 4.20 and the relation δ̂, j� =
TÛ, j�. It should be pointed out here that, although the model treated is different, the
expressions in Equations 4.17 and 4.14 of first-order sensitivity have been derived in
Chapter 2.

The solution algorithm in the case satisfying the conditions cVj < cVj for all j may
be summarized as:

Step 0 Initialize all the added supplemental viscous dampers as cVj = 0 ( j = 1, · · · , n).
In the initial design stage, the structural damping alone exists in the frame.
Assume the quantity �W .
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Step 1 Compute the first-order derivative f,i of the objective function by Equa-
tion 4.17.

Step 2 Find the special index k such that

−f,k = max
i

{−f,i} (4.21)

Step 3 Update the objective function f by the linear approximation f + f,k�cVk ,
where �cVk = �W . This is because the supplemental damper is added only
in the kth story in the initial design stage.

Step 4 Update the first-order sensitivity f,i of the objective function by the linear
approximation f,i + f,ik�cVk using Equation 4.18.

Step 5 If, in Step 4, there exists a supplemental damper of an index j such that the
condition

−f,k = max
j, j �=k

{−f, j} (4.22)

is satisfied, then stop and compute the increment �c̃Vk of the damping coef-
ficient of the corresponding damper. At this stage, update the first-order
sensitivity f,i of the objective function by the linear approximation f,i+f,ik�c̃Vk
by using Equation 4.18.

Step 6 Repeat the procedure from Step 2 to Step 5 until the constraint in Equation
4.8a (i.e.,

∑n
i=1 cVi = W ) is satisfied.

The fundamental concept and algorithm of the present procedure are also summa-
rized schematically in Figure 4.3. In Steps 2 and 3, the direction which decreases
the objective function f most effectively under the condition

∑n
i=1 �cVi = �W is

searched and the design (the quantity of supplemental dampers) is updated in that
direction. It is appropriate, therefore, to call the present algorithm explained above
“the steepest direction search algorithm.’’ A simple numerical example of damping
sensitivity of the performance (sum of transfer function amplitudes of interstory drifts)
in a two-story shear building model is presented inAppendix 2.Ain Chapter 2. This sen-
sitivity example just corresponds to the gradient direction of the performance function
at the origin in the schematic diagram shown in Figure 4.4. This algorithm is similar
to the conventional steepest descent method in the mathematical programming (see
Figure 4.4). However, while the steepest descent method uses the gradient vector
itself of the objective function as its redesign direction and does not utilize optimality
criteria, the present algorithm takes advantage of the newly derived optimality criteria
expressed by Equations 4.10, 4.12a, and 4.12b and does not adopt the gradient vector
as its redesign direction. More specifically, the explained steepest direction search
guarantees the automatic approximate satisfaction of the optimality criteria, although
using first-order approximation. For example, if �cVk is added to the kth added vis-
cous damper in which Equation 4.21 is satisfied, then its damper (cVk > 0) satisfies the
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Figure 4.3 Fundamental algorithm of the present procedure. (Reproduced with permission from Struc-
tural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki, Optimal Damper
Placement for Planar Building Frames Using Transfer Functions, with permission from Springer.).
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Figure 4.4 Comparison of the present steepest direction search method with the conventional steepest
descent method (cV is denoted here by c for simplicity of expression).

optimality condition (Equation 4.10) and the other dampers ((cVj = 0, j �= k), alterna-
tively satisfy the optimality condition (Equation 4.12a). It is important to note that a
series of subproblems is introduced here tentatively in which the total damper capacity
level W is increased gradually by �W from null through the specified value.

It is necessary to investigate other possibilities. If multiple indices k1, . . . , kp exist
in Step 2, then the objective function f and its derivative f, j have to be updated by the
following rules:

f → f +
kp∑

i=k1

f,i�cVi (4.23a)

f, j → f, j +
kp∑

�=k1

f, j��cV� (4.23b)

Furthermore, the index k defined in Step 5 has to be replaced by the multiple indices
k1, . . . , kp. The ratios among the magnitudes �cVi have to be determined so that the
following relations are satisfied:

f,k1 +
kp∑

i=k1

f,k1i�cVi = · · · = f,kp +
kp∑

i=k1

f,kpi�cVi (4.25)
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Figure 4.5 A 10-story three-span planar steel building frame. (Reproduced with permission from Struc-
tural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki, Optimal Damper
Placement for Planar Building Frames Using Transfer Functions, with permission from Springer.).

Equation 4.24 requires that the optimality conditions (Equation 4.10) continue to be
satisfied in the supplemental dampers with the indices k1, · · · , kp.

It may be the case in realistic situations that the maximum quantity of supplemental
dampers is limited by the requirements of building design and planning. In the case
where the damping coefficients of some added supplemental dampers attain their upper
bounds, such constraints must be incorporated in the aforementioned algorithm. In
that case, the increment �cVk of the supplemental damper is added subsequently to
the damper in which −f,k attains the maximum among all the dampers except those
attaining the upper bound.

4.5 Numerical Examples I (Viscous-type Modeling)

As a realistic example, consider the 10-story three-span planar steel building frame
shown in Figure 4.5. All the bays have the same span length of 8 m and all the stories
have the same story height of 4 m. The member properties, namely the cross-sectional
areas and second moments of area, are shown in Table 4.1. The Young’s modulus of the
members is common throughout the frame and is specified as 2.06 × 1011 N/m2. For
simple and clear presentation of the present theory, shear deformation of the members
is neglected. It is important to note that the present theory can be applied to the model
including member shear deformation only by replacing the stiffness matrix of the
frame in Equation 4.1 with that including shear deformation. While only bending
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Table 4.1 Member property of an example ten-story, three-span steel frame.
(Reproduced with permission from Structural and Multidisciplinary Optimization,
Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki, Optimal Damper Placement for Planar
Building Frames Using Transfer Functions, with permission from Springer.).

Story Cross-sectional area Second moment
(×10−4m2) of area (×10−8m4)

Column
First–fourth 756 383 000
Fifth–seventh 683 353 000
Eighth–tenth 365 205 000

Beam
First–fourth 383 000
Fifth–seventh 353 000
Eighth–tenth 205 000

deformation is considered in beams, both axial and bending deformations are taken
into account in columns here.

A lumped mass of 51.2 × 103 kg is placed at every interior node and a lumped mass
of 25.6 × 103 kg is placed at every exterior node. Every interior node is assumed to
have a mass moment of inertia of 5.46 × 105 kg m2 and every exterior node is assumed
to possess a mass moment of inertia of 1.71 × 105 kg m2. The undamped fundamental
natural circular frequency of the main frame model is ω1 = 4.75 rad/s. The structural
damping of the main frame is given by a critical damping ratio of 0.02 in the lowest
eigenvibration.

In the present example model, a viscous damper is regarded as being effective with
respect to a relative velocity between a pair of nodes at both ends of a member including
the damper system. The model taking into account the flexibility in and around the
viscous dampers will be treated in the following sections. It is also assumed that all
the constraints on upper bounds of the damping coefficients are inactive; that is,
cj < cVj for all j. The final level of the sum of the damping coefficients of the added
dampers is W = 2.94 × 107 N s/m. The increment of W is given by �W = W/300.

The distributions of the optimal viscous damping coefficients of supplemental
dampers obtained via the present procedure are plotted in Figure 4.6. It can be observed
that the supplemental dampers are added in the third story first and then in the second,
fourth and fifth stories successively. This order of placement of supplemental dampers
is based on the algorithm explained in the above section. Figure 4.7 shows the varia-
tion of the first-order derivatives (sensitivities) of the objective function with respect
to the design variables; that is, the viscous damping coefficients of the supplemental
dampers. It can be observed from Figure 4.7 that the optimality criteria are satisfied in
all the stories. This process just indicates the automatic satisfaction of the optimality
criteria in Equations 4.10 and 4.12a.

WWW.BEHSAZPOLRAZAN.COM



c04.tex 27/8/2009 14: 12 Page 89

Optimal Sensitivity-based Design of Dampers in Moment-resisting Frames 89

0

5

10

0 100 200 300

da
m

pi
ng

 c
oe

ff
ic

ie
nt

(x
0.

98
x1

06 N
s/

m
) 

step

3rd story

2

4 5

Figure 4.6 Distributions of optimal viscous damping coefficients. (Reproduced with permission from
Structural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki, Opti-
mal Damper Placement for Planar Building Frames Using Transfer Functions, with permission from
Springer.).
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Figure 4.7 Variation of first-order derivatives of objective function with respect to design variables.
(Reproduced with permission from Structural and Multidisciplinary Optimization, Vol. 20, No. 4,
pp 280–287, 2000, I. Takewaki, Optimal Damper Placement for Planar Building Frames Using Transfer
Functions, with permission from Springer.).

Figure 4.8 illustrates the comparison of the variations of the lowest-mode damping
ratio for the optimal placement, the uniform placement and the restricted uniform
placement to the second, third, fourth, and fifth stories. It can be seen from Figure 4.8
that the optimal damper placement actually increases the lowest-mode damping ratio
effectively. Figure 4.9 shows the comparison of the variations of the objective function
for the optimal placement, the uniform placement, and the restricted uniform place-
ment to the second, third, fourth, and fifth stories. It can be observed that the optimal
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Figure 4.8 Variation of lowest mode damping ratio in optimal placement, uniform placement, and
restricted uniform placement to the second, third, fourth, and fifth stories. (Reproduced with permission
from Structural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki,
Optimal Damper Placement for Planar Building Frames Using Transfer Functions, with permission from
Springer.).
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Figure 4.9 Variation of objective function in optimal placement, uniform placement, and restricted
uniform placement to the second, third, fourth, and fifth stories. (Reproduced with permission from
Structural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki, Opti-
mal Damper Placement for Planar Building Frames Using Transfer Functions, with permission from
Springer.).

damper placement obtained via the present procedure certainly reduces the objec-
tive function effectively compared with the corresponding uniform distribution. It
may be said that, once optimal positions are found from the present procedure, the
restricted uniform placement to these stories can reduce the objective function almost
as effectively as the optimal placement.
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Figure 4.10 An n-story s-span planar building frame.

4.6 Maxwell-type Modeling of Damper Systems

4.6.1 Modeling of a Main Frame

Consider again an n-story s-span planar building frame, as shown in Figure 4.10(a).
Let u(t) denote the generalized displacements in the system coordinate system (see
Figure 4.10(b)). The nodal mass and moment of inertia are taken into account at
every node. Let M denote the system mass matrix of the main frame. All the mem-
ber stiffnesses of the main frame are assumed to be given and its system stiffness
matrix is described by K. The structural damping of the frame is considered and the
system damping matrix due to this structural damping is given by C. The undamped
fundamental natural circular frequency of the main frame is denoted by ω1.

4.6.2 Modeling of a Damper–Support-member System

Added viscous dampers installed in the stories are assumed to be supported by aux-
iliary members. The stiffnesses km = {kmi} of the supporting members are given and
the damping coefficients cm = {cmi} of the added viscous dampers are selected as the
design variables. In this chapter, every damper–support-member system is to be mod-
eled by a Maxwell-type damper–spring model, as shown in Figure 4.11 (Takewaki
and Yoshitomi, 1998; Takewaki and Uetani, 1999). Let cm and km denote the damping
coefficient of the damper and the stiffness of the spring respectively in the represen-
tative story. It is well known that the complex axial member force F(ω) (ω: excitation
frequency) of a Maxwell-type model can be related to the complex total elongation
�(ω) in terms of the following complex stiffness K(ω) (Flugge, 1967):

F(ω) = K(ω)�(ω) = {KR(ω) + iKI(ω)}�(ω) (4.26)
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x1 x2 x3

. . 

Figure 4.11 Maxwell-type damper–spring model.

where i is the imaginary unit and KR(ω) and KI(ω) are as follows:

KR(ω) = kmc2
mω2

k2
m + c2

mω2
(4.26a)

KI(ω) = k2
mcmω

k2
m + c2

mω2
(4.26b)

For comparison with a Kelvin–Voigt-type model, the following quantities are
introduced:

kM(ω) = KR(ω) (4.27a)

cM(ω) = KI(ω)

ω
(4.27b)

Consider a forced steady-state vibration with the circular frequency ω1 and define the
following quantities for later convenience:

k̂M = KR(ω1) (4.28a)

ĉM = KI(ω1)/ω1 (4.28b)

It may be appropriate to define the following stiffness and damping matrices related
to the added dampers:

KM =
∑

i

k̂MiBi (4.29a)

CM =
∑

i

ĉMiBi (4.29b)

In Equation 4.29, Bi is a square matrix of dimension {2 × (s + 1) + 1} × n which can
be constructed from the following element matrix B∗

i in the ith story by allocating the
member coordinates to the system coordinates:

B∗
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 cos2 θi cos θi sin θi − cos θi sin θi −2 cos2 θi − cos θi sin θi cos θi sin θi

sin2 θi 0 − cos θi sin θi − sin2 θi 0
sin2 θi cos θi sin θi 0 − sin2 θi

2 cos2 θi cos θi sin θi − cos θi sin θi

sym. sin2 θi 0
sin2 θi

⎤
⎥⎥⎥⎥⎥⎥⎦

(4.30)
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where θi denotes the angle of the damper to the beam in the ith story. B∗
i is defined with

respect to the displacements {ui−1 υL(i−1) υR(i−1) ui υLi υRi}T (see Figure 4.10(b)). It
should be noted that the matrix B∗

i includes the effects of both dampers in the ith story.

4.6.3 Effects of Support-Member Stiffnesses on Performance of Dampers

To clarify the effect of support-member stiffness on performance of dampers, consider
the five-story one-span planar steel building frame shown in Figure 4.12. Every col-
umn has the common square-tube-type cross-section (60 cm × 1.6 cm) and every beam
has also the common wide-flange cross-section (65 cm × 20 cm × 1.2 cm × 2.8 cm).
The Young’s modulus of the members is E = 2.1 × 103 tonf/cm2. The nodal
mass and moment of inertia at every node are assumed to be m = 16.8 ton and
I = 1.72 × 105 ton cm2 respectively. The undamped fundamental natural circular fre-
quency of the frame is ω1 = 10.15 rad/s. For several support-member stiffnesses, the
damping coefficients of uniformly distributed added dampers have been increased
gradually. Figure 4.13 shows the lowest mode damping ratio, due to complex eigen-
value analysis, with respect to the level of the damping coefficients. At the final state
(400 steps), the sum of the damping coefficients of the added dampers is 10 tonf s/cm.
In evaluating the lowest mode damping ratio, the stiffness matrix and the damping
matrix have been fixed to K + KM and C + CM respectively. Figure 4.14 shows the
objective function defined in Equation 4.13 with respect to the level of the damping
coefficients. It can be observed from Figures 4.13 and 4.14 that, while the dampers
work well with a rather stiff support member, they do not with a flexible one.

7(m)

3.5(m)

3.5(m)

3.5(m)

3.5(m)

3.5(m)

Figure 4.12 A five-story one-span planar steel building frame.
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Figure 4.13 Lowest mode damping ratio, due to complex eigenvalue analysis, with respect to
level of damping coefficients (uniform damper placement) for various cases of support-member stiffness
(1 tonf/cm = 0.98 × 106 N/m). (I. Takewaki and S. Yoshitomi, “Effects of Support Stiffnesses on Optimal
Damper Placement for a Planar Building Frame,’’ Journal of the Structural Design of Tall Buildings,
Vol.7, No.4. © 1998 John Wiley & Sons, Ltd).
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Figure 4.14 Objective function with respect to level of damping coefficients (uniform damper place-
ment) for various cases of support-member stiffness (1 tonf/cm = 0.98 × 106 N/m). (I. Takewaki and
S.Yoshitomi, “Effects of Support Stiffnesses on Optimal Damper Placement for a Planar Building Frame,’’
Journal of the Structural Design of Tall Buildings, Vol.7, No.4. © 1998 John Wiley & Sons, Ltd).

4.7 Problem of Optimal Damper Placement and Optimality Criteria
(Maxwell-type Modeling)

When this planar frame without added dampers is subjected to a horizontal acceleration
üg(t) at the fixed base, the equation of motion for this model may be written as

Ku(t) + Cu̇(t) + Mü(t) = −Mrüg(t) (4.31)

where r is the influence coefficient vector.
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Let U(ω) and Üg(ω) denote the Fourier transforms of u(t) and üg(t) respectively.
Fourier transformation of Equation 4.31 can be reduced to the following form:

(K + iωC − ω2M)U(ω) = −MrÜg(ω) (4.32)

where i is the imaginary unit.
When the added dampers are incorporated, Equation 4.32 may be modified to the

following form:

{(K + KM) + iω(C + CM) − ω2M}UM(ω) = −MrÜg(ω) (4.33)

Let ω1 denote the undamped fundamental natural circular frequency of the main
frame (the frame without added viscous dampers) and let us define new quantities Û by

Û ≡ UM(ω1)

Üg(ω1)
(4.34)

Ûi is equal to the value such that ω1 is substituted in the frequency response function
obtained as UMi(ω) after substituting Üg(ω) = 1 in Equation 4.33. This quantity has
been utilized by Takewaki (1997b) for structural redesign problems. It should be noted
that, because M and K are prescribed, ω1 is a given value. Owing to Equation 4.33
(ω = ω1) and Equation 4.34, Û must satisfy

AÛ = −Mr (4.35)

where

A = (K + KM) + iω1(C + CM) − ω2
1M (4.36)

Let δ̂i denote the transfer function at ω = ω1 of the interstory drift in the ith story.
δ̂ = {δ̂i} can be derived from Û by the transformation δ̂ = TÛ, where T is a constant
transformation matrix.

It should be remarked here that the squares of the transfer function amplitudes are
useful from physical points of view because they can be transformed into response
mean squares (statistical quantities) after multiplication with the PSD function of a
disturbance and integration in the frequency range. Since the transfer function ampli-
tude of a nodal displacement evaluated at the undamped fundamental natural circular
frequency can be related to the level of this response mean square, these transfer
function amplitudes are treated as controlled quantities here.

The problem of optimal damper positioning for a Maxwell (PODPM)-type model
may be described as follows.

Problem 4.2 PODPM Find the damping coefficients cm = {cmi} of added dampers
which minimize the sum of the transfer function amplitudes of the interstory drifts
evaluated at the undamped fundamental natural circular frequency ω1

V =
n∑

i=1

|δ̂i(cm)| (4.37)
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subject to a constraint on the sum of the damper damping coefficients

n∑
i=1

cmi = W (W : specified value) (4.38a)

and to constraints on the damping coefficients of added dampers

0 ≤ cmi ≤ cmi (i = 1, · · · , n) (4.38b)

where cmi is the upper bound of the damping coefficient of the added damper in the
ith story.

The generalized Lagrangian L for Problem 4.2 may be expressed in terms of
Lagrange multipliers λ, µ = {µi}, and ν = {νi}:

L(cm, λ, µ, ν) =
n∑

i=1

|δ̂i(cm)|+λ

(
n∑

i=1

cmi − W

)
+

n∑
i=1

µi(0 − cmi)+
n∑

i=1

νi(cmi − cmi)

(4.39)
For simplicity of expression, the argument (cm) will be omitted hereafter.

4.7.1 Optimality Criteria

The principal optimality criteria for Problem 4.2 without active upper and lower bound
constraints on damping coefficients may be derived from the stationarity conditions
of the generalized Lagrangian L(µ = 0, ν = 0) with respect to cm and λ:(

n∑
i=1

|δ̂i|
)

, j

+ λ = 0 for 0 < cmj < cmj ( j = 1, · · · , n) (4.40)

n∑
i=1

cmi − W = 0 (4.41)

Here, and in the following, (·), j denotes the partial differentiation with respect to cmj.
If the constraints of Equation 4.38b are active, then Equation 4.40 must be modified
into the following forms:(

n∑
i=1

|δ̂i|
)

, j

+ λ ≥ 0 for cmj = 0 (4.42a)

(
n∑

i=1

|δ̂i|
)

, j

+ λ ≤ 0 for cmj = cmj (4.42b)
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4.8 Solution Algorithm (Maxwell-type Modeling)

In the present procedure, the model without added dampers, namely cmj = 0
( j = 1, · · · , n), is employed as the initial model. The damping coefficients of added
dampers are increased gradually in the present solution algorithm. Let �cmi and �W
respectively denote the increment of the damping coefficient of the ith-story added
damper and the increment of the sum of the damping coefficients of added dampers.
Given �W , the problem is to determine the effective position and amount of the incre-
ments of the damping coefficients of added dampers. To develop this algorithm, the
first- and second-order sensitivities of the objective function with respect to a design
variable are derived in the following.

Differentiation of Equation 4.35 with respect to a design variable cmj provides

A, jÛ + AÛ, j = 0 (4.43)

From Equation 4.36, A, j may be expressed as follows:

A, j = KM, j + iω1CM, j (4.44)

where

KM, j = k̂Mj, jBj (4.45a)

CM, j = ĉMj, jBj (4.45b)

The quantities k̂Mj, j and ĉMj, j are derived as

k̂Mj, j = 2cmjω
2
1

k2
mj + c2

mjω
2
1

(kmj − k̂Mj) (4.46a)

ĉMj, j = kmj

k2
mj + c2

mjω
2
1

(kmj − 2k̂Mj) (4.46b)

Since A is regular, the first-order sensitivities of Û are derived from Equation 4.43 as

Û, j = −A−1A, jÛ (4.47a)

The first-order sensitivities of the interstory drift δ̂ are then expressed as

δ̂, j = TÛ, j = −TA−1A,j Û (4.47b)

The quantity δ̂i may be rewritten formally as

δ̂i = Re[δ̂i] + iIm[δ̂i] (4.48)

where Re[ ] and Im[ ] indicate the real and imaginary parts respectively of a complex
number. The first-order sensitivity of δ̂i may be formally expressed as

δ̂i, j = (Re[δ̂i]), j + i(Im[δ̂i]), j (4.49)
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The absolute value of δ̂i is defined by

|δ̂i| =
√

(Re[δ̂i])2 + (Im[δ̂i])2 (4.50)

The first-order sensitivity of |δ̂i| may then be expressed as

|δ̂i|, j = 1

|δ̂i|
{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j} (4.51)

where (Re[δ̂i]), j and (Im[δ̂i]), j are calculated from Equations 4.47b and 4.49.
A general expression |δ̂i|, j� is derived here for the purpose of developing a solution

procedure for Problem 4.2. Differentiation of Equation 4.51 with respect to cm� leads to

|δ̂i|, j� = 1

|δ̂i|2
(|δ̂i|{(Re[δ̂i]),�(Re[δ̂i]), j + Re[δ̂i](Re[δ̂i]), j� + (Im[δ̂i]),�(Im[δ̂i]), j

+ Im[δ̂i](Im[δ̂i]), j�} − |δ̂i|,�{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j}) (4.52)

(Re[δ̂i]), j� and (Im[δ̂i]), j� in Equation 4.52 are found from

δ̂, j� = TA−1A,�A−1A, jÛ − TA−1A, j�Û − TA−1A,, j Û,� (4.53)

which is derived by differentiating Equation 4.47b with respect to cm� and using the
relation A−1

,� = −A−1A,�A−1. It should be noted here that, while the components in
the matrix A are linear functions of design variables and A, j� becomes a null matrix
for all j and � in Takewaki (1997a), those are nonlinear functions of design variables
cm in the present problem for a Maxwell-type model. A, j� may be written as

A, j� = KM, j� + iω1CM, j� = (k̂Mj, j� + iω1ĉMj, j�)δj�Bj (4.54)

where δj� is the Kronecker delta and k̂Mj, jj and ĉMj, jj are as follows:

k̂Mj, jj = 2ω2
1

k2
mj

{ĉMj, j(kmj − k̂Mj) − ĉMj k̂Mj, j} (4.55a)

ĉMj, jj = 2ω2
1

k2
mj + c2

mjω
2
1

(
2

kmj
k̂Mj ĉMj − ĉMj − kmj

ω2
1

k̂Mj, j

)
(4.55b)

Substitution of Equation 4.47a into Equation 4.53 leads to the following form:

δ̂, j� = TA−1A,�A−1A, jÛ − TA−1A, j�Û + TA−1A, jA−1A,�Û

= TA−1(A,�A−1A, j − A, j� + A, jA−1A,�)Û (4.56)

The derivatives |δ̂i|, j� are derived from Equation 4.52. (Re[δ̂i]), j and (Im[δ̂i]), j in
Equation 4.52 are calculated from Equation 4.47b and (Re[δ̂i]), j� and (Im[δ̂i]), j�
in Equation 4.52 are found from Equation 4.56.
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The solution algorithm in the case of cmj < cmj for all j may be summarized as
follows:

Step 0 Initialize all the added dampers as cmj = 0 ( j = 1, . . . , n). In the initial state,
the damping is the structural damping alone in the frame. Assume �W .

Step 1 Compute the first-order sensitivity (
∑

j |δ̂j|),i of the objective function by
Equation 4.51.

Step 2 Find the index k such that

−
(∑

j
|δ̂j|

)
,k

= max
i

{
−

(∑
j
|δ̂j|

)
,i

}
(4.57)

Step 3 Update the objective function
∑

j |δ̂j| by the first-order approximation∑
j |δ̂j| + (

∑
j |δ̂j|),k�cmk , where �cmk = �W .

Step 4 Update the first-order sensitivity (
∑

j |δ̂j|),i of the objective function by the

first-order approximation (
∑

j |δ̂j|),i + (
∑

j |δ̂j|),ik�cmk using Equation 4.52.
Step 5 If, in Step 4, there exists a damper of an index j such that the condition

−
(∑

i
|δ̂i|

)
,k

= max
j, j �=k

{
−

(∑
i
|δ̂i|

)
, j

}
(4.58)

is satisfied, then stop and compute the corresponding variation �c̃mk of the
damping coefficient of the supplemental damper. Update the first-order sen-
sitivity (

∑
j |δ̂j|),i of the objective function by the first-order approximation

(
∑

j |δ̂j|),i + (
∑

j |δ̂j|),ik�c̃mk using Equation 4.52.
Step 6 Repeat from Step 2 through Step 5 until the constraint in Equation 4.38a (i.e.,∑n

i=1 cmi = W ) is satisfied.

In Step 2 and Step 3, the direction which reduces the objective function most effec-
tively under the condition

∑n
i=1 �cmi = �W is found and the design is updated in

that direction. It is appropriate, therefore, to call the present algorithm “the steepest
direction search algorithm.’’ This algorithm may be similar to the well-known steep-
est descent method in the mathematical programming (see Figure 4.4 for viscous-type
modeling). However, while the conventional steepest descent method uses the gradient
vector itself of the objective function as the direction and does not utilize optimality
criteria, the present algorithm takes full advantage of the newly derived optimality
criteria in Equations 4.40, 4.42a, and 4.42b and does not adopt the gradient vector as
the direction. In other words, the steepest direction search guarantees the satisfaction
of the optimality criteria. For example, if �cmk is added to the kth added damper in
which Equation 4.57 is satisfied, then its damper (cmk > 0) satisfies the optimality
condition in Equation 4.40 and the other dampers (cmj = 0, j �= k) satisfy the opti-
mality condition in Equation 4.42a. It should be noted that a series of subproblems
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is introduced here tentatively in which the damper level W is increased gradually by
�W from zero through the specified value.

If multiple indices k1, · · · , kp exist in Step 2, then
∑

j |δ̂j| and (
∑

i |δ̂i|), j have to be
updated by the following rules:

∑
j
|δ̂j| →

∑
j
|δ̂j| +

kp∑
i=k1

(∑
j
|δ̂j|

)
,i
�cmi (4.59a)

(∑
i
|δ̂i|

)
, j

→
(∑

i
|δ̂i|

)
, j

+
kp∑

�=k1

(∑
i
|δ̂i|

)
, j�

�cm� (4.59b)

Furthermore, the index k in Step 5 has to be replaced by the indices k1, · · · , kp. The
ratios among the magnitudes �cmi must be determined so that the following relations
are satisfied:(∑

j
|δ̂j|

)
,k1

+
kp∑

i=k1

(∑
j
|δ̂j|

)
,k1i

�cmi = · · · =
(∑

j
|δ̂j|

)
,kp

+
kp∑

i=k1

(∑
j
|δ̂j|

)
,kpi

�cmi (4.60)

Equation 4.60 requires that the optimality condition Equation 4.40 continues to be
satisfied in the dampers with the indices k1, . . . , kp.

In the case where the damping coefficients of some added dampers attain their upper
bounds, such constraints must be incorporated in the aforementioned algorithm. In that
case, the increment �cmk is added subsequently to the damper in which −(

∑
j |δ̂j|),k

attains the maximum among all the dampers, except those attaining the upper bound.

4.9 Numerical Examples II (Maxwell-type Modeling)

Consider the five-story one-span planar steel building frame shown in Figure 4.12.
All the properties of the main frame are stated in Section 4.6. The undamped funda-
mental natural circular frequency of the model is ω1 = 10.15 rad/s. The structural
damping of the main frame is given by a critical damping ratio of 0.02 in the
lowest eigenvibration. Optimal damper positioning has been derived for three support-
member stiffnesses, namely km = 50, 100, and 1000 tonf/cm (equal to (50, 100, and
1000) × 9.8 × 105 N/m). These values have been determined based upon identification
on several existing buildings. It is assumed that all the constraints on upper bounds
of the damping coefficients are inactive; that is, cj < cmj for all j. The final level of
the sum of the damping coefficients of the added dampers is W = 10 tonf s/cm. The
increment of W is given by �W = W/400.

The distributions of the optimal damping coefficients obtained via the present proce-
dure are plotted in Figure 4.15 for km = 50, 100, and 1000 tonf/cm. It can be observed
that the dampers are added in the second story first and then in the third story. The ratio
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of the damping coefficients in these two stories is strongly dependent on the support-
member stiffness. In Figure 4.15(a), the dampers in the second and third stories exhibit
constant values after 360 steps. This phenomenon results from the fact that the damp-
ing coefficient in one of the other stories becomes negative and the procedure stops.
Figure 4.16 shows the variation of the first-order derivatives of the objective function
with respect to the design variables. It can be observed from Figure 4.16 that the
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Figure 4.15 Distribution of optimal damping coefficients obtained via the present procedure for var-
ious cases of support-member stiffness km = 50, 100, and 1000 tonf/cm (1 tonf/cm = 0.98 × 106 N/m).
(I. Takewaki and S. Yoshitomi, “Effects of Support Stiffnesses on Optimal Damper Placement for a Planar
Building Frame,’’ Journal of the Structural Design of Tall Buildings, Vol.7, No.4. © 1998 John Wiley &
Sons, Ltd).
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optimality criteria are satisfied in all the stories. In Figure 4.16(c), for example, the
first-order derivative of the objective function with respect to the design variable in
the second story exhibits the maximum absolute value until 90 steps where the damp-
ing coefficient of the damper in the third story begins to increase. After 90 steps, the
first-order derivatives of the objective function with respect to the design variables in
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Figure 4.16 Variation of first-order derivatives of objective function with respect to the design vari-
ables for various cases of support-member stiffness (1 tonf/cm = 0.98 × 106 N/m). (I. Takewaki and
S.Yoshitomi, “Effects of Support Stiffnesses on Optimal Damper Placement for a Planar Building Frame,’’
Journal of the Structural Design of Tall Buildings, Vol.7, No.4. © 1998 John Wiley & Sons, Ltd).
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the second and third stories exhibit the same maximum absolute value. This process
just indicates the satisfaction of the optimality criteria in Equations 4.49 and 4.42a.
Figure 4.17 illustrates the variation of the lowest-mode damping ratio and Figure 4.18
shows the variation of the objective function. It can be observed from these figures
that, while the lowest mode damping ratio is affected significantly by the support-
member stiffness in this range of support-member stiffnesses, the objective function
is affected slightly by the support-member stiffness. However, in case of rather flex-
ible support-member stiffnesses, as shown in Figures 4.17 and 4.18, these influences
may become serious and should be taken into account in the design practice.
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Figure 4.17 Variation of lowest mode damping ratio in optimal damper placement with respect to level
of damping coefficients for various cases of support-member stiffness (1 tonf/cm = 0.98 × 106 N/m).
(I. Takewaki and S. Yoshitomi, “Effects of Support Stiffnesses on Optimal Damper Placement for a
Planar Building Frame,’’ Journal of the Structural Design of Tall Buildings, Vol.7, No.4. © 1998 John
Wiley & Sons, Ltd).
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Figure 4.18 Variation of objective function in optimal damper placement with respect to level of damp-
ing coefficients for various cases of support-member stiffness (1 tonf/cm = 0.98 × 106 N/m). (I. Takewaki
and S. Yoshitomi, “Effects of Support Stiffnesses on Optimal Damper Placement for a Planar Building
Frame,’’ Journal of the Structural Design of Tall Buildings, Vol.7, No.4. © 1998 John Wiley & Sons, Ltd).

WWW.BEHSAZPOLRAZAN.COM



c04.tex 27/8/2009 14: 12 Page 104

104 Building Control with Passive Dampers

4.10 Nonmonotonic Sensitivity Case

When a negative damping coefficient appears in the fundamental algorithm explained
in the previous section, an augmented algorithm has to be devised. In this section, a new
augmented algorithm is explained of updating the damping coefficients to cm − �cm
instead of cm + �cm. Since the fundamental algorithm requires the satisfaction of
f (cm),k1 = · · · = f (cm),kp and Equation 4.60, the following optimality conditions
continue to be satisfied automatically within a first-order approximation:

f (cm − �cm),k1 = · · · = f (cm − �cm),kp (4.61)

Actually, the damping coefficient of the damper with a negative damping coefficient
in the fundamental algorithm is taken as a design parameter tentatively. Then, the sum
of the damping coefficients is taken again as a design parameter after the value of
the sum of the damping coefficients returns to the original value at which a negative
damping coefficient starts to appear in the fundamental algorithm (see Figure 4.19).

Consider again the five-story one-span planar steel building frame shown in
Figure 4.12. All the properties of the main frame are stated in Section 4.6. The structural
damping of the main frame is given by a critical damping ratio of 0.02 in the lowest
eigenvibration. Optimal damper positioning has been derived for the support-member
stiffness km = 50 tonf/cm. This value has been determined based upon identification
on several existing buildings. It is assumed that all the constraints on upper bounds
of the damping coefficients are inactive; that is, cj < cmj for all j. The final level of
the sum of the damping coefficients of the added dampers is W = 10 tonf s/cm. The
increment of W is given by �W = W/400.

sum of damping coefficients

damping coefficient of
specific damper

design parameter

da
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sum of damping coefficients

Figure 4.19 Augmented algorithm. (I. Takewaki and K. Uetani, “Optimal Damper Placement in Shear-
Flexural Building Models,’’ Proceedings of the 2nd World Conference on Structural Control, Vol.2. ©
1999 John Wiley & Sons, Ltd).
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The distributions of the optimal damping coefficients obtained via the fundamental
algorithm are plotted in Figure 4.20 for km = 50 (tonf/cm). It can be observed that the
dampers are added in the second story first and then in the third story. The ratio of the
damping coefficients in these two stories has been found to be strongly dependent on
the support-member stiffness. The damping coefficient in the fourth story exhibits a
negative value after 370 steps. To avoid this negative value, the proposed augmented
algorithm has been applied to this model. Figure 4.21 illustrates the distributions of
the optimal damping coefficients obtained via the augmented algorithm. Figure 4.22
shows the variation of the first-order derivatives of the objective function with respect
to the design variables. It can be observed that the optimality criteria are satisfied
in all the stories. The first-order derivative of the objective function with respect to
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Figure 4.20 Distributions of optimal damping coefficients obtained via the fundamental algorithm
for km = 50 (tonf/cm) (1 tonf/cm = 0.98 × 106 N/m). (I. Takewaki and K. Uetani, “Optimal Damper
Placement in Shear-Flexural Building Models,’’ Proceedings of the 2nd World Conference on Structural
Control, Vol.2. © 1999 John Wiley & Sons, Ltd).
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Figure 4.21 Distribution of optimal damping coefficients obtained via the augmented algorithm
(1 tonf/cm = 0.98 × 106 N/m). (I.Takewaki and K. Uetani, “Optimal Damper Placement in Shear-Flexural
Building Models,’’ Proceedings of the 2nd World Conference on Structural Control, Vol.2. © 1999 John
Wiley & Sons, Ltd).
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Figure 4.22 Variation of first-order derivatives of objective function with respect to design variables
(1 tonf/cm = 0.98 × 106 N/m). (I.Takewaki and K. Uetani, “Optimal Damper Placement in Shear-Flexural
Building Models,’’ Proceedings of the 2nd World Conference on Structural Control, Vol.2. © 1999 John
Wiley & Sons, Ltd).

the design variable in the second story exhibits the maximum absolute value until 40
steps, where the damping coefficient of the damper in the third story begins to increase.
After 40 steps, the first-order derivatives of the objective function with respect to the
design variables in the second and third stories exhibit the same maximum absolute
value. This process just indicates the satisfaction of the optimality criteria in Equations
4.40 and 4.42a. Figure 4.23 illustrates the variation of the lowest mode damping ratio
and Figure 4.24 shows the variation of the objective function. Figure 4.25 shows the
variation of the sum of seismic-response interstory drifts for a Newmark–Hall design
spectrum (maximum ground velocity of 25 cm/s) (Newmark and Hall, 1982). It is
observed that the model designed by the proposed method exhibits a smaller seismic
response compared with the model with uniform damper capacity.

4.11 Summary

The results are summarized as follows.

1. A systematic procedure called a steepest direction search algorithm has been
explained for finding the optimal damper positioning in a planar moment-resisting
frame. This problem is aimed at minimizing the sum of the transfer function
amplitudes of the interstory drifts evaluated at the undamped fundamental nat-
ural frequency subject to a constraint on the sum of the damping coefficients of
dampers. The optimal damper positioning is determined based upon the optimality
criteria. The features of the present formulation are to be able to deal with any damp-
ing system (e.g., viscous-type or Maxwell-type, proportional or nonproportional)
to be able to treat any structural system so far as it can be modeled with FE systems
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Figure 4.23 Variation of lowest mode damping ratio in optimal placement and uniform placement
(1 tonf/cm = 0.98 × 106 N/m). (I.Takewaki and K. Uetani, “Optimal Damper Placement in Shear-Flexural
Building Models,’’ Proceedings of the 2nd World Conference on Structural Control, Vol.2. © 1999 John
Wiley & Sons, Ltd).
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Figure 4.24 Variation of objective function in optimal placement and uniform placement
(1 tonf/cm = 0.98 × 106 N/m). (I.Takewaki and K. Uetani, “Optimal Damper Placement in Shear-Flexural
Building Models,’’ Proceedings of the 2nd World Conference on Structural Control, Vol.2. © 1999 John
Wiley & Sons, Ltd).
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Figure 4.25 Variation of sum of seismic-response interstory drifts for a Newmark–Hall design spec-
trum in optimal placement and uniform placement (1 tonf/cm = 0.98 × 106 N/m). (I. Takewaki and
K. Uetani, “Optimal Damper Placement in Shear-Flexural Building Models,’’ Proceedings of the 2nd
World Conference on Structural Control, Vol.2. © 1999 John Wiley & Sons, Ltd).
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and to consist of a systematic algorithm without any indefinite iterative operation.
Efficiency and reliability of the present procedure have been demonstrated through
an example.

2. The proposed technique is general and is expected to be applicable to other struc-
tural systems. In the case where seismic responses are treated as the objective
functions directly, higher mode effects should be included adequately. Even in
such a case, the present procedure will play a principal role and a slightly modified
algorithm could be developed without much difficulty (see Chapters 6–9). It is well
known that the stiffness of members supporting added viscous dampers influences
the performance of the dampers and that the seismic response of a building struc-
ture is greatly influenced by dynamic soil–structure interaction effects (Takewaki
et al., 1998; Takewaki, 1998). A problem of optimal damper placement in a soil–
structure interaction model including damper–support-member systems would be
of interest in the future research.

3. The support-member stiffness affects greatly the optimal damper positioning and
the response suppression level due to added viscous dampers. This stiffness
should be taken into account in the design of sizing and positioning of the added
dampers. The Maxwell-type damper–spring model, a proper model for a damper–
support member system, can be treated adequately by the present transfer function
formulation.

Appendix 4.A: Construction of CV

The damping matrix CV of the added viscous dampers may be expressed as

CV =
∑

i

cViBi (A4.1)

Bi is a square matrix of dimension = {2×(s+1)+1}×n which can be constructed from
the following element matrix B∗

i in the ith story by allocating the member coordinates
to the system coordinates:

B∗
i =

⎡
⎢⎢⎢⎢⎢⎢⎣

2 cos2 θi cos θi sin θi − cos θi sin θi −2 cos2 θi − cos θi sin θi cos θi sin θi

sin2 θi 0 − cos θi sin θi − sin2 θi 0
sin2 θi cos θi sin θi 0 − sin2 θi

2 cos2 θi cos θi sin θi − cos θi sin θi

sym. sin2 θi 0
sin2 θi

⎤
⎥⎥⎥⎥⎥⎥⎦

(A4.2)

where θi denotes the angle of the damper to the beam in the ith story. B∗
i is defined with

respect to the displacements {ui−1 υL(i−1) υR(i−1) ui υLi υRi}T (see Figure 4.10(b)). It
should be noted that the matrix B∗

i includes the effects of both dampers in the ith story.
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5
Optimal Sensitivity-based Design
of Dampers in Three-dimensional
Buildings

5.1 Introduction

The problem treated in this chapter is to find the optimal damper placement in a
three-dimensional (3-D) shear building model so as to minimize the dynamic compli-
ance of the 3-D shear building model. The dynamic compliance is defined in terms
of the sum of the transfer function amplitudes of local interstory drifts computed at
the undamped fundamental natural frequency of the 3-D shear building model. The
transfer function amplitude indicates the absolute value of a transfer function of a
local interstory drift at the undamped fundamental natural frequency. That objective
function is minimized subject to a constraint on the sum of damper capacities (damper
damping coefficients). In contrast to two-dimensional building structures, torsional
effects arising from the difference of the center of mass and the center of rigidity will
play an important role in 3-D structures. It is well known that eccentricity can occur
even in a structure with uniform mass and stiffness distributions. This is because of
irregularities in the building plan or additionally mounted masses after construction
being possible sources of the eccentricity. It is expected that optimal damper place-
ment can resolve the issues arising from this torsional effect and improve the seismic
performance of 3-D structures.

A set of optimality criteria is derived and a systematic algorithm based on the
optimality criteria is introduced first for the optimal damper placement. The features of
the present formulation are (i) possible treatment of any damping system, (ii) possible
treatment of any structural system so far as it can be modeled with FE systems, and (iii)
realization of a systematic algorithm without any indefinite iterative operation. While a
different algorithm was devised and a variation from a uniform storywise distribution

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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of added dampers was considered in Chapter 2, a variation from the null state is
treated in this chapter as in Chapter 4. This procedure helps designers to understand
simultaneously which position would be the best and what capacity of dampers would
be required to attain a series of desired response performance levels. In the fundamental
algorithm explained in the first part of this chapter, it sometimes happens that negative
damping coefficients are required to satisfy the optimality conditions. To avoid this
unrealistic situation, an updated and augmented algorithm via parameter switching is
explained.

5.2 Problem of Optimal Damper Placement

5.2.1 Modeling of Structure

Consider the 3-D n-story shear building model shown in Figure 5.1. Let mi and Ii
denote the mass of the ith floor and the mass moment of inertia of the ith floor respec-
tively. The radius of gyration in the ith floor is denoted by ri = √

Ii/mi. For simplicity
of presentation, this model is assumed to have a mono-eccentricity and the lateral-
torsional vibration only in the x-direction is considered. Furthermore, an excitation in
the x-direction is considered. This model consists of m planar frames. It is assumed that
added viscous dampers can be installed in all the stories in every frame. The numbering
of added dampers is made sequentially. The translational displacement of the center
of mass G in the x-direction and the angle of rotation of the floor around a vertical
axis through G are the displacements to be considered. Let ui denote the translational
displacement of the center of mass G at ith floor in the x-direction and θi denote the
angle of rotation of the ith floor around a vertical axis through G. In this chapter, a new
displacement wi = riθi is adopted in place of θi and the displacement in this direction
is called the z-directional displacement. Let u(t) = {u1 w1 · · · ui wi · · · un wn}T denote
the generalized displacements in the system coordinate system.

m-th frame

center of mass

center of rigidity

x

y

zxy

j-th frame

first frame

first frame
j-th frame

n-th
story

first
story

Figure 5.1 A 3-D n-story shear building model.
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5.2.2 Mass, Stiffness, and Damping Matrices

The system mass matrix M of the model can be expressed by

M = diag(m1 m1 · · · mi mi · · · mn mn) (5.1)

The symbol diag( ) denotes a diagonal matrix including the terms in the parentheses
as the diagonal terms.

Let K(i, j) denote the stiffness element of frame j in the ith story and let k(i, j) denote
the translational stiffness of K(i, j). All the member stiffnesses of the model are given
and its system stiffness matrix is described by K. The system stiffness matrix may be
derived as follows.

5.2.3 Relation of Element-end Displacements with Displacements
at Center of Mass

The relations of element-end displacements with displacements at the center of mass
may be expressed as⎧⎪⎪⎪⎨

⎪⎪⎪⎩
uL

K(i, j)
wL

K(i, j)
uU

K(i, j)
wU

K(i, j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎣

1 −ȳL
K(i, j) 0 0

0 1 0 0
0 0 1 −ȳU

K(i, j)
0 0 0 1

⎤
⎥⎥⎦

⎧⎪⎪⎨
⎪⎪⎩

ui−1
wi−1

ui
wi

⎫⎪⎪⎬
⎪⎪⎭ (5.2)

These relations can be rewritten compactly as

uK(i, j) = tK(i, j)

{
ui−1
ui

}
(5.3)

where

yU
K(i, j) = yK(i, j) − yi

ri

yL
K(i, j) = yK(i, j) − yi−1

ri−1

and where yK(i, j) is the y-coordinate of the stiffness element K(i, j), yi is the y-
coordinate of the center of mass of the ith floor, uL

K(i, j) is the x-directional displacement

of the lower-end of stiffness element K(i, j), wL
K(i, j) is the z-directional displacement

of the lower-end of stiffness element K(i, j), uU
K(i, j) is the x-directional displacement of

the upper-end of stiffness element K(i, j), and wU
K(i, j) is the z-directional displacement

of the upper-end of stiffness element K(i, j). The origin of the coordinate system is
placed at an arbitrary point (see Figure 5.1).
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5.2.4 Relation of Forces at Center of Mass due to Stiffness Element
K(i, j) with Element-end Forces

The relations of forces FK(i, j) at the center of mass due to K(i, j) with element-end
forces fK(i, j) may be expressed as

FK(i, j) = tK(i, j)
TfK(i, j) (5.4)

where

FK(i, j) = {FL
xK(i, j) FL

zK(i, j) FU
xK(i, j) FU

zK(i, j)}T

fK(i, j) = { f L
xK(i, j) f L

zK(i, j) f U
xK(i, j) f U

zK(i, j)}T

and where FL
xK(i, j) is the x-directional element-end force at the lower-end of stiffness

element K(i, j) defined at the center of mass, FL
zK(i, j) is the z-directional element-

end force at the lower-end of stiffness element K(i, j) defined at the center of mass,
FU

xK(i, j) is the x-directional element-end force at the upper-end of stiffness element

K(i, j) defined at the center of mass, FU
zK(i, j) is the z-directional element-end force at

the upper-end of stiffness element K(i, j) defined at the center of mass, f L
xK(i, j) is the

x-directional element-end force at the lower- end of stiffness element K(i, j), f L
zK(i, j)

is the z-directional element-end force at the lower-end of stiffness element K(i, j),
f U
xK(i, j) is the x-directional element-end force at the upper-end of stiffness element

K(i, j), and f U
zK(i, j) is the z-directional element-end force at the upper-end of stiffness

element K(i, j).

5.2.5 Relation of Element-end Forces with Element-end Displacements

The relations of element-end forces fK(i, j) with element-end displacements uK(i, j) may
be expressed as

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f L
xK(i, j)

f L
zK(i, j)

f U
xK(i, j)

f U
zK(i, j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

=

⎡
⎢⎢⎣

k(i, j) 0 −k(i, j) 0
0 0 0 0

−k(i, j) 0 k(i, j) 0
0 0 0 0

⎤
⎥⎥⎦

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

uL
K(i, j)

wL
K(i, j)

uU
K(i, j)

wU
K(i, j)

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.5)

These relations can be rewritten compactly as

fK(i, j) = kK(i, j)uK(i, j) (5.6)
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5.2.6 Relation of Forces at Center of Mass due to Stiffness Element K(i, j)
with Displacements at Center of Mass

The relations of forces FK(i, j) at the center of mass due to K(i, j) with displacements
ui at the center of mass may be expressed as

FK(i, j) = KK(i, j)

{
ui−1
ui

}
(5.7)

where

KK(i, j) = tK(i, j)
TkK(i, j)tK(i, j)

=

⎡
⎢⎢⎢⎢⎣

k(i, j) −k(i, j)y
L
K(i, j) −k(i, j) k(i, j)y

U
K(i, j)

−k(i, j)y
L
K(i, j) k(i, j)y

L
K(i, j)y

L
K(i, j) k(i, j)y

L
K(i, j) −k(i, j)y

L
K(i, j)y

U
K(i, j)

−k(i, j) k(i, j)y
L
K(i, j) k(i, j) −k(i, j)y

U
K(i, j)

k(i, j)y
U
K(i, j) −k(i, j)y

L
K(i, j)y

U
K(i, j) −k(i, j)y

U
K(i, j) k(i, j)y

U
K(i, j)y

U
K(i, j)

⎤
⎥⎥⎥⎥⎦
(5.8)

The stiffness matrix KK(i) for the ith story may then be expressed as

KK(i) =
∑

j

KK(i, j) =

⎡
⎢⎢⎢⎢⎣

Kx(i) −KL
xz(i) −Kx(i) KU

xz(i)

−KL
xz(i) KLL

xz(i) KL
xz(i) −KLU

xz(i)

−Kx(i) KL
xz(i) Kx(i) −KU

xz(i)

KU
xz(i) −KLU

xz(i) −KU
xz(i) KUU

xz(i)

⎤
⎥⎥⎥⎥⎦ (5.9)

where

Kx(i) =
∑

j

k(i, j)

KL
xz(i) =

∑
j

k(i, j)y
L
K(i, j)

KU
xz(i) =

∑
j

k(i, j)y
U
K(i, j)

KLL
xz(i) =

∑
j

k(i, j)y
L
K(i, j)y

L
K(i, j)

KLU
xz(i) =

∑
j

k(i, j)y
L
K(i, j)y

U
K(i, j)

KUU
xz(i) =

∑
j

k(i, j)y
U
K(i, j)y

U
K(i, j) (5.10a–f )
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The system stiffness matrix K can finally be obtained by superposing KK(i) through
all the stories.

The structural damping of the model is considered and the system damping matrix
due to this structural damping is given by C. Let c(i, j) denote the damping coefficient
at frame j in the ith story. C can be derived by replacing k(i, j) in the stiffness matrix
by c(i, j).

See Chopra (1995) for more information on modeling.

5.2.7 Equations of Motion and Transfer Function Amplitude

When this 3-D shear building model without added dampers is subjected to a horizontal
base acceleration üg(t) in the x-direction, the equations of motion for this model can
be written as

Ku(t) + Cu̇(t) + Mü(t) = −Mrüg(t) (5.11)

where r is the influence coefficient vector defined by r = {1 0 · · · 1 0 · · · 1 0}T.
Let U(ω) and Üg(ω) denote the Fourier transforms of u(t) and üg(t) respectively.

Fourier transformation of Equation 5.11 may be reduced to the following form:

(K + iωC − ω2M)U(ω) = −MrÜg(ω) (5.12)

where i is the imaginary unit.
Let CV denote the damping matrix due to the added viscous dampers. When the

added dampers are included, Equation 5.12 may be modified to the following form:

{K + iω(C + CV) − ω2M}UV(ω) = −MrÜg(ω) (5.13)

In this chapter it is assumed that the masses of the dampers are negligible in comparison
with the floor masses. It is interesting to note that, since the present formulation is
developed in the frequency domain, it is possible to deal with various other damping
systems in terms of complex stiffnesses (see Chapter 1).

Let ci denote the damping coefficient of the ith added damper. The total number of
added dampers is denoted by N = n × m. The undamped fundamental natural circular
frequency of the model in the x-direction (lateral-torsional vibration) is denoted by
ω1. Let us define new quantities Û by

Û ≡ UV(ω1)

Üg(ω1)
(5.14)

Ûi is equal to the value such that ω1 is substituted in the frequency response function
obtained as UVi(ω) after substituting Üg(ω) = 1 in Equation 5.13 (see Figure 5.2).
This quantity has been utilized first by Takewaki (1997a, 1997b) for structural redesign
problems. While a steady-state resonant response at the fundamental natural frequency
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Figure 5.2 Transfer function amplitude of interstory drift at the first frame in the first story. (I. Takewaki,
S. Yoshitomi, K. Uetani and M. Tsuji, “Non-Monotonic Optimal Damper Placement via Steepest Direc-
tion Search,’’ Earthquake Engineering and Structural Dynamics, Vol.28, No.6. © 1999 John Wiley &
Sons, Ltd).

is treated here to explain the fundamental feature of the present optimization algorithm,
optimization for random earthquake inputs with wide-band frequency contents may
be possible based on the present theory as given in Chapters 6–9. It should be noted
that, because M and K are prescribed, ω1 is a given value. Owing to Equation 5.13
(ω = ω1) and Equation 5.14, Û must satisfy

AÛ = −Mr (5.15)

where

A = K + iω1(C + CV) − ω2
1M (5.16)

Let δ̂i denote the transfer function at ω = ω1 of the local interstory drift at the location
where the ith damper exists. δ̂ = {δ̂i} can be derived from Û by the transformation
δ̂ = TÛ, where T is a constant matrix including given geometrical parameters only.
The local interstory drift will be simply called the interstory drift hereafter.

It should be remarked here that the squares of the transfer function amplitudes are
useful from physical points of view because they can be transformed into response
mean squares (statistical quantities) after multiplication with the PSD function of a
disturbance and integration in the frequency range. Since the transfer function ampli-
tude of a nodal displacement evaluated at the undamped fundamental natural circular
frequency can be related to the level of this response mean square, these transfer
function amplitudes are treated as controlled quantities in this chapter.

5.2.8 Problem of Optimal Damper Positioning

The problem of optimal damper positioning for a 3-D (PODPT) shear building model
may be described as follows.
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Problem 5.1 PODPT Find the damping coefficients c = {ci} of added dampers
which minimize the sum of the transfer function amplitudes of the interstory drifts
evaluated at the undamped fundamental natural circular frequency ω1

f (c) =
N∑

i=1

∣∣∣δ̂i(c)
∣∣∣ (5.17)

subject to a constraint on the sum of the damping coefficients of added dampers

N∑
i=1

ci = W (W : specified value) (5.18a)

and to constraints on the damping coefficients of added dampers

0 ≤ ci ≤ ci (i = 1, · · · , N ) (5.18b)

where ci is the upper bound of the damping coefficient of the ith added damper.
The generalized Lagrangian L for Problem 5.1 may be expressed in terms of

Lagrange multipliers λ, µ = {µi}, and ν = {νi}:

L(c, λ, µ, ν) = f (c) + λ

(
N∑

i=1

ci − W

)
+

N∑
i=1

µi(0 − ci) +
N∑

i=1

νi(ci − ci) (5.19)

For simplicity of expression, the argument (c) will be omitted hereafter.

5.3 Optimality Criteria and Solution Algorithm

The principal optimality criteria for Problem 5.1 without active upper and lower bound
constraints on damping coefficients may be derived from the stationarity conditions
of the generalized Lagrangian L (µ = 0, ν = 0) with respect to c and λ:

f, j + λ = 0 for 0 < cj < cj (j = 1, · · · , N ) (5.20)

N∑
i=1

ci − W = 0 (5.21)

Here, and in the following, ( · ), j denotes the partial differentiation with respect to cj.
If the constraints (Equation 5.18b) are active, then Equation 5.20 must be modified
into the following forms:

f, j + λ ≥ 0 for cj = 0 (5.22a)

f, j + λ ≤ 0 for cj = cj (5.22b)

In the present procedure, the model without added dampers, namely
cj = 0 ( j = 1, · · ·, N ), is employed as the initial model. This treatment is well suited to
the situation where a structural designer is just starting the allocation and placement of
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added supplemental viscous dampers at desired positions. The damping coefficients of
added dampers are increased gradually based on the optimality criteria derived above.
This algorithm will be called a steepest direction search algorithm, as in Chapter 4.

Let �ci and �W denote the increment of the damping coefficient of the ith added
damper and the increment of the sum of the damping coefficients of added dampers
respectively. Given the increment �W , the problem is to determine the effective
position and amount of the increments of the damping coefficients of supplemental
dampers. To develop this algorithm, the first- and second-order sensitivities of the
objective function with respect to a design variable are derived in the following.

Differentiation of Equation 5.15 with respect to a design variable cj provides

A, jÛ + AÛ, j = 0 (5.23)

From Equation 5.16, A, j may be expressed as follows.

A, j = iω1CV, j (5.24)

Since the coefficient matrix A is regular, the first-order sensitivities of Û are derived
from Equation 5.23 as

Û, j = −A−1A, jÛ (5.25a)

The first-order sensitivities of the interstory drift δ̂ are then expressed as

δ̂, j = TÛ, j = −TA−1A,j Û (5.25b)

The quantity δ̂i may be rewritten formally as

δ̂i = Re[δ̂i] + i Im[δ̂i] (5.26)

where Re[ ] and Im[ ] indicate the real and imaginary parts respectively of a complex
number. Furthermore, the first-order sensitivity of δ̂i may be formally expressed as

δ̂i, j = (Re[δ̂i]), j + i(Im[δ̂i]), j (5.27)

The absolute value of δ̂i is defined by

|δ̂i| =
√

(Re[δ̂i])2 + (Im[δ̂i])2 (5.28)

The first-order sensitivity of |δ̂i| may then be expressed as

|δ̂i|, j = 1

|δ̂i|
{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j} (5.29)

where (Re[δ̂i]), j and (Im[δ̂i]), j are calculated from Equations 5.25b and 5.27.
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A general expression |δ̂i|, j� is derived here for the purpose of developing a solu-
tion procedure for Problem 5.1. Differentiation of Equation 5.29 with respect to c�

leads to

|δ̂i|, j� = 1

|δ̂i|2
(|δ̂i|{(Re[δ̂i]),�(Re[δ̂i]), j + Re[δ̂i](Re[δ̂i]), j� + (Im[δ̂i]),�(Im[δ̂i]), j

+ Im[δ̂i](Im[δ̂i]), j�} − |δ̂i|,�{Re[δ̂i](Re[δ̂i]), j + Im[δ̂i](Im[δ̂i]), j}) (5.30)

(Re[δ̂i]), j� and (Im[δ̂i]), j� in Equation 5.30 can be found from

δ̂, j� = TA−1(A,� A−1A,j Û − A,j Û,�) (5.31)

which is derived by differentiating Equation 5.25b with respect to c� and using the
relation A−1

,� = −A−1A,�A−1. Substitution of Equation 5.25a into Equation 5.31 leads
to the following form:

δ̂, j� = TA−1(A,� A−1A,j +A,j A−1A,� )Û (5.32)

The second-order derivatives |δ̂i|, j� are derived from Equation 5.30. (Re[δ̂i]), j and
(Im[δ̂i]), j in Equation 5.30 are calculated from Equation 5.25b and (Re[δ̂i]), j� and
(Im[δ̂i]), j� in Equation 5.30 are found from Equation 5.32.

The fundamental solution algorithm in the case of cj < cj for all j may be
summarized as follows:

Step 0 Initialize all the added supplemental viscous dampers as cj = 0 ( j = 1, · · ·, N ).
In the initial state, the damping is the structural damping alone in the 3-D shear
building model. Assume the quantity �W .

Step 1 Compute the first-order derivative f,i of the objective function by Equation
5.29.

Step 2 Find the index k satisfying the condition

−f,k = max
i

{−f,i} (5.33)

Step 3 Update the objective function f by the linear approximation f + f,k�ck , where
�ck = �W . This is because the supplemental damper is added only in the kth
damper in the initial design stage.

Step 4 Update the first-order sensitivity f,i of the objective function by the linear
approximation f,i + f,ik�ck using Equation 5.30.

Step 5 If, in Step 4, there exists a supplemental damper of an index j such that the
condition

−f,k = max
j, j �=k

{−f, j} (5.34)

is satisfied, then stop and compute the increment �c̃k of the damping coefficient
of the corresponding damper. At this stage, update the first-order sensitivity
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f,i of the objective function by the linear approximation f,i + f,ik�c̃k using
Equation 5.30.

Step 6 Repeat Step 2 through Step 5 until the constraint in Equation 5.18a,∑N
i=1 ci = W , is satisfied.

The schematic diagram for this fundamental solution algorithm is shown in Fig-
ure 5.3. The relation between the first-order derivatives of the objective function and
the damping coefficients is explained there in detail. Once the first-order derivative of
the objective function starts to attain the maximum absolute value, the corresponding
damper begins possessing a nonzero value. The dampers begin possessing nonzero
damping coefficients in the order c1, c4, c2, c3 in Figure 5.3.

In Step 2 and Step 3 in the aforementioned algorithm, the direction which decreases
the objective function most effectively under the condition

∑N
i=1 �ci = �W is found

and the design is updated in that direction. It is appropriate, therefore, to call the present
algorithm “the steepest direction search algorithm,’’ as stated before. This algorithm is
similar to the well-known steepest descent method in mathematical programming (see
Figure 4.4 in Chapter 4 to understand the concept). However, while the conventional
steepest descent method uses the gradient vector itself of the objective function as
the direction and does not utilize optimality criteria, the present algorithm takes full
advantage of the newly derived optimality criteria in Equations 5.20, 5.22a, and 5.22b
and does not adopt the gradient vector as the direction. In other words, the steepest
direction search guarantees the automatic satisfaction of the optimality criteria. For
example, if �ck is added to the kth added damper in which Equation 5.33 is satisfied,
then its damper (ck > 0) satisfies the optimality condition (Equation 5.20) and the other
dampers (cj = 0, j �= k) satisfy the optimality condition (Equation 5.22a). It should be
noted that a series of subproblems is introduced here tentatively in which the damper
level W is increased gradually by �W from zero through the specified value.

If multiple indices k1, · · ·, kp exist in Step 2, then f and f, j have to be updated by

f → f +
kp∑

i=k1

f,i�ci (5.35a)

f, j → f, j +
kp∑

�=k1

f, j��c� (5.35b)

Furthermore, the index k in Step 5 has to be replaced by the indices k1, · · ·, kp. The
ratios among the magnitudes �ci must be determined so that the following relations
are satisfied:

f,k1 +
kp∑

i=k1

f,k1i�ci = · · · = f,kp +
kp∑

i=k1

f,kpi�ci (5.36)
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Figure 5.3 Schematic diagram of the fundamental solution algorithm. (Reproduced with permission
from Structural and Multidisciplinary Optimization, Vol. 20, No. 4, pp 280–287, 2000, I. Takewaki,
Optimal Damper Placement for Planar Building Frames Using Transfer Functions, with permission from
Springer.).
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Equation 5.36 requires that the optimality condition (Equation 5.20) continues to be
satisfied in the dampers with the indices k1, · · ·, kp.

In the case where the damping coefficients of some added dampers attain their upper
bounds, such constraints must be incorporated in the aforementioned algorithm. In that
case, the increment �ck is added subsequently to the damper in which −f,k attains the
maximum among all the dampers, except those attaining the upper bound.

5.4 Nonmonotonic Path with Respect to Damper Level

In most cases, an increase of member stiffnesses reduces the displacement (or deforma-
tion) response of a structure under disturbances with a wide-band frequency content.
On the other hand, an increase of the damping coefficient of added dampers does not
necessarily lead to a reduction of the response because of complicated damping char-
acteristics. An example can be found in the increase of acceleration arising from the
increase of damping in the base-isolation story. Nonproportional damping may cause
further complicated phenomena. It has been found through numerical experiments
that the algorithm mentioned above can lead to the appearance of negative damping
coefficients. In the real world, negative damping coefficients are difficult to under-
stand, and this situation should be excluded with the constraints in Equation 5.18b.
In this section a new method is explained for preventing the appearance of negative
damping coefficients and finding a path continuously within such complex design
regions.

Figure 5.4(a) shows a situation in which a damping coefficient of a specific added
damper c2 starts to attain a negative value. At this stage, the proposed augmented
algorithm recommends changing the signs of the damping coefficients of the dampers
satisfying the optimality condition in Equation 5.20. In the following step, the design
parameter is switched from the total damper capacity level (sum of the damping
coefficients) to the damping coefficient of that damper c2. In this range, the sum of
the damping coefficients begins decreasing and afterwards increases. It is noted that,
while the increment of the sum of the damping coefficients has been specified in the
range without the emergence of negative damping coefficients, the optimal damper
placement is obtained for a specified increment of the damping coefficient of that
damper c2. The validity of this treatment is shown in the following.

The optimality condition, Equation 5.20, is satisfied in the following form:

f (c),k1 = · · · = f (c),kp (5.37)

Let �c denote the set of increments of the damping coefficients including a negative
damping coefficient. In order for these optimality conditions to continue to be satisfied
for the increments �c, the following relations must be satisfied:

f (c + �c),k1 = · · · = f (c + �c),kp (5.38)
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Figure 5.4 (a) Situation at which a damping coefficient of a specific added damper c2 starts to attain
a negative value; (b) switch of the main parameter. (I. Takewaki, S. Yoshitomi, K. Uetani and M. Tsuji,
“Non-Monotonic Optimal Damper Placement via Steepest Direction Search,’’ Earthquake Engineering
and Structural Dynamics, Vol.28, No.6. © 1999 John Wiley & Sons, Ltd).

The first-order Taylor series expansion of the first term may be written as

f (c + �c),k1 = f (c),k1 +
p∑

i=1

f (c),k1ki�c̃ki (5.39)

From Equation 5.39, the following conditions must be satisfied in order that Equations
5.37 and 5.38 hold:

p∑
i=1

f (c),k1ki�c̃ki = · · · =
p∑

i=1

f (c),kjki�c̃ki = · · · =
p∑

i=1

f (c),kpki�c̃ki (5.40)

It should be noted that (except for dampers with negative damping coefficients) if
the damping coefficients of the dampers in the fundamental algorithm are relatively
large, then the new set c − �c does not include a negative damping coefficient. In
order that the optimality conditions are satisfied for the new design variables c − �c,
the following relation must hold:

f (c − �c),k1 = · · · = f (c − �c),kp (5.41)

The first-order Taylor series expansion of the first term may be written as

f (c − �c),k1 = f (c),k1 −
p∑

i=1

f (c),k1ki�c̃ki (5.42)
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Figure 5.5 Three-story shear building model.

From Equations 5.37, 5.40, and 5.42, it is apparent that Equation 5.41 holds.
This guarantees the validity of the new algorithm for avoiding negative damping
coefficients.

After the sum of the damping coefficients returns to a value from which the damping
coefficient of a specific damper starts to attain a negative value, the design parameter
is re-switched from the damping coefficient of that damper to the sum of the damping
coefficients (see Figure 5.4(b)).

5.5 Numerical Examples

Consider the three-story shear building model shown in Figure 5.5. The shear build-
ing model consists of three planar frames with different story stiffnesses. The center
of mass and center of rigidity in every floor coincide. Every floor mass and mass
moment of inertia of the floor around a vertical axis are assumed to be m = 294 ton
and I = 1.96 × 104 ton cm2 respectively. The element story stiffnesses in the three
frames are shown in Figure 5.5. The stiffness of the third frame is strongest and
the center of rigidity is located slightly near to the third frame. The undamped
fundamental natural circular frequency of the model (lateral-torsional vibration) is
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ω1 = 24.8 rad/s. The structural damping of the shear building model is given by a
critical damping ratio of 0.02 in the lowest eigenvibration. The numbering of the
added dampers is shown in Figure 5.5. It is assumed that all the constraints on upper
bounds of the damping coefficients are inactive; that is, cj < cj for all j. The final level
of the sum of the damping coefficients of the added dampers is W = 40 tonf s/cm
(1 tonf s/cm = 0.98 × 106 N/m). The increment of W is given by �W = W/400. In
the nonmonotonic range, 25 steps are required for the sum of the damping coefficients
to return to the original value.

The distributions of the optimal damping coefficients obtained via the present fun-
damental procedure are plotted in Figure 5.6. It can be observed that the dampers
are added in order c1, c4, c2 and the damper c3 begins to attain a negative damp-
ing coefficient around W = 27 tonf s/cm. This indicates that the optimal damper
placement requires that added dampers be placed in order to suppress the torsional
vibration component. Figure 5.7 shows the distributions of the optimal damping coef-
ficients obtained via the augmented procedure described in Section 5.4. The damping
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coefficient of damper c3 is taken as a design parameter in the nonmonotonic range.
It is found that the modification by c3 greatly influences the optimal damping distri-
butions of dampers c1 and c2. It is also found that multiple stationary solutions exist
in the nonmonotonic range. It is possible to obtain the optimal solution by compar-
ing the objective functions of the stationary solutions. Figure 5.8 shows the variation
of the first-order derivatives of the objective function. In addition, Figure 5.9 illus-
trates the satisfaction level of the optimality conditions (Equation 5.20). The ordinate
indicates the value of the left-hand side in Equation 5.20 divided by λ. It can be
observed from Figure 5.9 that the optimality criteria, Equation 5.20, and the inequality
in Equation 5.22a are satisfied in all the dampers for every W .

Figure 5.10 shows the variations of the lowest-mode damping ratio for the optimal
placement and the uniform placement. The uniform placement means the case where
the same increment �W/9 of the damping coefficient is added to every damper. It
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Figure 5.8 Variation of the first-order derivatives of the objective function (1 tonf s/cm = 0.98 ×
106 N/m). (I. Takewaki, S. Yoshitomi, K. Uetani and M. Tsuji, “Non-Monotonic Optimal Damper
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K. Uetani and M. Tsuji, “Non-Monotonic Optimal Damper Placement via Steepest Direction Search,’’
Earthquake Engineering and Structural Dynamics, Vol.28, No.6. © 1999 John Wiley & Sons, Ltd).

can be seen that optimal placement increases the lowest mode damping ratio more
effectively than uniform placement does. Figure 5.11 illustrates the objective func-
tion with respect to the sum of the damping coefficients for the optimal placement
and the uniform placement. The optimal placement actually reduces the objective
function more rapidly than the uniform placement, especially at the lower damping
capacity level. Figure 5.12 shows the sum of the seismic-response interstory drifts
corresponding to the objective function. Each transfer function amplitude of the local
interstory drift has been replaced by the mean peak local interstory drift to the design
earthquakes represented by the response spectrum due to Newmark and Hall (1982).
The response spectrum method by Yang et al. (1990) for a nonproportional damping
has been employed to estimate the mean peak local interstory drift. It can be found

WWW.BEHSAZPOLRAZAN.COM



c05.tex 31/8/2009 14: 5 Page 129

Optimal Sensitivity-based Design of Dampers in Three-dimensional Buildings 129

0

0.2

0.4

0.6

0.8

1

1.2

0 5 10 15 20 25 30 35 40

optimal
placement 
uniform
placement

su
m

 o
f 

se
is

m
ic

-r
es

po
ns

e
in

te
rs

to
ry

 d
ri

ft
 (

cm
)

sum of damping coefficients (tonf s/cm)

Figure 5.12 Sum of seismic-response interstory drifts corresponding to objective function (1 tonf
s/cm = 0.98 × 106 N/m). (I. Takewaki, S. Yoshitomi, K. Uetani and M. Tsuji, “Non-Monotonic Optimal
Damper Placement via Steepest Direction Search,’’ Earthquake Engineering and Structural Dynamics,
Vol.28, No.6. © 1999 John Wiley & Sons, Ltd).

from Figure 5.12 that, in a certain narrow range, the seismic response of the model
designed optimally for the steady-state resonant response becomes larger than that
for the uniform placement. Higher mode effects on seismic responses to wide-band
inputs and nonproportional damping effects may be a cause of this phenomenon. Direct
introduction of the seismic response into the objective function (Equation 5.17) and
application of the random vibration theories in the seismic response evaluation may
lead to more realistic optimal damper placement (see Chapters 3 and 6–9). Numerical
integration in the frequency range and sensitivity expressions of frequency-response
functions will be required in the computation. However, this treatment may require
unrealistically high computational resources.

5.6 Summary

The results are summarized as follows.

1. An efficient and systematic procedure called a steepest direction search algorithm
has been explained for finding the optimal damper positioning in a 3-D shear build-
ing model. This problem is aimed at minimizing the sum of the transfer function
amplitudes of local interstory drifts evaluated at the undamped fundamental natural
frequency subject to a constraint on the sum of the damping coefficients of supple-
mental dampers. The transfer function amplitude indicates the absolute value of
a transfer function of a local interstory drift at the undamped fundamental natural
frequency. The optimal damper positioning is determined based upon the optimal-
ity criteria derived here. The features of the present formulation are to be able to
deal with any damping system, to be able to treat any structural system so far as it
can be modeled with FE systems, and to consist of a systematic algorithm without
any indefinite iterative operation.
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2. An algorithm to avoid the emergence of negative damping coefficients has been
developed by introducing a devised procedure of parameter switching. Effi-
ciency and reliability of the present procedure have been demonstrated through
an example.

3. Optimal damper placement requires that supplemental dampers be placed in order
to suppress the torsional vibration component.
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6
Optimal Sensitivity-based
Design of Dampers in Shear
Buildings on Surface Ground
under Earthquake Loading

6.1 Introduction

The soil or ground under a structure greatly influences the structural vibration prop-
erties. This fact has been demonstrated in past earthquakes. It is important, therefore,
to develop a seismic-resistant design method for such an interaction model. While a
design philosophy depending largely on stiffness and strength of building structures
has been employed for a long time, passive control devices have recently been used as
effective substitutes of stiffness and strength-type resisting elements for suppressing
the structural responses and upgrading the structural performances. It is not difficult
to imagine that a building structure including such control systems is also affected by
the soil–structure interaction.

The purpose of this chapter is to explain a systematic method for optimal placement
of supplemental viscous dampers in building structures including response amplifica-
tion due to the surface ground. The supplemental viscous dampers are installed in
the stories of a shear building model. Nonlinear amplification of ground motion
within the surface ground is described by an equivalent linear model. Both hysteretic
damping of the surface ground and radiation damping into the semi-infinite ground
are taken into account in the model.

While several useful investigations have been reported on active control of building
structures including soil–structure interaction effects (Wong and Luco, 1991;Alam and
Baba, 1993; Smith et al., 1994; Smith and Wu, 1997), it should be remarked that there
are a very few on optimal damper placement in a building structure taking into account

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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interaction with the surface ground. A method called the steepest direction search
algorithm (Takewaki, 1998a; Takewaki and Yoshitomi, 1998) has been explained in
Chapters 4 and 5 for fixed-base planar frames or 3-D structures. In this chapter, it is
shown that it can be extended to a structure–surface ground interaction model. While
resonant steady-state responses of structures with fixed bases were treated in Chapters
2–5 (Takewaki, 1998a; Takewaki and Yoshitomi, 1998), earthquake responses to
random ground motions are treated in this chapter as controlled parameters. It is shown
that closed-form expressions of the inverse of the tri-diagonal coefficient matrix in the
governing equations lead to a drastic reduction of computational time for mean-square
responses of the building structure to a random earthquake input and their derivatives
with respect to the design variables (damping coefficients of added dampers). Optimal
placement and quantity of the supplemental dampers are found simultaneously and
automatically via the steepest direction search algorithm, which is based on successive
approximate satisfaction of the optimality conditions. Several examples for various
surface ground properties are presented to demonstrate the effectiveness and validity
of the present method and to examine the effects of surface ground characteristics on
optimal damper placement.

6.2 Building and Ground Model

In this chapter, a building structure is assumed to exist on a surface ground. For sim-
ple and clear presentation, the building structure is described by a shear building model
and the surface ground is represented by a shear beam model (see Figure 6.1). It is
also assumed here that many identical structure–ground systems are arranged in the
two horizontal directions and one of the systems is taken into account as a represen-
tative model. It should be kept in mind that, while the response of the building is
affected by the surface ground and the response of the surface ground is not affected
by the building in a model adopting a wave propagation theory for the surface ground
(the case where the mass of surface ground is much larger than that of the building),
both the building and surface ground are affected by each other in the present model.
Furthermore, the local interaction between the building foundation and the surface
ground is not considered here. This effect will be considered in Chapters 7 and 8.

Let n and N denote the number of stories of the shear building model and the number
of surface soil layers respectively. A random horizontal input is defined at the level
just below the engineering bedrock on which the layered surface ground lies.

As in the case where the surface ground is modeled by a FE model, so-called
radiation damping into the semi-infinite visco-elastic ground is taken into account here
by a viscous boundary (Lysmer and Kuhlemeyer, 1969). Let cb = ρ0VSA = √

ρ0G0A
denote the total damping coefficient of the viscous boundary where ρ0, VS, and G0
are respectively the mass density, shear wave velocity, and shear modulus of the semi-
infinite visco-elastic ground and A is the horizontal governing area of the surface
ground. The dynamic performance of this viscous boundary was investigated and
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Figure 6.1 Shear building model supported by a surface ground. (Originally published in I. Takewaki and
K. Uetani, “Optimal damper placement for building structures including surface ground amplification,’’
Soil Dynamics and Earthquake Engineering, 18, no. 5, 363–371, 1999, Elsevier B.V.).

tested by Lysmer and Kuhlemeyer (1969), and it has been demonstrated that there is
no accuracy problem in treating one-dimensional models.

Let li, ρi, Gi, and βi denote the thickness, mass density, shear modulus, and hys-
teretic damping ratio respectively in layer i. A linear displacement function is used
in evaluating the stiffness and consistent mass matrices in the FE model of the sur-
face ground. Nonlinear amplification of ground motion within the surface ground
is taken into account through an equivalent linear model (Schnabel et al., 1972).
The equivalent linear model used for the surface ground is almost equivalent to that
used in the SHAKE program, as shown by Takewaki et al. (2002a, 2002b). This
model can be regarded as a deterministic equivalent linear model and its accuracy
has been demonstrated by many researchers (e.g., Takewaki et al., 2002a, 2002b).
The method explained here uses a peak factor (Der Kiureghian, 1980) multiplied
by the standard deviation of the shear strain under random vibration. The validity of
this treatment has been demonstrated by Der Kiureghian (1980). Once the surface
ground is modeled by the equivalent linear model, the whole system consisting of
a structure and the surface ground is a linear system. The random vibration theory
for linear models is well established and its accuracy has been checked by many
investigators.
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On the other hand, the parameters in the building may be specified as follows. Let
mi and ki denote the floor mass and the story stiffness respectively in the ith story of
the building. In addition, let ci and cVi denote the structural damping coefficient in
the ith story of the building and the damping coefficient of the supplemental damper
in the ith story respectively. The set {cVi} of damping coefficients of supplemental
dampers is the design variable set here.

6.3 Seismic Response

The method of dynamic response evaluation in this interaction model will be explained
in this section.

Assume that this shear building–surface ground model is subjected to a horizontal
acceleration üg(t) at a level l0 below the bedrock surface. M, C, D, K, and r are
respectively the system mass matrix (combination of a lumped mass matrix and a
consistent mass matrix), the system viscous damping matrix for the building and the
viscous boundary, the system hysteretic damping matrix for the soil layers, the system
stiffness matrix, and the influence coefficient vector. An example of these matrices M,
C, D, and K is shown in Appendix 6.A for a two-story shear building model supported
by two soil layers. It is noted that the system viscous damping matrix for the building
includes the damping coefficients of the supplemental viscous dampers and that the
damping coefficient in the ith story may be expressed by Ci = ci + cVi in terms of
the structural damping coefficient ci in the ith story of the building and the damping
coefficient cVi of the supplemental damper in the ith story.

Equations of motion of this building–ground interaction system in the frequency
domain can be expressed by

(−ω2M + iωC + iD + K)U(ω) = −MrÜg(ω) (6.1)

In Equation 6.1, U(ω) and Üg(ω) are the Fourier transforms of the horizontal displace-
ments of the nodes (floors of the building and layer boundaries of the surface ground)
and the Fourier transform of the horizontal input acceleration üg(t) defined at the level
l0 below the bedrock. It should be noted that, because the present model includes
a hysteretic damping, the equations of motion in the time domain for üg(t) cannot
be expressed and only those in the frequency-domain can be derived. The horizontal
input acceleration üg(t) is assumed to be a stationary Gaussian random process with
zero mean.

Equation 6.1 can then be reduced to the following form:

AU(ω) = BÜg(ω) (6.2)

where A and B are the coefficient matrix and the vector and are given by

A = (−ω2M + iωC + iD + K) (6.3a)

B = −Mr (6.3b)
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A is a tri-diagonal matrix and its example for a two-story shear building model
supported by two soil layers can be found in Appendix 6.A.

Because the interstory drift in a building can be a good indicator of the overall
stiffness of the building, its control plays an important role in the stiffness design
of the building. For this reason, the interstory drift is treated here as the controlled
parameter.

Let us define the time-domain interstory drifts d(t) = {di(t)} of the shear building
model and consider their Fourier transforms ∆(ω) = {�i(ω)}. The Fourier transforms
∆(ω) of interstory drifts are related to the Fourier transforms U(ω) of horizontal nodal
displacements with the use of the transformation matrix T:

∆(ω) = TU(ω) (6.4)

The transformation matrix T consists of 1, −1, and 0 and is a rectangular matrix.
Substitution of a modified expression of Equation 6.2 into Equation 6.4 provides

∆(ω) = TA−1BÜg(ω) (6.5)

Equation 6.5 is simply expressed as

∆(ω) = H�(ω)Üg(ω) (6.6)

where H�(ω) = {H�i (ω)} are the transfer functions of the interstory drifts with respect
to the input acceleration Üg(ω) and are described by

H�(ω) = TA−1B (6.7)

As pointed out before, because A is a tri-diagonal matrix, its inverse can be obtained
in closed form (see Appendix 6.B). This property enables one to compute the transfer
functions of interstory drifts very efficiently. In particular, as the number of soil layers
and building stories increases, this advantage will be accelerated and remarkable.

The statistical characteristics of stationary random signals can be described by its
PSD function. Let Sg(ω) denote the PSD function of the horizontal random input üg(t)
at the bedrock. The PSD function of the interstory drift can be expressed as the product
of the transfer function squared |H�i (ω)|2 and Sg(ω). Using the random vibration
theory, the mean-square response of the ith interstory drift can then be computed from

σ2
�i

=
∫ ∞

−∞
|H�i (ω)|2Sg(ω)dω =

∫ ∞

−∞
H�i (ω)H∗

�i
(ω)Sg(ω)dω (6.8)

where ( )∗ denotes the complex conjugate.
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6.4 Problem of Optimal Damper Placement and Optimality Criteria

In this section, the problem of optimal damper placement in a super-building is for-
mulated. The problem of optimal damper placement for the building structure–ground
interaction (PODP-BGI) models explained above may be described as follows.

Problem 6.1 PODP-BGI Minimize the sum of the mean squares of the interstory
drifts as a flexibility measure

f =
n∑

i=1

σ2
�i

(6.9)

subject to the constraint on total quantity of supplemental dampers

n∑
i=1

cVi = W (W : specified total quantity of supplemental dampers) (6.10)

and to the constraints on each damper quantity

0 ≤ cVi ≤ cVi (i = 1, · · · , n) (cVi: upper bound of damping coefficient) (6.11)

6.4.1 Optimality Conditions

It is straightforward to use the Lagrange multiplier method for solving constrained
optimization problems. The constrained optimization problem stated above can be for-
mulated mathematically by the generalized Lagrangian formulation. The generalized
Lagrangian for Problem 6.1 may be defined as

L(cV, λ, µ, ν) =
n∑

i=1

σ2
�i

+ λ

(
n∑

i=1

cVi − W

)
+

n∑
i=1

µi(0 − cVi) +
n∑

i=1

νi(cVi − cVi)

(6.12)

In Equation 6.12, µ = {µi} and ν = {νi} are the Lagrangian multipliers together with
λ. The principal (or major) optimality criteria for Problem 6.1 without active upper
and lower bound constraints on damping coefficients of supplemental dampers may be
derived from the stationarity conditions of the generalized Lagrangian L(µ = 0, ν = 0)
with respect to each component of cV and λ:

f, j + λ = 0 for 0 < cVj < cVj ( j = 1, · · · , n) (6.13)
n∑

i=1

cVi − W = 0 (6.14)
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Equation 6.13 has been derived by the differentiation of Equation 6.12 with respect
to cVj and Equation 6.14 has been obtained by the differentiation of Equation 6.12
with respect to λ.

Here, and in the following, the mathematical symbol ( · ), j indicates the partial dif-
ferentiation with respect to the damping coefficient cVj of the supplemental damper in
the jth story. When the lower or upper bound of the constraint on damping coefficients
of supplemental dampers is active, the optimality condition should be modified to the
following forms:

f, j + λ ≥ 0 for cVj = 0 (6.15)

f, j + λ ≤ 0 for cVj = cVj (6.16)

6.5 Solution Algorithm

A solution algorithm for the problem of optimal damper placement stated above is
explained in this section. In the solution procedure, the model without supplemental
viscous dampers, namely cVj = 0 ( j = 1, · · · , n), is used as the initial model. This
treatment is well suited to the situation where a structural designer is just starting the
allocation and placement of added supplemental viscous dampers at desired positions.
The damping coefficients of added supplemental dampers are increased gradually
based on the optimality criteria stated above. This algorithm is called the steepest direc-
tion search algorithm as in Chapters 4 and 5, while the transfer function amplitudes
were treated in Chapters 4 and 5 in place of seismic responses.

Let �cVi and �W denote the increment of the damping coefficient of the ith added
supplemental damper (damper in the ith story) and the increment of the sum of the
damping coefficients of added supplemental dampers respectively. Once �W is given,
the problem is to determine simultaneously the effective position and the amount of
the increments of the damping coefficients of added supplemental dampers. In order
to develop this algorithm, the first- and second-order sensitivities of the objective
function with respect to a design variable are needed. Those quantities can be derived
by differentiating successively Equation 6.8 by the design variables.

First-order derivative of mean-square interstory drift:

(σ2
�i

), j =
∫ ∞

−∞
{H�i (ω)}, jH

∗
�i

(ω)Sg(ω) dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jSg(ω)dω

(6.17)
Second-order derivative of mean-square interstory drift:

(σ2
�i

), jl =
∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω)dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{H�i (ω)}, jlH

∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jlSg(ω)dω

(6.18)
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In Equations 6.17 and 6.18, the first- and second-order derivatives of transfer functions
and their complex conjugates may be expressed as

{H�i (ω)}, j = TiA
−1
, j B (6.19)

{H�i (ω)}, jl = TiA
−1
, jl B (6.20)

{H∗
�i

(ω)}, j = TiA
−1∗
, j B (6.21)

{H∗
�i

(ω)}, jl = TiA
−1∗
, jl B (6.22)

In Equations 6.19–6.22, Ti is the ith row vector in the rectangular transformation
matrix T.

The first-order derivative of the inverseA−1 of the coefficient matrix is computed by
(A−1), j = −A−1A, jA−1, which is obtained by differentiating the identity AA−1 = I.
Because the components in the coefficient matrix A are linear functions of design
variables, the expression A, jl = 0 is derived. Then, the second-order derivative of the
inverse A−1 is obtained from

(A−1), jl = A−1(A,lA
−1A, j + A, jA−1A,l)A

−1 (6.23)

The first-order derivative of the complex conjugate A−1∗ of the inverse can be
computed as {A−1

, j }∗ and the second-order derivative of A−1∗ can be found as

A−1∗
, jl = {A−1

, jl }∗.
The solution algorithm in the case satisfying the conditions cVj < cVj for all j may

be summarized as follows:

Step 0 Initialize all the added supplemental viscous dampers as cVj = 0 ( j = 1, · · · , n).
In the initial design stage, the structural damping alone exists in the shear
building model. Assume the quantity �W .

Step 1 Compute the first-order derivative f,i of the objective function by Equation 6.17.
Step 2 Find the index p satisfying the condition

−f,p = max
i

(−f,i) (6.24)

Step 3 Update the objective function f by the linear approximation f + f,p�cVp, where
�cVp = �W . This is because the supplemental damper is added only in the pth
story in the initial design stage.

Step 4 Update the first-order sensitivity f,i of the objective function by the linear
approximation f,i + f,ip�cVp using Equation 6.18.

Step 5 If, in Step 4, there exists a supplemental damper of an index j such that the
condition

−f,p = max
j, j �=p

(−f, j) (6.25)
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is satisfied, then stop and compute the increment �c̃Vp of the damping coef-
ficient of the corresponding damper. At this stage, update the first-order
sensitivity f,i by the linear approximation f,i + f,ip�c̃Vp using Equation 6.18.

Step 6 Repeat the procedure from Step 2 to Step 5 until the constraint in Equation 6.10
(i.e.,

∑n
i=1 cVi = W ) is satisfied.

In Steps 2 and 3, the direction which decreases the objective function most effec-
tively under the condition

∑n
i=1 �cVi = �W is found and the design (the quantity of

supplemental dampers) is updated in that direction. It is suitable, therefore, to call the
present algorithm “the steepest direction search algorithm,’’ as in Chapters 4 and 5. As
explained before, this algorithm is similar to the conventional steepest descent method
in the mathematical programming (see Figure 4.4 in Chapter 4 to understand the con-
cept). However, while the conventional steepest descent method uses the gradient
vector itself of the objective function as the direction and does not utilize optimality
criteria, the present algorithm takes advantage of the newly derived optimality criteria
expressed by Equations 6.13, 6.15, and 6.16 and does not adopt the gradient vector as
its direction. More specifically, the explained steepest direction search guarantees the
successive and approximate satisfaction of the optimality criteria by a linear approxi-
mation. For example, if �cVp is added to the pth added supplemental viscous damper
in which Equation 6.24 is satisfied, then its damper (cp > 0) satisfies the optimality
condition in Equation 6.13 and the other dampers (cj = 0, j �= p) alternatively satisfy
the optimality condition in Equation 6.15. It is important to note that a series of sub-
problems is introduced here tentatively in which the total damper capacity level W̄ is
increased gradually by �W from zero through the specified value.

It is necessary to investigate other possibilities. If multiple indices p1, · · · , pm exist
in Step 2, then the objective function f and its derivative f, j have to be updated by the
following rules:

f → f +
pm∑

i=p1

f,i�cVi (6.26a)

f, j → f, j +
pm∑

i=p1

f, ji�cVi (6.26b)

Furthermore, the index p defined in Step 5 has to be replaced by the multiple indices
p1, · · · , pm. The ratios among the magnitudes �cVi have to be determined so that the
following relations are satisfied:

f,p1 +
pm∑

i=p1

f,p1i�cVi = · · · = f,pm +
pm∑

i=p1

f,pmi�cVi (6.27)

Equation 6.27 requires that the optimality condition in Equation 6.9 continues to
be satisfied by a linear approximation in the supplemental dampers with the indices
p1, · · · , pm.
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It may be the case in realistic situations that the maximum quantity of supplemental
dampers is limited by the requirements of building design and planning. In the case
where the damping coefficients of some added supplemental dampers attain their upper
bounds, such constraints must be incorporated in the aforementioned algorithm. In that
case, the increment �cVp of the supplemental dampers is added subsequently to the
damper in which −f,p attains the maximum value among all the dampers, except for
those attaining the upper bound.

6.6 Numerical Examples

A band-limited white noise is often used as a test input of random disturbance. In this
section, a band-limited white noise with the following PSD function is input to the
building–ground system as the input acceleration üg(t):

Sg(ω) = 0.01 m2/s3 (−2π × 16 ≤ ω ≤ −2π × 0.2, 2π × 0.2 ≤ ω ≤ 2π × 16)

Sg(ω) = 0 otherwise

As stated at the beginning of this chapter, the soil under a building structure influences
greatly the seismic response of the building structure. In order to investigate in detail
the influence of soil conditions on the seismic response and optimal distributions of
supplemental dampers, three different soil conditions are considered. These three soil
types are specified as very stiff ground, stiff ground, and soft ground. Every ground
model consists of three soil layers of identical thickness li = 6 m and these layers rest
on a semi-infinite visco-elastic ground (bedrock). The shear modulus, damping ratio,
and mass density of the semi-infinite visco-elastic ground are given as 8.0 × 108 N/m2,
0.01, and 2.0 × 103 kg/m3 respectively.

The input acceleration is defined at l0 = 6 m below the boundary (engineering
bedrock surface) between the three soil layers and the semi-infinite visco-elastic
ground. The mass densities of the three soil layers are assumed to be identical and
take the same value of 1.8 × 103 kg/m3 over the very stiff ground, stiff ground, and
soft ground.

The shear moduli of the soil layers are also identical within each of the three lay-
ers and take the values 1.6 × 108 N/m2 in the very stiff ground, 0.8 × 108 N/m2 in
the stiff ground, and 0.2 × 108 N/m2 in the soft ground. Nonlinear amplification of
ground motion within the surface ground is considered here. The dependence of the
shear moduli and damping ratios on the strain level is taken into account through an
equivalent linear model. Their relations used in this numerical example are shown in
Figure 6.2 for clay, sand, and gravel. It is assumed that layer 1 consists of gravel,
layer 2 of clay, and layer 3 of sand. The influence of the mean effective pressure
has been taken into account. Linear interpolation has been used in evaluating the
intermediate values between the selected points. The effective strain level (Schnabel
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Figure 6.2 Dependence of shear moduli and damping ratios on strain level. (Originally published in
I. Takewaki and K. Uetani, “Optimal damper placement for building structures including surface ground
amplification,’’ Soil Dynamics and Earthquake Engineering, 18, no. 5, 363–371, 1999, Elsevier B.V.).

et al., 1972) has been evaluated from the relation 2.5σ�i × 0.65, where the coeffi-
cient 2.5 represents the peak factor (Der Kiureghian, 1980; Takewaki et al. 2002a,
2002b) and 0.65 was introduced by Schnabel et al. (1972). The convergent charac-
teristics of the stiffness reduction ratios of the shear moduli and damping ratios are
shown in Figure 6.3 and Figure 6.4 respectively. This evaluation of equivalent val-
ues has been conducted for the structure–ground interaction system without added
dampers.

While the fundamental natural periods of these three surface grounds at the small
strain level are 0.239 s, 0.338 s, and 0.675 s for the very stiff ground, stiff ground, and
soft ground respectively, those computed from the equivalent stiffnesses are 0.322 s,
0.617 s, and 1.48 s for the very stiff ground, stiff ground, and soft ground respectively.

As for super-buildings, we consider a three-story shear building model for simple
and clear presentation of the theory developed in this chapter. The floor masses are
specified as m0 = 96 × 103 kg and mi = 32 × 103 kg (i = 1,2,3) and the story stiff-
nesses are given by ki = 3.76 × 107 N/m (i = 1,2,3). The fundamental natural period
of the super-structure with a fixed base is 0.412 s.

It is important to investigate the relation between the fundamental natural period of
the structure and that of the surface ground in order to understand the effect of the soil
property on the seismic response of the building structure. Figure 6.5 shows the relation
between the fundamental natural period of the structure and that of the surface ground.
In the present case, the fundamental natural period of the structure is close to that of the
very stiff surface ground. The structural viscous damping matrix of the shear building
model has been given so that it is proportional to the stiffness matrix of the shear
building model, and the lowest mode damping ratio attains the value of 0.02.

Figure 6.6(a) shows the variation of the viscous damping coefficients of added sup-
plemental dampers in the optimal placement for the very stiff ground. It is observed
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Figure 6.3 Convergence processes of stiffness reduction ratios of shear moduli. (Originally published in
I. Takewaki and K. Uetani, “Optimal damper placement for building structures including surface ground
amplification,’’ Soil Dynamics and Earthquake Engineering, 18, no. 5, 363–371, 1999, Elsevier B.V.).
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Figure 6.4 Convergence processes of damping ratio. (Originally published in I. Takewaki and
K. Uetani, “Optimal damper placement for building structures including surface ground amplification,’’
Soil Dynamics and Earthquake Engineering, 18, no. 5, 363–371, 1999, Elsevier B.V.).
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Figure 6.5 Relation between the fundamental natural period of the structure and that of the surface
ground. (Originally published in I. Takewaki and K. Uetani, “Optimal damper placement for building
structures including surface ground amplification,’’ Soil Dynamics and Earthquake Engineering, 18, no.
5, 363–371, 1999, Elsevier B.V.).

that the viscous damping coefficient of the supplemental damper is first added in the
first story and then in the second story. Figure 6.6(b) and (c) illustrates the variations
of viscous damping coefficients of supplemental dampers in the optimal placement
for the stiff ground and the soft ground. It can be understood from Figure 6.6(a)–(c)
that the optimal supplemental damper placement is strongly dependent on the sur-
face ground properties. It is well known that resonance of the fundamental natural
frequency of the building structure with the predominant frequency of the surface
ground can sometimes cause amplified responses (Takewaki, 1998b). It is noted that,
because the soil exhibits a high nonlinearity under earthquake loading, the evaluation
of the equivalent stiffness of the ground needs careful treatment. It may be concluded,
therefore, that the relation of the fundamental natural frequency of the building struc-
ture with the predominant frequency of the surface ground (equivalent stiffness) is a
key parameter for characterizing the optimal damper placement.

Figure 6.7 presents the comparison of the objective functions between the model
of the optimal placement of supplemental dampers and that of uniform placement. In
the same step number, both placements have the same total damper capacity. It can be
seen that the optimal placement can reduce the objective function effectively.

For further investigation, consider two nine-story shear building models with
different distributions of story stiffnesses. The floor masses are specified as
m0 = 96 × 103 kg and mi = 32 × 103 kg (i = 1, · · · , 9), and the story stiffnesses are
specified as ki = 5.64 × 107 N/m (i = 1, · · · , 9) for model A and ki = 7.53 × 107 N/m
(i = 1, 2, 3), ki = 5.64 × 107 N/m (i = 4,5,6), and ki = 3.76 × 107 N/m (i = 7,8,9) for
model B. The story stiffness distributions of models A and B are shown in Figure 6.8.
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Figure 6.6 Variation of damping coefficients in optimal damper placement. (Originally published in
I. Takewaki and K. Uetani, “Optimal damper placement for building structures including surface ground
amplification,’’ Soil Dynamics and Earthquake Engineering, 18, no. 5, 363–371, 1999, Elsevier B.V.).

WWW.BEHSAZPOLRAZAN.COM



c06.tex 26/8/2009 14: 18 Page 146

146 Building Control with Passive Dampers

0

0.0001

0.0002

0.0003

0.0004

0.0005

0.0006

0.0007

0 100 200 300 400 500

optimal placement
uniform placement

ob
je

ct
iv

e 
fu

nc
tio

n 
(m

2 )

step number

very stiff ground

(a)

ob
je

ct
iv

e 
fu

nc
tio

n 
(m

2 )

0 100 200 300 400 500

step number

(b)

0

0.0001

0.00015

0.0002

0.00025

optimal placement
uniform placement

stiff ground

ob
je

ct
iv

e 
fu

nc
tio

n 
(m

2 )

0 100 200 300 400 500

step number

(c)

0

0.0001

0.00012

optimal placement
uniform placement

soft ground

Figure 6.7 Comparison of the objective functions between the optimal placement and uniform place-
ment. (Originally published in I. Takewaki and K. Uetani, “Optimal damper placement for building
structures including surface ground amplification,’’ Soil Dynamics and Earthquake Engineering, 18, no.
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Figure 6.8 Story stiffness distributions of models A and B.

The fundamental natural period of the structure with the fixed base of model A is
0.906 s and that of model B is 0.858 s. The lowest mode structural damping ratio of
the building is 0.02.

Figure 6.9 illustrates the distributions of the optimal viscous damping coefficients
of supplemental dampers with respect to step number in very stiff ground, stiff ground,
and soft ground for these two nine-story buildings (uniform stiffness and varied stiff-
ness). It is observed that the optimal supplemental damper placement is also strongly
dependent on the surface ground properties and the story stiffness distributions. It is
again expected that the relation of the fundamental natural frequency of the building
structure with that of the surface ground is a key parameter for the optimal supplemental
damper placement.

6.7 Summary

The results are summarized as follows.

1. Viscous damping of supplemental dampers in a building structure, hysteretic damp-
ing in a surface ground, and viscous damping at the ground viscous boundary
can be taken into account exactly in the present unified formulation based on a
frequency-domain approach. A so-called steepest direction search algorithm has
been developed and explained in detail.
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Figure 6.9 Distributions of optimal damping coefficients with respect to step number in very stiff
ground, stiff ground, and soft ground for nine-story buildings: (a)–(c) uniform stiffness; (d)–(f): varied
stiffness.

2. Because a transfer function with respect to the input acceleration at the engineering
bedrock can be obtained in a closed form for MDOF systems with nonproportional
damping owing to the tri-diagonal property of the coefficient matrix, the mean-
square interstory drifts of the building structure to the random earthquake input
and their first- and second-order derivatives with respect to the design variables
(viscous damping coefficients of supplemental dampers) can be computed very
efficiently.
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3. It has been demonstrated numerically that the optimal placement of supplemental
dampers obtained from the present formulation can actually reduce the objective
function effectively compared with uniform damper placement.

4. The effects of surface ground properties on optimal supplemental damper place-
ment in building structures have been examined numerically by considering three
soil conditions. It has been clarified that the relation of the fundamental natural
frequency of the building structure with the predominant frequency of the surface
ground (equivalent stiffness) is a key parameter for characterizing the optimal sup-
plemental damper placement. The story stiffness distributions also influence the
optimal supplemental damper placement.

Appendix 6.A: System Mass, Damping, and Stiffness Matrices
for a Two-story Shear Building Model Supported by Two
Soil Layers

The system mass, damping, and stiffness matrices for a two-story shear building model
supported by two soil layers may be expressed by

M =

⎡
⎢⎢⎢⎢⎢⎢⎣

m2 0
m1

m0 + µ2/3 µ2/6
µ2/6 (µ2 + µ1)/3 µ1/6

µ1/6 (µ1 + µ0)/3 µ0/6
0 µ0/6 µ0/3

⎤
⎥⎥⎥⎥⎥⎥⎦

(A6.1)

C =

⎡
⎢⎢⎢⎢⎢⎢⎣

C2 −C2 0
−C2 C2 + C1 −C1

−C1 C1
0

0
0 cb

⎤
⎥⎥⎥⎥⎥⎥⎦

(A6.2)

iD + K =

⎡
⎢⎢⎢⎢⎢⎢⎣

k2 −k2 0
−k2 k2 + k1 −k1

−k1 k1 + K2 −K2
−K2 K2 + K1 −K1

−K1 K1 + K0 −K0
0 −K0 K0

⎤
⎥⎥⎥⎥⎥⎥⎦

(A6.3)

where µi = ρiAli, Ci = ci + cVi, and Ki = (GiA/li)(1 + i2βi).
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Appendix 6.B: Closed-form Expression of the Inverse of a
Tri-diagonal Matrix

Consider the following symmetric tri-diagonal matrix of M × M :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dM −eM 0

−eM
. . .

. . .

. . .
. . .

. . .

. . .
. . . −e3
−e3 d2 −e2

0 −e2 d1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B6.1)

Let us define the following principal minors of the matrix A:

P0 = 1, P1 = d1, P2 =
∣∣∣∣ d2 −e2
−e2 d1

∣∣∣∣ , . . . , PM = det A (B6.2)

PR0 = 1, PR1 = dM, PR2 =
∣∣∣∣ dM −eM
−eM dM −1

∣∣∣∣ , . . . , PRM = det A (B6.3)

The principal minors satisfy the following recurrence formula:

Pj−1 = dj−1Pj−2 − ej−1
2Pj−3 ( j = 3, . . . , M ) (B6.4)

The jth column of A−1 may be expressed as

1

det A

⎧⎨
⎩

⎛
⎝ M∏

i=M −j+2

ei

⎞
⎠PM −j PR0

⎛
⎝ M −1∏

i=M −j+2

ei

⎞
⎠PM −jPR1 · · ·

⎛
⎝ M −j+2∏

i=M −j+2

ei

⎞
⎠PM −jPR( j−2) PM −jPR( j−1)

⎛
⎝ M −j+1∏

i=M −j+1

ei

⎞
⎠PM −j−1PR( j−1)

· · ·
⎛
⎝M −j+1∏

i=3

ei

⎞
⎠P1PR( j−1)

⎛
⎝M −j+1∏

i=2

ei

⎞
⎠P0PR( j−1)

⎫⎬
⎭

T

(B6.5)
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7
Optimal Sensitivity-based Design
of Dampers in Bending-shear
Buildings on Surface Ground
under Earthquake Loading

7.1 Introduction

It is well recognized that passive control devices are effective tools for suppressing the
structural responses with a small amount of cost (Kobori, 1996; Housner et al., 1997).
Seismic responses of building structures both with and without passive control devices
are influenced greatly by soil–structure interaction. It is desired, therefore, to construct
a theoretical basis for effective damper placement under the soil–structure interaction.
The purpose of this chapter is to develop a systematic method for optimal viscous
damper placement in shear-flexural building models taking into account response
amplification due to the surface ground. It is well known that, in shear-flexural build-
ing models, story-installation-type dampers are effective for shear deformations only
and design implications derived for shear-building models are not necessarily useful
for the shear-flexural building models. The design implications for optimal damper
placement in shear-flexural building models are discussed here. Nonlinear amplifi-
cation of ground motion within the surface ground is described by a deterministic
equivalent linear model, and local interaction with the surrounding soil is incorpo-
rated through horizontal and rotational springs and dashpots. Hysteretic damping of
the surface ground and radiation damping into the semi-infinite ground are included
in the model. While several results have been reported on active control of building
structures including soil–structure interaction effects (Wong and Luco, 1991; Luco,
1998; Alam and Baba, 1993; Smith et al., 1994; Smith and Wu, 1997), there are very

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7

WWW.BEHSAZPOLRAZAN.COM



c07.tex 26/8/2009 16: 19 Page 154

154 Building Control with Passive Dampers

few on optimal damper placement in a building structure, especially a shear-flexural
building model, taking into account interaction with the surface ground.

The original steepest direction search algorithm (Takewaki, 1998a; Takewaki and
Yoshitomi, 1998) explained in Chapters 4 and 5 for fixed-base structures is extended
to an interaction model of a shear-flexural building with the surface ground as in
Chapter 6. While resonant steady-state responses of structures with fixed bases were
treated in Chapters 2–5 (Takewaki, 1998a; Takewaki and Yoshitomi, 1998), earth-
quake responses to random inputs are introduced here as controlled parameters as in
Chapter 6. In comparison with the model in Chapter 6, a decomposed model is treated
here where the amplification of ground motion within the surface ground is expressed
first and that expression is introduced in the seismic response analysis of the super-
building models. Optimal placement and the capacity of the viscous dampers are found
automatically via the steepest direction search algorithm, which is based on successive
satisfaction of the optimality conditions. Several examples for various surface ground
properties are presented to demonstrate the effectiveness and validity of the present
method and to examine the effects of surface ground characteristics on optimal damper
placement.

There are many useful investigations on the optimal damper placement for fixed-
base models (e.g., Zhang and Soong, 1992; Tsuji and Nakamura, 1996). Actually, the
method due to Zhang and Soong (1992) is simple and may be applicable to a broad
range of structural models. However, it does not appear that the previous approaches
are applicable to soil–structure interaction models due to their limitations on modeling
of structures and damping mechanisms or computational efficiency.

7.2 Building and Ground Model

7.2.1 Ground Model

The building structure is described by a shear-flexural building model introduced by
Takewaki (2000) and the surface ground is represented by a shear beam model (see
Figure 7.1). Local interaction of the shear-flexural building model with the surrounding
soil is described by horizontal and rotational springs and dashpots between the two
substructures. Let n and N denote the number of stories of the shear-flexural building
model and the number of surface soil layers respectively. The random acceleration
input is defined at the level just below the bedrock on which the layered surface
ground lies.

Radiation damping into the semi-infinite visco-elastic ground is taken into account
by a viscous boundary (Lysmer and Kuhlemeyer, 1969). Let cb = ρ0VSA = √

ρ0G0A
denote the total damping coefficient of the viscous boundary where ρ0, VS, and G0
are respectively the mass density, the shear wave velocity, and the shear modulus
of the semi-infinite visco-elastic ground and A is the governing area of the surface
ground. Let li, ρi, Gi, and βi respectively denote the layer thickness, the mass density,
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Figure 7.1 Bending-shear building model on surface ground.

the shear modulus, and the hysteretic damping ratio in layer i. A linear displace-
ment function is used in evaluating the stiffness and consistent mass matrices in the
ground FE model. Nonlinear amplification due to the surface ground is taken into
account through an equivalent linear model (Schnabel et al., 1972). The equivalent
linear model used for the surface ground is almost equivalent to the SHAKE pro-
gram. This model is a deterministic equivalent linear model and its accuracy has been
demonstrated by many researchers. To evaluate the mean peak soil response of the
equivalent linear model, the present method uses a peak factor (Der Kiureghian, 1980)
multiplied by the standard deviation of the shear strain. The validity of this treatment
in a linear model has been demonstrated by Der Kiureghian (1980). Once the sur-
face ground is modeled by the equivalent linear model, the whole system consisting
of a structure and the surface ground is a linear system. The random vibration the-
ory for linear models is well established and its accuracy has been checked by many
investigators.

Let kH, kR, cH, and cR denote the horizontal soil spring stiffness, the rotational soil
spring stiffness, the horizontal soil dashpot damping coefficient, and the rotational
soil dashpot damping coefficient respectively. These parameters kH, kR, cH, and cR
are assumed to be prescribed for each surface ground model.
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7.2.2 Building Model

A new shear-flexural building model is introduced. Let mi, Ii, ki, and si denote the
floor mass, the floor mass moment of inertia, the story shear stiffness (stiffness
with respect to shear deformation), and the story bending stiffness (stiffness with
respect to interfloor rotation) in the ith story respectively. The height of the ith story
is denoted by hi. Let cVi denote the damping coefficient of the added damper in
the ith story, which is effective for shear deformation only. The set {cVi} is the
design variable set. A member coordinate system and a system coordinate system
are introduced to construct a system stiffness matrix from member stiffness equations.
Let Fm

i = {Qm
i M m

i Qm
i−1 M m

i−1}T and um
i = {um

i θm
i um

i−1 θm
i−1}T denote the

member-end forces and member-end displacements respectively in the member coor-
dinate system in the ith story. On the other hand, let Fs

i = {Qs
i M s

i Qs
i−1 M s

i−1}T

and us
i = {us

i θs
i us

i−1 θs
i−1}T denote the member-end forces and member-end

displacements respectively in the system coordinate system in the ith story (see
Figure 7.1).

Owing to the member equilibrium, Fs
i can be expressed in terms of Fm

i with the
transformation matrix Ti:

Fs
i = {Qs

i M s
i Qs

i−1 M s
i−1}T

= {Qm
i M m

i −Qm
i −(Qm

i hi + M m
i )}T

= TT
i Fm

i (7.1)

where

Ti =

⎡
⎢⎢⎣

1 0 −1 −hi
0 1 0 −1
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ (7.2)

Owing to the coordinate transformation, um
i can be expressed in terms of us

i :

um
i = {um

i θm
i um

i−1 θm
i−1}T

= {us
i − us

i−1 − hiθ
s
i−1 θs

i − θs
i−1 0 0}T

= Tius
i (7.3)

The element stiffness matrices associated with shear and bending deformations in
the member coordinate system in the ith story may be described by

κS
i = ki

⎡
⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎦ (7.4a)
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κB
i = si

⎡
⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦ (7.4b)

The element stiffness matrices in the system coordinate system in the ith story can
then be derived as

TT
i κS

i Ti = ki

⎡
⎢⎢⎣

1 0 −1 −hi
0 0 0 0

−1 0 1 hi

−hi 0 hi h2
i

⎤
⎥⎥⎦ (7.5a)

TT
i κB

i Ti = si

⎡
⎢⎢⎣

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎦ (7.5b)

Let uS = {uSn θn · · · uS1 θ1 uS0 θ0}T denote a set of displacements in the
system coordinate system. From Equations 7.5a and 7.5b, the system stiffness matrix
of the elastically supported shear-flexural building model with respect to uS can be
expressed as

KS = KSS + KSG (7.6)

where

KSS =
f∑

j=1

kf −j+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · 1 0 −1 −hf −j+1 · · ·
0 0 0 0

−1 0 1 hf −j+1

· · · −hf −j+1 0 hf −j+1 h2
f −j+1 · · ·

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2( j − 1) + 1

2( j − 1) + 1

+
f∑

j=1

sf −j+1

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · 0 0 0 0 · · ·
0 1 0 −1
0 0 0 0

· · · 0 −1 0 1 · · ·
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

2( j − 1) + 1

2( j − 1) + 1 (7.7a)

KSG = diag(0 · · · 0 kH kR) (7.7b)
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The system damping matrix of the model with respect to u̇S can be described as

CS = CSS + CSV + CSG (7.8)

where

CSS = (2hs/ωs)KSS (7.9a)

CSV =
f∑

j=1

cV( f −j+1)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

...
...

· · · 1 0 −1 −hf −j+1 · · ·
0 0 0 0

−1 0 1 hf −j+1

· · · −hf −j+1 0 hf −j+1 h2
f −j+1 · · ·

...
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

2( j − 1) + 1

2( j − 1) + 1 (7.9b)

CSG = diag(0 · · · 0 cH cR) (7.9c)

In Equation 7.9a, ωs is the fundamental natural circular frequency of the building
model and hs is the lowest mode damping ratio. It should be noted that, since each
damper is effective with respect to shear deformation only, the components associated
with shear deformation velocities alone are taken into account in the system damping
matrix.

7.3 Equations of Motion in Ground

Let MG, CG, D, KG, rG = {1 · · · 1}T denote the system mass matrix (consistent
mass matrix), the system viscous damping matrix of the ground (viscous boundary),
the system hysteretic damping matrix of the soil layers, the system stiffness matrix,
and the influence coefficient vector respectively. An example of MG, CG, D, KG is
shown in Appendix 7. A for a surface ground model with two soil layers. Equations
of motion of the surface ground model in the frequency domain may be written as

(−ω2MG + iωCG + iD + KG)UG(ω) = −MGrGÜg(ω) (7.10)

where i is the imaginary unit. UG(ω) and Üg(ω) are the Fourier transforms of the
horizontal displacements of the nodes relative to the base input and the Fourier trans-
form of the horizontal input acceleration üg(t) defined at the level of l0 below the
bedrock. The horizontal input acceleration is assumed to be a stationary Gaussian
random process with zero mean. Equation 7.10 can be reduced to the following form:

AGUG(ω) = BGÜg(ω) (7.11)
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where

AG = (−ω2MG + iωCG + iD + KG) (7.12a)

BG = −MGrG (7.12b)

Then UG(ω) can be expressed as

UG(ω) = A−1
G BGÜg(ω) ≡ HG(ω)Üg(ω) (7.13)

The Fourier transform UG(N + 2)(ω) of the ground surface motion (horizontal displace-
ment) may be obtained from

UG(N+2)(ω) = HG(N+2)(ω)Üg(ω) (7.14)

where HG(N + 2)(ω) is the (N + 2)-th component of HG(ω).

7.4 Equations of Motion in Building and Seismic Response

As stated before, different from the model in Chapter 6, a decomposed model is treated
here where the amplification of ground motion within the surface ground is expressed
first (i.e., Equation 7.14) and that expression is introduced in the seismic response
analysis of the super-building models (i.e., Equation 7.15).

Let MS, CS, KS, rS = {1 0 · · · 1 0}T denote the system mass matrix (lumped
mass matrix), the system viscous damping matrix, the system stiffness matrix of the
elastically supported building model, and the building influence coefficient vector
respectively. An example of MS, KS, and CS is shown in Appendix 7.B for a two-
story model. Equations of motion of the elastically supported building model in the
frequency domain may be written as

(−ω2MS + iωCS + KS)US(ω) = −MSrS{Üg(ω) + ÜG(N+2)(ω)} (7.15)

where ÜG(N + 2)(ω) = −ω2UG(N + 2)(ω) and US(ω) are the Fourier transforms of
the displacements uS(t) consisting of the floor horizontal displacements relative to the
free-field ground surface motion and the angles of floor rotation.

Substitution of Equation 7.14 into Equation 7.15 leads to the following expression
of US(ω):

US(ω) = A−1
S BS{1 − ω2HG(N+2)(ω)}Üg(ω)

= HS(ω){1 − ω2HG(N+2)(ω)}Üg(ω) (7.16)

where

AS = (−ω2MS + iωCS + KS) (7.17a)

BS = −MSrS (7.17b)

HS(ω) = A−1
S BS (7.17c)
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Let us define interstory drifts d(t) = {di(t)} of the shear-flexural building model and
their Fourier transforms ∆(ω) = {�i(ω)}. The Fourier transforms ∆(ω) of interstory
drifts are related to the Fourier transforms US(ω) of nodal horizontal displacements by

∆(ω) = PUS(ω) (7.18)

P is a constant rectangular matrix consisting of 1, −1, 0 and story heights. Substitution
of Equation 7.16 into Equation 7.18 leads to

∆(ω) = PHS(ω){1 − ω2HG(N+2)(ω)}Üg(ω) (7.19)

Equation 7.19 is simply expressed as

∆(ω) = H�(ω)Üg(ω) (7.20)

where H�(ω) = {H�i (ω)} are the transfer functions of interstory drifts and described as

H�(ω) = PHS(ω){1 − ω2HG(N+2)(ω)} (7.21)

Let USn(ω) denote the Fourier transform of the top-floor horizontal displacement
relative to the free-field horizontal ground surface motion. From Equation 7.16, the
Fourier transform Üg(ω) + ÜG(N+2)(ω) + ÜSn(ω) of the top-floor absolute accelera-
tion may be expressed as

Üg(ω) + ÜG(N+2)(ω) + ÜSn(ω)

= [1 − ω2HG(N+2)(ω) − ω2HS(top)(ω){1 − ω2HG(N+2)(ω)}]Üg(ω)

= {1 − ω2HS(top)(ω)}{1 − ω2HG(N+2)(ω)}Üg(ω)

≡ HSA(ω)Üg(ω) (7.22)

where HS(top)(ω) is the component in HS(ω) corresponding to the top-floor horizontal
displacement and

HSA(ω) = {1 − ω2HS(top)(ω)}{1 − ω2HG(N+2)(ω)} (7.23)

Let Sg(ω) denote the PSD function of the input üg(t). Using the random vibration
theory, the mean-square response of the ith interstory drift can be computed from

σ2
�i

=
∫ ∞

−∞
|H�i (ω)|2Sg(ω) dω =

∫ ∞

−∞
H�i (ω)H∗

�i
(ω)Sg(ω) dω (7.24)

where ( )∗ denotes the complex conjugate. Similarly, the mean-square response of the
ith-floor absolute acceleration may be evaluated by

σ2
A =

∫ ∞

−∞
|HSA(ω)|2Sg(ω) dω =

∫ ∞

−∞
HSA(ω)H∗

SA(ω)Sg(ω) dω (7.25)

where HSA(ω) is defined in Equation 7.23.
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7.5 Problem of Optimal Damper Placement and Optimality Criteria

The problem of optimal damper placement for soil–structure interaction (shear-flexural
model) (PODP-SSI-SF) may be described as follows.

Problem 7.1 PODP-SSI-SF Given the ground properties, the building properties
(story stiffnesses, masses, and structural damping), find the damping coefficients
cV = {cVi} of added viscous dampers to minimize the sum of the mean squares of the
interstory drifts

f =
n∑

i=1

σ2
�i

(7.26)

subject to the constraint on total damper capacity
n∑

i=1

cVi = W (7.27)

and to the constraints on each damper capacity

0 ≤ cVi ≤ cVi (i = 1, · · · , n) (7.28)

where W is the specified total damper capacity and cVi is the upper bound of the
damping coefficient of damper i.

7.5.1 Optimality Conditions

The generalized Lagrangian for Problem 7.1 may be defined as:

L(cV, λ, µ, ν) =
n∑

i=1

σ2
�i

+ λ

(
n∑

i=1

cVi − W

)
+

n∑
i=1

µi(0 − cVi) +
n∑

i=1

νi(cVi − cVi)

(7.29)

where µ = {µi} and ν = {νi}. The principal optimality criteria for Problem 7.1 without
active upper and lower bound constraints on damping coefficients may be derived from
stationarity conditions of the generalized Lagrangian L(µ = 0, ν = 0) with respect to
cV and λ:

f, j + λ = 0 or 0 < cVj < cVj ( j = 1, · · · , n) (7.30)

n∑
i=1

cVi − W = 0 (7.31)

Here, and in the following, (·), j denotes the partial differentiation with respect to cVj.
When the lower or upper bound of the constraint on damping coefficients is active,
the optimality condition should be modified to the following forms:

f, j + λ ≥ 0 for cVj = 0 (7.32)

f, j + λ ≤ 0 for cVj = cVj (7.33)
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7.6 Solution Algorithm

In the proposed procedure the model without added dampers, namely cVj = 0
( j = 1, · · · , n), is adopted as the initial model. The damping coefficients are added
via an original steepest direction search algorithm. Let �cVi and �W denote the
increment of the damping coefficient of the ith added damper (damper in the ith story)
and the increment of the sum of the damper damping coefficients respectively. Given
�W , the problem is to determine the effective position and the amount of the incre-
ments of the damper damping coefficients. The first- and second-order sensitivities of
the objective function with respect to a design variable are needed in this algorithm.
Those quantities are derived by differentiating Equation 7.24 by the design variables.

The first derivatives are computed by

(σ2
�i

), j =
∫ ∞

−∞
{H�i (ω)}, jH

∗
�i

(ω)Sg(ω) dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jSg(ω) dω

(7.34)
The second derivatives are calculated by

(σ2
�i

), jl =
∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω) dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω) dω

+
∫ ∞

−∞
{H�i (ω)}, jlH

∗
�i

(ω)Sg(ω) dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jlSg(ω) dω

(7.35)

where

{H�i (ω)}, j = Pi(A
−1
S ), jBS{1 − ω2HG(N+2)(ω)} (7.36)

{H�i (ω)}, jl = Pi(A
−1
S ), jlBS{1 − ω2HG(N+2)(ω)} (7.37)

{H∗
�i

(ω)}, j = Pi(A
−1
S )∗, jBS{1 − ω2H∗

G(N+2)(ω)} (7.38)

{H∗
�i

(ω)}, jl = Pi(A
−1
S )∗, jlBS{1 − ω2H∗

G(N+2)(ω)} (7.39)

In Equations 7.36–7.39, Pi is the ith row vector in the matrix P.
The first derivative of A−1

S is computed by (A−1
S ), j = −A−1

S AS, jA
−1
S . Because

AS, jl = 0, the second derivative of A−1
S is obtained from

(A−1
S ), jl = A−1

S (AS,lA
−1
S AS, j + AS, jA

−1
S AS,l)A

−1
S (7.40)

The first-order derivative of (A−1)∗ is computed as {(A−1
S ), j}∗ and the second-order

derivative of (A−1)∗ is found as (A−1)∗, jl = {(A−1), jl}∗.

WWW.BEHSAZPOLRAZAN.COM



c07.tex 26/8/2009 16: 19 Page 163

Optimal Sensitivity-based Design of Dampers in Bending-shear Buildings 163

The solution algorithm in the case of cVj < cVj for all j may be described as
follows:

Step 0 Initialize all the supplemental dampers as cVj = 0 (j = 1, · · · , n). Assume �W .
Step 1 Compute the first-order sensitivity f,i of the objective function by Equa-

tion 7.34.
Step 2 Find the index p such that

−f,p = max
i

(−f,i) (7.41)

Step 3 Update the objective function f by the first-order approximation f + f,p�cVp,
where �cVp = �W .

Step 4 Update the first-order sensitivity f,i of the objective function by the first-order
approximation f,i + f,ip�cVp using Equation 7.35.

Step 5 If, in Step 4, there exists a damper of an index j such that the condition

−f,p = max
j, j �=p

(−f, j) (7.42)

is satisfied, then compute the corresponding increment �c̃Vp of the damping
coefficient and update the first-order sensitivity f,i of the objective function by
the first-order approximation f,i + f,ip�c̃Vp using Equation 7.35.

Step 6 Repeat from Step 2 to Step 5 until the constraint in Equation 7.27 (i.e.,∑n
i=1 cVi = W ) is satisfied.

In Step 2 and Step 3, the direction which reduces the objective function most effec-
tively under the condition

∑n
i=1�cVi = �W is found and the design is updated in that

direction. It is appropriate, therefore, to call the present algorithm “the steepest direc-
tion search algorithm,’’ as in Chapters 4–6 (Takewaki, 1998a). A simple numerical
example of damping sensitivity of the performance (sum of transfer function ampli-
tudes of interstory drifts introduced in Chapter 2) for a two-story shear building model
is presented in Appendix 2.A in Chapter 2. This sensitivity example just corresponds
to the gradient direction of the performance function at the origin in the schematic
diagram shown in Figure 7.2. This algorithm is similar to the well-known steepest
descent method in mathematical programming (see Figure 7.2). However, while the
conventional steepest descent method uses the gradient vector itself of the objective
function as the direction and does not utilize optimality criteria, the present algorithm
takes full advantage of the newly derived optimality criteria in Equations 7.30, 7.32,
and 7.33 and does not adopt the gradient vector as the direction. In other words,
the steepest direction search guarantees the successive satisfaction of the optimality
criteria. For example, if �cVp is added to the pth added damper in which Equation
7.41 is satisfied, then its damper (cp > 0) satisfies the optimality condition in Equa-
tion 7.30 and the other dampers (cj = 0, j �= p) satisfy the optimality condition in
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Figure 7.2 Comparison of the proposed steepest direction search method with the conventional steepest
descent method (cV is denoted here by c for simplicity of expression).

Equation 7.32. It should be noted that a series of subproblems is introduced here tenta-
tively in which the damper level W is increased gradually by �W from zero through the
specified value.

If multiple indices p1, . . . , pm exist in Step 2, then f and f, j have to be updated by

f → f +
pm∑

i=p1

f,i�cVi (7.43a)

f, j → f, j +
pm∑

i=p1

f, ji�cVi (7.43b)
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Furthermore, the index p in Step 5 has to be replaced by the indices p1, . . . , pm. The
ratios among the magnitudes �cVi must be determined so that the following relations
are satisfied:

f,p1 +
pm∑

i=p1

f,p1i�cVi = · · · = f,pm +
pm∑

i=p1

f,pmi�cVi (7.44)

Equation 7.44 requires that the optimality condition in Equation 7.30 continues to be
satisfied in the dampers with the indices p1, · · · , pm.

In the case where the damping coefficients of some added dampers attain their upper
bounds, such constraints must be incorporated in the aforementioned algorithm. In that
case, the increment �cVp is added subsequently to the damper in which −f,p attains
the maximum among all the dampers, except for those attaining the upper bound.

7.7 Numerical Examples

Consider a band-limited white noise as the base input motion. The PSD function of
the input motion üg(t) is given by

Sg(ω) = 0.01 m2/s3 (−2π × 20 ≤ ω ≤ −2π × 0.2, 2π × 0.2 ≤ ω ≤ 2π × 20)

Sg(ω) = 0 otherwise

Three different soil conditions are considered: very stiff ground, stiff ground,
and soft ground. Every ground consists of three soil layers of identical thickness
li = 6 m and these layers lie on a semi-infinite visco-elastic ground. The shear mod-
ulus, damping ratio, and mass density of the semi-infinite visco-elastic ground are
8.0 × 108 N/m2, 0.01, and 2.0 × 103 kg/m3 respectively. The input motion is defined
as l0 = 6 m below the boundary (bedrock) between the three soil layers and the semi-
infinite visco-elastic ground. The mass densities of the three soil layers are identical
over the very stiff, stiff, and soft grounds and have a value of 1.8 × 103 kg/m3. The
shear moduli of the soil layers are identical within the three layers and have values
of 1.6 × 108 N/m2 for the very stiff ground, 0.8 × 108 N/m2 for the stiff ground, and
0.2 × 108 N/m2 for the soft ground. The dependence of shear moduli and damping
ratios on the strain level is taken into account via an equivalent linear model. Their
relations are shown in Figure 7.3 for clay, sand, and gravel. It is assumed that layer 1
consists of gravel, layer 2 of clay, and layer 3 of sand. The effect of mean effective
pressure is taken into account. Linear interpolation has been used in evaluating the
intermediate values. The effective strain level (Schnabel et al., 1972) has been eval-
uated from 2.5σ�i × 0.65, where the coefficient 2.5 indicates the peak factor (Der
Kiureghian, 1980) and 0.65 was introduced by Schnabel et al. (1972). The conver-
gence of the stiffness reduction ratios of the shear moduli and damping ratios has been
confirmed in a few cycles.
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Figure 7.3 Strain-dependent stiffness reduction ratio and damping ratio of clay, sand, and gravel.

The interaction spring stiffnesses and the damping coefficients have been evaluated
by the formula in Veletsos and Verbic (1974):

kH + iωcH = 8Gr

2 − ν
[1 + i(b1a0)]

kR(ω) + iωcR(ω) = 8Gr3

3(1 − ν)

[
1 − b∗

1
(b2a0)2

1 + ib2a0
− b3a2

0

]

where r is the equivalent radius of the base mat, G is the shear modulus, a0 = ωr/VS,
and b1 = 0.65, b∗

1 = 0.5, b2 = 0.8, and b3 = 0 for Poisson’s ratio ν = 1/3. For simplic-
ity, kR = kR(ω0), cR = cR(ω0), and ω0 = 2π/0.4 have been adopted. The equivalent
shear modulus of the top soil layer has been adopted as the shear modulus in Velet-
sos and Verbic (1974) and Poisson’s ratio ν = 1/3; the equivalent radius of the base
mat is 3.57 m. The fundamental natural periods of the surface grounds at the small
strain level are 0.239 s, 0.338 s, and 0.675 s for the very stiff ground, stiff ground,
and soft ground respectively, and those computed from the equivalent stiffnesses are
0.322 s, 0.617 s, and 1.48 s for the very stiff ground, stiff ground, and soft grounds
respectively.

Consider a three-story shear-building model. The floor masses are assumed to
be m0 = 96 × 103 kg and mi = 32 × 103 kg (i = 1, . . . , 3) and the moments of iner-
tia of the floor masses are I0 = 392 × 103 kg m2 and Ii = 131 × 103 kg m2. The story
shear stiffnesses are ki = 3.76 × 107 N/m(i = 1, . . . , 3) and the story bending stiff-
nesses are si = 8.50 × 109 N m/rad(i = 1, . . . , 3). The fundamental natural periods
of the elastically supported shear-flexural building model are 0.439 s, 0.467 s, and
0.639 s for the very stiff ground, stiff ground, and soft ground respectively. The struc-
tural viscous damping matrix of the shear-flexural building model has been given
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so that it is proportional to the stiffness matrix, and the lowest mode damping ratio
is equal to 0.02. The increment �W of the sum of the added viscous dampers is
9.375 kN s/m.

Figure 7.4(a) shows the variation of damping coefficients in optimal damper place-
ment for the very stiff ground with respect to the step number (total damper capacity
level). It is observed that the damping coefficient is first added in the first story and
then in the second story. Figures 7.4(b) and (c) illustrate the variations of damping
coefficients in optimal damper placement for the stiff and soft grounds respectively. It
can be understood from Figures 7.4(a)–(c) that optimal damper placement is strongly
dependent on the surface ground properties. Resonance of the fundamental natural
frequency of the building structure with the predominant frequency of the surface
ground could sometimes cause amplified responses (Takewaki, 1998b). It seems that
the relation of the fundamental natural frequency of the building structure with the pre-
dominant frequency of the surface ground (equivalent stiffness) can be a key parameter
for characterizing the optimal damper placement.

Figure 7.5 shows the variations of the objective function, Equation 7.26, with respect
to the step number (total damper capacity level) for the model on the very stiff, stiff, and
soft grounds. It is observed that added viscous dampers are effective for stiffer grounds.
Figure 7.6 illustrates the variations of the mean square, defined by Equation 7.25, of
the top-floor absolute acceleration and the first-story interstory drift with respect to the
step number for the model on the very stiff, stiff, and soft grounds. It is understood that
added viscous dampers are also effective in the reduction of acceleration. Figure 7.7
shows the multicriteria plot obtained from Figures 7.5 and 7.6 with respect to the
sum of mean-square interstory drifts and the mean-square top-floor acceleration. It is
observed that the effectiveness of supplemental dampers is effective in a stiffer ground.
Furthermore, the effectiveness of the optimal damper placement in the reduction of
interstory drift (first story) is shown in Figure 7.8.

Figure 7.9 shows the lowest mode damping ratio with respect to total damper quan-
tity for (a) very stiff ground, (b) stiff ground, and (c) soft ground. It is observed
that a larger lowest mode damping ratio can be attained in the very stiff ground and
supplemental viscous dampers are effective for stiffer ground.

Figure 7.10 illustrates the lowest mode shear deformation of the model on very
stiff, stiff, and soft grounds. As the ground becomes stiffer, the ratio of shear
deformation gets larger. Since the shear deformation is effective for supplemen-
tal dampers, this also supports the effectiveness of supplemental dampers in stiffer
ground.

Figure 7.11 shows the optimal damper distribution of the three-story model
in the different combination of the structure’s fundamental natural period TS1 and
the predominant period TG1 of ground for (a) TS1 = TG1 and (b) TS1 > TG1. It is
observed that the optimal damper distribution depends largely on the relationship
of the structure’s fundamental natural period TS1 and the predominant period TG1
of ground.
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Figure 7.4 Optimal damper distribution of three-story model with respect to total damper quantity:
(a) very stiff ground; (b) stiff ground; (c) soft ground.
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Figure 7.5 Objective function of three-story model with respect to total damper quantity: (a) very stiff
ground; (b) stiff ground; (c) soft ground.
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Figure 7.6 Mean-square acceleration at top floor of three-story model with respect to total damper
quantity: (a) very stiff ground; (b) stiff ground; (c) soft ground.
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Figure 7.7 Multicriteria plot with respect to sum of mean-square interstory drifts and mean-square
top-floor acceleration.

7.8 Summary

The results are summarized as follows.

1. Viscous damping of supplemental dampers in a shear-flexural building model,
hysteretic damping in a surface ground, and a viscous damping at the ground
viscous boundary can be taken into account exactly in the present formulation
based on a steepest direction search algorithm. The shear-flexural building model
can express the role of story-installation-type dampers in a deformed frame more
exactly than the shear building model.

2. The effects of the surface ground properties on optimal damper placement in
shear-flexural building models have been examined. It has been clarified that the
optimal damper placement depends strongly on the surface ground characteristics,
and the relation of the fundamental natural frequency of the elastically supported
shear-flexural building model with the predominant frequency of the surface ground
can be a key parameter for characterizing the optimal damper placement.

3. Supplemental viscous dampers are effective for stiffer ground. This may be because
the effectiveness of dampers is related to the existence of stiff supports. Fur-
thermore, supplemental viscous dampers are also effective in the reduction of
acceleration.
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Figure 7.8 Mean-square interstory drift at first story of three-story model with respect to total damper
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Figure 7.9 Lowest mode damping ratio with respect to total damper quantity: (a) very stiff ground;
(b) stiff ground; (c) soft ground.
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Appendix 7.A: System Mass, Damping, and Stiffness Matrices for a
Surface Ground Model with Two Soil Layers

The system mass, damping, and stiffness matrices for a surface ground model with
two soil layers may be defined by

MG =

⎡
⎢⎢⎣

µ0/3 µ0/6 0
µ0/6 (µ0 + µ1)/3 µ1/6

µ1/6 (µ1 + µ2)/3 µ2/6
0 µ2/6 µ2/3

⎤
⎥⎥⎦ (A7.1)

CG = diag(cb 0 0 0) (A7.2)

iD + KG =

⎡
⎢⎢⎣

K0 −K0 0
−K0 K0 + K1 −K1

−K1 K1 + K2 −K2
0 −K2 K2

⎤
⎥⎥⎦ (A7.3)

where µi = ρiAli and Ki = (GiA/li)(1 + i2βi).

Appendix 7.B: System Mass, Damping, and Stiffness Matrices for a
Two-Story Shear-Flexural Building Model

The system mass, damping, and stiffness matrices for a two-story shear-flexural
building model may be defined by

MS = diag(m2 I2 m1 I1 m0 I0) (B7.1)

KS = KSS + KSG (B7.2)

KSS = k2

⎡
⎢⎢⎢⎢⎣

1 0 −1 −h2
0 0 0 0 0

−1 0 1 h2

−h2 0 h2 h2
2

0 0

⎤
⎥⎥⎥⎥⎦ + k1

⎡
⎢⎢⎢⎢⎣

0 0
1 0 −1 −h1
0 0 0 0

0 −1 0 1 h1

−h1 0 h1 h2
1

⎤
⎥⎥⎥⎥⎦

+ s2

⎡
⎢⎢⎢⎢⎣

0 0 0 0
0 1 0 −1 0
0 0 0 0
0 −1 0 1

0 0

⎤
⎥⎥⎥⎥⎦ + s1

⎡
⎢⎢⎢⎢⎣

0 0
0 0 0 0
0 1 0 −1

0 0 0 0 0
0 −1 0 1

⎤
⎥⎥⎥⎥⎦ (B7.3)
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KSG = diag(0 · · · · · · 0 kH kR) (B7.4)

CS = CSS + CSV + CSG (B7.5)

CSS = (2hs/ωs)KSS (B7.6)

CSV = cV2

⎡
⎢⎢⎢⎢⎣

1 0 −1 −h2
0 0 0 0 0

−1 0 1 h2

−h2 0 h2 h2
2

0 0

⎤
⎥⎥⎥⎥⎦ + cV1

⎡
⎢⎢⎢⎢⎣

0 0
1 0 −1 −h1
0 0 0 0

0 −1 0 1 h1

−h1 0 h1 h2
1

⎤
⎥⎥⎥⎥⎦ (B7.7)

CSG = diag(0 · · · · · · 0 cH cR) (B7.8)
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8
Optimal Sensitivity-based Design
of Dampers in Shear Buildings with
TMDs on Surface Ground under
Earthquake Loading

8.1 Introduction

As explained in Chapter 6, the soil or ground under a structure greatly influences
the structural vibration properties. It is important, therefore, to develop a seismic-
resistant design method for such an interaction model. Passive control devices have
recently been recognized as effective tools for suppressing the structural responses
and upgrading the structural performances. In building structures with passive energy
dissipation systems, the property mentioned above is also true and the theory for
passive dampers should be developed for those interaction models.

The purpose of this chapter is to explain a systematic method for optimal viscous
damper placement in building structures with a TMD. Refer to Appendix 8.A for the
fundamentals of TMD systems. Amplification of ground motion within the surface
ground is also taken into account. It is frequently pointed out that, while a TMD system
is effective in the response reduction of the tuned mode (usually a fundamental mode),
supplemental viscous dampers installed between consecutive floors are effective for
all the natural modes (Housner et al., 1997). For this reason, the combined passive
damper system of the TMD and the viscous dampers effective for story deformation
is discussed in this chapter.

Nonlinear amplification of ground motion within the surface ground will be
described by an equivalent linear model, and local interaction with the surrounding
soil will be incorporated through a set of horizontal spring and dashpot. Both hysteretic
damping of the surface ground and radiation damping into the semi-infinite ground are

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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included in the model. While several useful investigations have been reported on active
control of building structures including soil–structure interaction effects (Wong and
Luco, 1991; Luco, 1998; Alam and Baba, 1993; Smith et al., 1994; Smith and Wu,
1997), it should be remarked that there are a very few on optimal damper placement
in a building structure taking into account interaction with the surface ground. In
particular, simultaneous use of a TMD at the roof and supplemental viscous dampers
between consecutive floors is of great interest from the viewpoints of both dampers’
effective collaboration in the high-performance response reduction.

The unique steepest direction search algorithm (Takewaki, 1998a; Takewaki and
Yoshitomi, 1998) explained in Chapters 4 and 5 for fixed-base structures has been
extended to a building–ground system in Chapters 6 and 7. This algorithm is utilized
and extended to a TMD structure–surface ground interaction model in this chapter.
While resonant steady-state responses of structures with fixed bases were treated in
Chapters 4 and 5 (Takewaki, 1998a; Takewaki and Yoshitomi, 1998), earthquake
responses to random inputs are introduced here as controlled parameters, as in Chap-
ters 6 and 7. It is shown that closed-form expressions of the inverse of the tri-diagonal
coefficient matrix in the governing equations (equations of motion) lead to drastic
reduction of computational time of mean-square responses of the TMD building struc-
ture to the random earthquake input and their derivatives with respect to the design
variables (damping coefficients of supplemental viscous dampers). The optimal place-
ment and the quantity of supplemental viscous dampers are found simultaneously and
automatically via the explained steepest direction search algorithm, which requires
successive approximate satisfaction of the optimality conditions. Several examples
with and without a TMD for various surface ground properties are presented to demon-
strate the effectiveness and validity of the present method and to examine the effects
of surface ground characteristics on optimal damper placement.

As for optimal damper placement for fixed-base models, several useful algorithms
have been developed (e.g., Zhang and Soong, 1992; Tsuji and Nakamura, 1996).
Actually, the method due to Zhang and Soong (1992) is simple and may be applicable
to a broad range of structural models. However, it does not appear that the previous
approaches are applicable to the soil–structure interaction models with a TMD, due to
their limitations on modeling of structures and damping mechanisms or computational
efficiency.

8.2 Building with a TMD and Ground Model

In this chapter, a building structure with a TMD system at the roof is assumed to
rest on a surface ground. For simple and clear presentation, the building structure
is described by a shear-building model and the surface ground is represented by a
shear-beam model (see Figure 8.1). Local interaction of the building structure with
the surrounding soil is represented by a horizontal spring and a dashpot between these
two substructures (building and surface ground), as in Chapter 7. Let n and N denote
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Figure 8.1 Building structure with a TMD at the roof supported by a surface ground. (Originally
published in I. Takewaki, “Soil–structure random response reduction via TMD-MD simultaneous use,’’
Computer Methods in Applied Mechanics and Engineering, 190, no. 5–7, 677–690, 2000, Elsevier B.V.).

the number of stories of the shear building model and the number of surface soil
layers respectively. The random horizontal acceleration input is defined at the level
just below the bedrock on which the layered surface ground lies.

Radiation damping from the surface ground into the semi-infinite visco-elastic
ground is taken into account by using a viscous boundary (Lysmer and Kuhle-
meyer, 1969) at the engineering bedrock surface. This treatment is exact in a
one-dimensional model because the incident angle of the wave to the surface is π/2. Let
cb = ρ0VSA = √

ρ0G0A denote the total damping coefficient of the viscous boundary,
where ρ0, VS, and G0 respectively denote the mass density, the shear wave velocity,
and the shear modulus of the semi-infinite visco-elastic ground, and A is the horizontal
governing area of the surface ground. It has been confirmed that a single-input model
at the engineering bedrock surface can simulate the seismic response of a multi-input
model within a reasonable accuracy by adopting a fairly large area A (Takewaki and
Nakamura, 1995). In this multi-input model, the input is from the engineering bedrock
surface and various points in the surface ground. This fact of simulation accuracy will
also be demonstrated later in Section 8.7.
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Let li, ρi, Gi, and βi respectively denote the thickness, the mass density, the shear
modulus, and the hysteretic damping ratio in layer i. As in Chapters 6 and 7, a linear
displacement function is used in evaluating the stiffness and consistent mass matrices
in the ground FE model. Nonlinear amplification of ground motion in the surface
ground is taken into account by using an equivalent linear model (Schnabel et al.,
1972). The equivalent linear model introduced for the surface ground is almost equiv-
alent to the well-known SHAKE program (one-dimensional wave propagation theory
including an equivalent linear model). This model is a deterministic equivalent linear
model and its accuracy has been demonstrated by many researchers (see Takewaki
et al., 2002a, 2002b). In order to evaluate the mean peak soil response of the equiv-
alent linear model, the present method uses a peak factor (Der Kiureghian, 1980)
multiplied by the standard deviation of the shear strain, as in Chapters 6 and 7. The
validity of this treatment in a linear model has been demonstrated by Der Kiureghian
(1980). Once the surface ground is represented by the equivalent linear model, the
whole system consisting of a structure and the surface ground is a linear system. The
random vibration theory for such linear models is well established and its accuracy
has been checked and investigated by many investigators.

As for the building structure, various parameters are prescribed. Let mi and ki denote
the floor mass and the story stiffness in the ith story respectively. Furthermore, let ci
and cVi denote the structural damping coefficient in the ith story and the damping
coefficient of the supplemental damper in the ith story respectively. The set {cVi} of
damping coefficients of supplemental dampers is the design variable set in this chapter.
As for the surrounding soil model and the TMD system, let kH and cH denote the soil
interaction spring stiffness and the damping coefficient respectively, and let kT, cT,
and mT denote the TMD spring stiffness, damping coefficient, and mass respectively.
These parameters kH, cH, kT, cT, and mT are assumed to be prescribed in each surface
ground model.

8.3 Equations of Motion and Seismic Response

Different from the model (decomposed model) in Chapter 7, a whole model is
treated here where the super-building model and the surface ground model are dealt
with simultaneously as one model. The comparison of the whole model with the
decomposed model will be shown in Section 8.7.

Assume that this shear-building–surface-ground model with a TMD system at
the roof is subjected to a random horizontal acceleration üg(t) at a level l0 below the
bedrock. Let M, C, D, K, and r denote the system mass matrix (combination of
a lumped mass matrix and a consistent mass matrix), the system viscous damping
matrix of the TMD building on the surrounding soil and the viscous boundary, the
system hysteretic damping matrix of the soil layers, the system stiffness matrix (build-
ing, TMD system, surrounding soil, soil layer), and the influence coefficient vector
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respectively. An example of M, C, D, and K is shown in Appendix 8.B for a two-story
TMD shear-building model supported by two soil layers.

The equations of motion of the TMD building–ground interaction system in the
frequency domain may be expressed by

(−ω2M + iωC + iD + K)U(ω) = −MrÜg(ω) (8.1)

where i is the imaginary unit. As stated in Chapters 6 and 7, it should be noted that,
because the present model includes a hysteretic damping, the equations of motion in
the time domain for the random horizontal acceleration üg(t) cannot be expressed and
only the frequency-domain ones can be derived. In Equation 8.1, U(ω) and Üg(ω) are
the Fourier transforms of the horizontal displacements of the nodes relative to the base
input üg(t) and the Fourier transform of the horizontal input acceleration üg(t) defined
at the level l0 below the bedrock. The horizontal input acceleration üg(t) is assumed
to be a stationary Gaussian random process with zero mean. Equation 8.1 can then be
reduced to the following compact form:

AU(ω) = BÜg(ω) (8.2)

where A and B are the coefficient matrix and the vector expressed by

A = (−ω2M + iωC + iD + K) (8.3a)

B = −Mr (8.3a)

A is a tri-diagonal matrix, as seen in Appendix 8.B for a two-story shear-building
model supported by two soil layers. This property will be fully utilized in the efficient
computation of its inverse.

Because the interstory drift can be a good indicator of the overall stiffness of the
building, its control plays an important role in the stiffness design of the building. For
this reason the interstory drift is treated here as the controlled parameter.

Let us define the time-domain interstory drifts d(t) = {di(t)} of the shear-building
model and consider their Fourier transforms ∆(ω) = {�i(ω)}. ∆(ω) are related to U(ω)
by the use of the aforementioned transformation matrix T:

∆(ω) = TU(ω) (8.4)

The transformation matrix T is a rectangular matrix and consists of 1, −1, and 0
because the total number of degrees of freedom of the model and the number of
stories in the building are different. Substitution of Equation 8.2 into Equation 8.4
provides

∆(ω) = TA−1BÜg(ω) (8.5)
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Equation 8.5 is expressed compactly as

∆(ω) = H�(ω)Üg(ω) (8.6)

where H�(ω) = {H�i (ω)} are the transfer functions of the interstory drifts with respect
to the input acceleration Üg(ω) and are described as

H�(ω) = TA−1B (8.7)

From Equation 8.2, the Fourier transforms Ü(ω) of the floor accelerations ü(t) relative
to the input acceleration üg(t) are expressed in terms of Üg(ω) by

Ü(ω) = −ω2U(ω) = −ω2A−1BÜg(ω) (8.8)

The Fourier transforms ÜA(ω) of the absolute floor accelerations are then expre-
ssed by

ÜA(ω) = Ü(ω) + 1Üg(ω) = (1 − ω2A−1B)Üg(ω) ≡ HA(ω)Üg(ω) (8.9)

where 1 = {1 · · · 1}T and HA(ω) is the acceleration transfer function with respect to
the input acceleration Üg(ω).

Note again that the coefficient matrix A is a tri-diagonal matrix. Therefore, its
inverse can be obtained in closed form (see Appendix 8.C). This property enables one
to compute the deformation and acceleration transfer functions H�(ω) and HA(ω) very
efficiently. In particular, as the number of soil layers and building stories increases,
this advantage may be remarkable.

The statistical characteristic of stationary random signals can be described by the
PSD function. Let Sg(ω) denote the PSD function of the horizontal base input üg(t).
Using the random vibration theory, the mean-square response of the ith interstory drift
can be computed by

σ2
�i

=
∫ ∞

−∞
|H�i (ω)|2Sg(ω)dω =

∫ ∞

−∞
H�i (ω)H∗

�i
(ω)Sg(ω)dω (8.10)

where ( )∗ denotes the complex conjugate. Similarly, the mean-square response of the
ith-floor absolute acceleration may be evaluated by

σ2
Ai

=
∫ ∞

−∞
|HAi (ω)|2Sg(ω)dω =

∫ ∞

−∞
HAi (ω)H∗

Ai
(ω)Sg(ω)dω (8.11)

where HAi (ω) is an ith component of the transfer function vector HA(ω) defined in
Equation 8.9.
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8.4 Problem of Optimal Damper Placement and Optimality Criteria

In this section, the problem of optimal damper placement in the super-building is
formulated. The problem of optimal damper placement for soil–structure interaction
models with a TMD (PODP-SSI-TMD) system may be described as:

Problem 8.1 PODP-SSI-TMD Given the properties of the surface ground, the build-
ing (story stiffnesses, masses, and structural damping) and the TMD system, find the
damping coefficients cV = {cVi} of supplemental viscous dampers in the building to
minimize the sum of the mean squares of the interstory drifts

f =
n∑

i=1

σ2
�i

(8.12)

subject to the constraint on total capacity of supplemental dampers

n∑
i=1

cVi = W (8.13)

and to the constraints on each supplemental damper capacity

0 ≤ cVi ≤ cVi (i = 1, · · · , n) (8.14)

where W is the specified total supplemental damper capacity and cVi is the upper
bound of the damping coefficient of the supplemental damper i.

8.4.1 Optimality Conditions

It is straightforward to use the Lagrange multiplier method for solving constrained
optimization problems. The constrained optimization problem stated above can be
formulated appropriately by the generalized Lagrangian formulation. The generalized
Lagrangian for Problem 8.1 may be defined as

L(cV, λ, µ, ν) =
n∑

i=1

σ2
�i

+ λ

(
n∑

i=1

cVi − W

)
+

n∑
i=1

µi(0 − cVi) +
n∑

i=1

νi(cVi − cVi)

(8.15)
In Equation 8.15, µ = {µi}, ν = {νi}, and λ are the Lagrange multipliers. The principal
(or major) optimality criteria for Problem 8.1 without active upper and lower bound
constraints on damping coefficients of supplemental dampers may be derived from
the stationarity conditions of the generalized Lagrangian L (µ = 0, ν = 0) with respect
to each components of cV and λ:

f, j + λ = 0 for 0 < cVj < cVj ( j = 1, · · · , n) (8.16)
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n∑
i=1

cVi − W = 0 (8.17)

Equation 8.16 has been derived by the differentiation of Equation 8.15 with respect to
cVj and Equation 8.17 has been obtained by the differentiation of Equation 8.15 with
respect to λ.

Here, and in the following, the mathematical symbol (·), j indicates the partial dif-
ferentiation with respect to the damping coefficient cVj of the supplemental damper in
the jth story. When the lower or upper bound of the constraint on damping coefficients
of supplemental dampers is active, the optimality condition should be modified to the
following two forms:

f, j + λ ≥ 0 for cVj = 0 (8.18)

f, j + λ ≤ 0 for cVj = cVj (8.19)

8.5 Solution Algorithm

A solution algorithm for the problem stated above is explained in this section. In the
solution algorithm, the model without supplemental viscous dampers, namely cVj = 0
( j = 1, · · · , n), is used as the initial model. This treatment is well suited to the situation
where a structural designer is starting the allocation and placement of added supple-
mental viscous dampers at appropriate positions. The damping coefficients of supple-
mental dampers are increased gradually based on the optimality criteria stated above.
This algorithm is called a steepest direction search algorithm, as in Chapters 4–7.

Let �cVi and �W denote the increment of the damping coefficient of the ith
added supplemental damper (damper in the ith story) and the increment of the sum of
the damping coefficients of added supplemental dampers respectively. Once �W is
given, the problem is reduced to determining simultaneously the effective position and
amount of the increments of the damping coefficients of added supplemental dampers.
In order to develop this algorithm, the first- and second-order sensitivities of the objec-
tive function with respect to the design variable cVj are needed. Those quantities are
derived by differentiating successively Equation 8.10 by the design variables.

First-order derivative of mean-square interstory drift:

(σ2
�i

), j =
∫ ∞

−∞
{H�i (ω)}, jH

∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jSg(ω)dω

(8.20)
Second-order derivative of mean-square interstory drift:

(σ2
�i

), jl =
∫ ∞

−∞
{H�i (ω)}, j{H∗

�i
(ω)},lSg(ω)dω +

∫ ∞

−∞
{H�i (ω)},l{H∗

�i
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{H�i (ω)}, jlH

∗
�i

(ω)Sg(ω)dω +
∫ ∞

−∞
H�i (ω){H∗

�i
(ω)}, jlSg(ω)dω.

(8.21)
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In Equations 8.20 and 8.21, the first- and second-order derivatives of the deformation
transfer functions may be expressed as

{H�i (ω)}, j = TiA
−1
, j B (8.22)

{H�i (ω)}, jl = TiA
−1
, jl B (8.23)

{H∗
�i

(ω)}, j = TiA
−1∗
, j B (8.24)

{H∗
�i

(ω)}, jl = TiA
−1∗
, jl B (8.25)

In Equations 8.22–8.25, Ti is the ith row vector in the transformation matrix T
introduced above.

The first-order derivative of the inverse A−1 of the coefficient matrix is computed by
(A−1), j = − A−1A, jA−1, derived by differentiating the identity AA−1 = I. Because
the components in the coefficient matrix A are linear functions of design variables,
the relation A, jl = 0 holds. Then, the second-order derivative of the inverse A−1 is
obtained from

(A−1), jl = A−1(A,lA
−1A, j + A, jA−1A,l)A

−1 (8.26)

The first-order derivative of the complex conjugate A−1∗ of the inverse A−1 can
be computed as {A−1

, j }∗ and the second-order derivative of A−1∗ can be found as

A−1∗
, jl = {A−1

, jl }∗.
The solution algorithm in the case satisfying the conditions cVj < cVj for all j may

be described as follows:

Step 0 Initialize all the added supplemental viscous dampers as cVj = 0
( j = 1, · · · , n). In the initial design stage, the structural damping alone
exists in the shear-building model. Assume the quantity �W .

Step 1 Compute the first-order derivative f,i of the objective function by Equation
8.20.

Step 2 Find the index p satisfying the condition

−f,p = max
i

(−f,i) (8.27)

Step 3 Update the objective function f by the linear approximation f + f,p�cVp,
where �cVp = �W . This is because the supplemental damper is added
only in the pth story in the initial design stage.

Step 4 Update the first-order sensitivity f,i of the objective function by the linear
approximation f,i + f,ip�cVp using Equation 8.21.
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Step 5 If, in Step 4, there exists a supplemental damper of an index j such that the
condition

−f,p = max
j.j �=p

(−f, j)

is satisfied, then stop and compute the increment �c̃Vp of the damping
coefficient of the corresponding damper. At this stage, update the first-
order sensitivity f,i of the objective function by the linear approximation
f,i + f,ip�c̃Vp using Equation 8.21.

Step 6 Repeat the procedure from Step 2 to Step 5 until the constraint in Equation
8.13 (i.e.,

∑n
i=1 cVi = W ) is satisfied.

In Step 2 and Step 3, the direction which decreases the objective function most
effectively under the condition

∑n
i=1 �cVi = �W is found and the design (the quan-

tity of supplemental dampers) is updated in that direction. It is suitable, therefore,
to call the present algorithm “the steepest direction search algorithm,’’ as in Chap-
ters 4–7 (Takewaki, 1998a). As explained before, this algorithm is similar to the
conventional steepest descent method in the mathematical programming (see Fig-
ure 7.2 in Chapter 7 to understand the concept). However, while the conventional
steepest descent method uses the gradient vector itself of the objective function as the
direction and does not utilize optimality criteria, the present algorithm takes advan-
tage of the newly derived optimality criteria expressed by Equations 8.16, 8.18, and
8.19 and does not adopt the gradient vector as its direction. More specifically, the
explained steepest direction search guarantees the successive and approximate sat-
isfaction of the optimality criteria. For example, if the increment �cVp is added to
the pth supplemental damper in which Equation 8.27 is satisfied, then its damper
(cp > 0) satisfies the optimality condition in Equation 8.16 and the other dampers
(cj = 0, j �= p) alternatively satisfy the optimality condition in Equation 8.18. It is
important to note that a series of subproblems is introduced here tentatively in which
the total damper capacity level W is increased gradually by �W from zero through the
specified value.

It is necessary to investigate other possibilities. If multiple indices p1, · · · , pm exist
in Step 2, then the objective function f and its derivative f, j have to be updated by the
following rules:

f → f +
pm∑

i=p1

f,i�cVi (8.29a)

f, j → f, j +
pm∑

i=p1

f, ji�cVi (8.29b)
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Furthermore, the index p defined in Step 5 has to be replaced by the multiple indices
p1, · · · , pm. The ratios among the magnitudes �cVi have to be determined so that the
following relations are satisfied:

f,p1 +
pm∑

i=p1

f,p1i�cVi = · · · = f,pm +
pm∑

i=p1

f,pmi�cVi (8.30)

Equation 8.30 requires that the optimality condition in Equation 8.16 continues to be
satisfied in the supplemental dampers with the indices p1, · · · , pm.

It may be the case in realistic situations that the maximum quantity of supplemental
dampers is limited by the requirements of building design and planning. In the case
where the damping coefficients of some supplemental dampers attain their upper
bounds, such constraints must be incorporated in the aforementioned algorithm. In that
case, the increment �cVp of the supplemental dampers is added subsequently to the
supplemental damper in which −f,p attains the maximum among all the supplemental
dampers, except for those attaining the upper bound.

8.6 Numerical Examples

A band-limited white noise is often used as a test input of random disturbance. In this
section, a band-limited white noise with the following PSD function is input to the
building–ground system as the input acceleration üg(t):

Sg(ω) = 0.01 m2/s3 ( − 2π × 16 ≤ ω ≤ −2π × 0.2, 2π × 0.2 ≤ ω ≤ 2π × 16)

Sg(ω) = 0 otherwise

As stated before, the soil under building structures influences greatly the seismic
response of the building structures. In order to investigate in detail the influence of soil
conditions on the seismic response and optimal distributions of supplemental dampers,
three different soil conditions are considered. These three soil types are specified as
very stiff ground, stiff ground, and soft ground. Every ground model consists of three
soil layers of identical thickness li = 6 m and these layers rest on a semi-infinite visco-
elastic ground as the engineering bedrock. The shear modulus, damping ratio, and
mass density of the semi-infinite visco-elastic ground as the engineering bedrock are
given by 8.0 × 108 N/m2, 0.01, and 2.0 × 103kg/m3 respectively.

The governing area of the surface ground is 2500(m2). The input acceleration is
defined at l0 = 6 m below the boundary (bedrock) between the three soil layers and
the semi-infinite visco-elastic ground. The mass densities of the three soil layers are
identical over the very stiff ground, stiff ground, and soft ground and take the value
1.8 × 103kg/m3.

The shear moduli of the soil layers are also identical within each of the three layers
and take the values of 1.6 × 108N/m2 for the very stiff ground, 0.8 × 108N/m2 for the
stiff ground, and 0.2 × 108N/m2 for the soft ground. The shear moduli and damping
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Figure 8.2 Dependence of shear moduli and damping ratios on strain level. (Originally published in
I. Takewaki, “Soil–structure random response reduction via TMD-MD simultaneous use,’’ Computer
Methods in Applied Mechanics and Engineering, 190, no. 5–7, 677–690, 2000, Elsevier B.V.).

ratios of the soil layers are dependent on the strain level, and its property is taken into
account via the equivalent linear model explained above. Their relations are shown
in Figure 8.2 for clay, sand, and gravel. It is assumed that layer 1 consists of gravel,
layer 2 consists of clay, and layer 3 consists of sand. The effect of mean effective
pressure on these relations is sometimes important and is taken into account here.
Linear interpolation has been used in evaluating the intermediate values between the
specified points. The effective strain level (Schnabel et al., 1972) has been evaluated
by 2.5σ�i × 0.65, where the coefficient 2.5 indicates the peak factor (Der Kiureghian,
1980) and 0.65 as the effective strain ratio was introduced by Schnabel et al., (1972)
and Takewaki et al., (2002a, 2002b). The convergence of stiffness reduction ratios of
the shear moduli and damping ratios has been confirmed in a few cycles. The stiffness
reduction ratios and damping ratios are shown in Tables 8.1 and 8.2. This evaluation of
equivalent values has been performed for the soil–structure interaction system without
supplemental dampers and a TMD system.

The interaction spring stiffness and the damping coefficient between the struc-
ture and the surface ground have been evaluated by the conventional formula by
Veletsos and Verbic (1974). The equivalent shear modulus of the top soil layer was
adopted as the shear modulus by Veletsos and Verbic (1974). In addition, Poisson’s
ratio was 1/3 and the equivalent radius of the base mat was 3.57 m. The fundamental
natural periods of the surface grounds at the small strain level are 0.239 s, 0.338 s,
and 0.675 s for the very stiff, stiff, and soft grounds, respectively, and those computed
from the equivalent stiffnesses are 0.322 s, 0.617 s, and 1.48 s for the very stiff ground,
stiff ground, and soft ground respectively.

As for super-buildings, consider a three-story shear-building model. The floor
masses are assumed to be m0 = 96 × 103kg and mi = 32 × 103kg (i = 1, 2, 3) and the
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Table 8.1 Stiffness reduction ratios via an equivalent linear model. (Originally
published in I. Takewaki, “Soil–structure random response reduction via TMD-MD
simultaneous use,’’ Computer Methods in Applied Mechanics and Engineering, 190, no.
5–7, 677–690, 2000, Elsevier B.V.).

Soil Very stiff Stiff Soft
layer no. ground ground ground

3 0.783 0.688 0.615
2 0.730 0.678 0.400
1 0.480 0.228 0.162

Table 8.2 Damping ratios via an equivalent linear model. (Originally published in I.
Takewaki, “Soil–structure random response reduction via TMD-MD simultaneous use,’’
Computer Methods in Applied Mechanics and Engineering, 190, no. 5–7, 677–690,
2000, Elsevier B.V.).

Soil Very stiff Stiff Soft
layer no. ground ground ground

3 0.0378 0.0562 0.0606
2 0.0552 0.0600 0.0977
1 0.0761 0.126 0.124

story stiffnesses are ki = 3.76 × 107 N/m (i = 1, 2, 3). Then, the fundamental natural
period of the structure with a fixed base is 0.412 s. The fundamental natural periods
of the elastically supported shear-building model are 0.414 s, 0.418 s, and 0.449 s for
the very stiff ground, stiff ground, and soft ground respectively. In the TMD system,
mT is given as 1.0 × 103 kg and kT and cT are determined for each surface ground
model so that the TMD system is tuned with the fundamental natural frequency of
the elastically supported shear-building model and the TMD system (as an SDOF
system) has a damping ratio of 0.1. In this case, the fundamental natural periods of
the elastically supported shear-building models are located between that of the very
stiff ground and that of the stiff ground. The structural viscous damping matrix of the
shear-building model has been given so that it is proportional to the stiffness matrix,
and the lowest mode damping ratio is equal to 0.02. The increment �W of the sum of
the supplemental viscous dampers is 9.375 kN s/m.

Figure 8.3(a) shows the variation of damping coefficients of supplemental viscous
dampers in optimal damper placement for the very stiff ground with respect to the step
number (total damper capacity level). It is observed that the damping coefficient of
the supplemental dampers is first added in the first story and then in the second story.
Figures 8.3(b) and (c) illustrate the variations of damping coefficients of supplemental
viscous dampers in optimal damper placement for the stiff and soft grounds. It can
be understood from Figures 8.3(a)–(c) that optimal damper placement is strongly
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Figure 8.3 Variation of damping coefficients in optimal damper placement with respect to the step
number (total damper capacity level). (Originally published in I. Takewaki, “Soil–structure random
response reduction via TMD-MD simultaneous use,’’ Computer Methods in Applied Mechanics and
Engineering, 190, no. 5–7, 677–690, 2000, Elsevier B.V.).

dependent on the surface ground properties. Resonance of the fundamental natural
frequency of the building structure with the predominant frequency of the surface
ground could sometimes cause amplified responses (Takewaki, 1998b). It seems that
the relation of the fundamental natural frequency of the building structure with the
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Figure 8.4 Variation of damping coefficients in optimal damper placement with respect to the step
number without TMD. (Originally published in I. Takewaki, “Soil–structure random response reduction
via TMD-MD simultaneous use,’’ Computer Methods in Applied Mechanics and Engineering, 190, no.
5–7, 677–690, 2000, Elsevier B.V.).

predominant frequency of the surface ground (equivalent stiffness) is a key parameter
for characterizing the optimal damper placement.

Figures 8.4(a)–(c) illustrate the variations of damping coefficients of supplemental
viscous dampers in optimal damper placement for the very stiff ground, stiff ground,
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Figure 8.5 Variation of sum of mean-square deformations with respect to step number (total damper
capacity level) for models with and without TMD on very stiff, stiff, and soft grounds. (Originally
published in I. Takewaki, “Soil–structure random response reduction via TMD-MD simultaneous use,’’
Computer Methods in Applied Mechanics and Engineering, 190, no. 5–7, 677–690, 2000, Elsevier B.V.).

and soft ground respectively without a TMD system. This investigation was conducted
to check the effect of the TMD system on the optimal damper placement. It is observed
that the TMD system does not affect the optimal distribution of the supplemental
viscous dampers much.
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Figure 8.6 Variations of mean-square acceleration with respect to step number for models with and
without a TMD on very stiff, stiff, and soft grounds. (Originally published in I. Takewaki, “Soil–structure
random response reduction via TMD-MD simultaneous use,’’ Computer Methods in Applied Mechanics
and Engineering, 190, no. 5–7, 677–690, 2000, Elsevier B.V.).

Figure 8.5 shows the variations of the objective function, Equation 8.12, with respect
to the step number (total damper capacity level) for the model with and without a TMD
system on the very stiff, stiff, and soft grounds. It is observed that the TMD system is
effective in response reduction when the lowest mode of the structure is amplified; that
is, the very stiff and stiff grounds in this case. This implies that a careful examination of
the characteristics of surface grounds is absolutely necessary in using a TMD system.
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Figure 8.6 indicates the variations of the mean square, defined by Equation 8.11, of
the top-floor absolute acceleration with respect to the step number for the model with
and without a TMD system on the very stiff, stiff, and soft grounds. It is observed that
there exists a case where excessive introduction of supplemental viscous dampers is
not necessarily effective in acceleration response reduction. It is often and repeatedly
reported that this phenomenon can also be observed in base-isolated buildings. It
can further be seen that appropriate introduction of supplemental viscous dampers
is effective both in deformation and acceleration reductions even in the case where
a TMD system is not effective, namely in the soft ground in this case. This implies
that appropriate selection of a TMD system and supplemental viscous dampers is
very important and essential in response reduction depending on the surface ground
characteristics.

Figure 8.7(a) shows the multicriteria plot obtained from Figures 8.5 and 8.6 with
respect to the sum of mean-square interstory drifts and the mean-square top-floor
acceleration for models without a TMD; Figure 8.7(b) illustrates this for models with
a TMD. It can be seen that the multicriteria plot is very useful in understanding the
usefulness of supplemental viscous dampers and a TMD system in the reduction of
deformation and acceleration under various ground conditions.

8.7 Whole Model and Decomposed Model

Although the whole model as shown in Figure 8.1 was adopted in this chapter, it may
be meaningful to discuss the comparison between the whole model and the decom-
posed model. The decomposed model is a model where the super-building and the
surface ground are treated independently, as shown in Chapter 7. It is well known
that the structural responses evaluated by the whole model depend on the mass ratio
between the structure and the ground (Nakamura et al., 1996; Takewaki, 1998b). In
the case where multiple buildings exist in urban areas, an appropriate mass ratio has
to be chosen (see Chapter 6). On the other hand, in the case where only a building
exists on a field, a fairly large mass ratio (ground mass to building mass) must be
chosen.

As stated above, there is another model, as shown in Figure 8.8, referred to as “a
decomposed model,’’ which can represent the coupling of a structure and the ground.
In this model, the surface ground motion in the free-field ground is computed first
through wave propagation theory or vibration theory and the computed motions at
several selected points are input simultaneously into the elastically supported building.
It is noted that the surface ground motion in the free-field ground is not influenced by
the response of the building.

Figure 8.9 shows the comparison of the mean squares of the interstory drifts for the
whole models used in the foregoing sections and the decomposed models on the very
stiff, stiff, and soft grounds. From this figure, small differences can be observed for the
very stiff ground. However, these differences are negligible, because the mean peak
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Figure 8.7 Multicriteria plot with respect to sum of mean-square interstory drifts and mean-square
top-floor acceleration. (Originally published in I. Takewaki, “Soil–structure random response reduction
via TMD-MD simultaneous use,’’ Computer Methods in Applied Mechanics and Engineering, 190, no.
5–7, 677–690, 2000, Elsevier B.V.).

responses are related to the square roots of the mean-square responses. Furthermore,
Figure 8.10 illustrates the comparison of the amplitude of the transfer function of
third-story drift between the whole model and the decomposed model. It is confirmed
numerically that, as the mass ratio (ground mass to building mass) becomes larger,
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Figure 8.8 Decomposed model.
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the responses of the whole model converge to those of the corresponding decomposed
model. However, the numerical instability caused by the large difference of masses
and stiffnesses between the structure and the ground has to be kept in mind carefully
in using the whole model.

8.8 Summary

The results in this chapter may be summarized as follows.

1. All the structural and supplemental viscous damping in a TMD building structure,
hysteretic damping in a surface ground, and viscous damping at the ground viscous
boundary can be taken into account exactly in the present unified formulation based
on a frequency-domain approach. A so-called steepest direction search algorithm
has been developed and explained in detail.

2. Because deformation and acceleration transfer functions can be obtained in closed
form even for MDOF systems with nonproportional damping owing to the tri-
diagonal property of the coefficient matrix, the mean-square deformations of the
TMD building structure to the random earthquake input at the engineering bedrock
surface and their derivatives with respect to the design variables (damper damping
coefficients) can be computed very efficiently.

3. The effects of surface ground properties on optimal supplemental damper place-
ment in TMD building structures have been examined. It has been clarified
numerically that the relation of the fundamental natural frequency of the elastically
supported TMD building structure with the predominant frequency of the surface
ground (equivalent stiffness) is a key parameter for characterizing the optimal
supplemental damper placement. Appropriate selection of a TMD system and sup-
plemental viscous dampers is very important in the response reduction, depending
on the surface ground characteristics.

4. The TMD system is effective in the response reduction when the lowest mode
of the structure is amplified; that is, the very stiff and stiff grounds in this case.
A case exists where excessive introduction of supplemental viscous dampers is
not effective in acceleration response reduction. It is often reported that this phe-
nomenon can also be observed in base-isolated buildings. Appropriate introduction
of supplemental viscous dampers is effective both in deformation and acceleration
reductions even in the case where a TMD system is not effective; that is, the soft
ground in this case. This means that the TMD system and the supplemental viscous
damper system can help each other, and there exists the possibility to take full
advantage of these two systems.

Appendix 8.A: Fundamentals of TMD Systems

Consider the SDOF structure with a TMD system shown in Figure 8.11. The masses of
the structure and the additional system are denoted by M and m and the stiffnesses of the
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Figure 8.11 SDOF structure with TMD system without viscous damper.

structure and the additional system by K and k. Let u1 and u2 denote the displacement
of the structural mass relative to the ground and that of the additional mass relative
to the ground respectively. The objective of this appendix is to investigate whether it
is possible for the structure to remain undeformed; that is, the displacement u1 of the
structural mass relative to the ground is zero when subjected to a sinusoidal ground
motion üg = A cos pt.

The equations of motion for this system may be expressed by[
M 0
0 m

]{
ü1
ü2

}
+

[
K + k −k
−k k

]{
u1
u2

}
= −

{
M
m

}
A cos pt (A8.1)

Consider only the steady-state response and let us assume

u1 = U1 cos pt (A8.2a)

u2 = U2 cos pt (A8.2b)

Substitution of Equations A8.2a and A8.2b into Equation 8.1 and comparison of the
coefficients on the terms including cos pt provide

−p2
[

M 0
0 m

]{
U1
U2

}
+

[
K + k −k
−k k

]{
U1
U2

}
= −

{
M
m

}
A (A8.3)

Using the notation m/M = µ, Equation A8.3 can be solved as follows:{
U1
U2

}
=

(
p2

[
M 0
0 m

]
−

[
K + k −k
−k k

])−1 {
M
m

}
A

=
(

p2M

[
1 0
0 µ

]
−

[
K + k −k
−k k

])−1 {
M
µM

}
A

= 1

det �

[
p2M µ − k −k

−k p2M − (K + k)

]{
M
µM

}
A

(A8.4)
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where � is the coefficient matrix of Equation (A8.3) with minus sign. The condition
that the displacement u1 of the structural mass relative to the ground is zero can be
expressed as

U1 = A

det �
{(p2Mµ − k)M − kµM } = 0 (A8.5)

Equation A8.5 leads to

p2Mµ − k − kµ = 0 (A8.6)

Assume here that the frequency of the input excitation coincides with the funda-
mental natural circular frequency of the structure, which can be expressed by

p = √
K/M (A8.7)

Substitution of Equation A8.7 into Equation A8.6 provides
K

M
m − k(1 + µ) = 0 (A8.8)

Equation A8.8 can be rewritten as

K

M

m

k
= 1 + µ (A8.9)

Denoting the fundamental natural period of the structure by T1 = 2π
√

M /K and
that of the additional mass-spring system by T2 = 2π

√
m/k, Equation A8.9 may be

re-expressed as

T2

T1
=

√
m/k√
M /K

= √
1 + µ (A8.10)

In the case of µ = 0.01, T2/T1 ∼= 1.005.
For further study, refer to appropriate textbooks; for example, Connor and Klink

(1996).

Appendix 8.B: System Mass, Damping, and Stiffness Matrices for a
Two-story Shear-building Model Supported by Two Soil Layers

The system mass, damping, and stiffness matrices for a two-story shear building model
supported by two soil layers may be expressed by

M =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

mT 0
m2

m1
m0

µ2/3 µ2/6
µ2/6 (µ2 + µ1)/3 µ1/6

µ1/6 (µ1 + µ0)/3 µ0/6
0 µ0/6 µ0/3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B8.1)
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C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cT −cT 0
−cT cT + C2 −C2

−C2 C2 + C1 −C1
−C1 C1 + cH −cH

−cH cH
0

0
0 cb

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B8.2)

iD + K =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

kT −kT 0
−kT kT + k2 −k2

−k2 k2 + k1 −k1

−k1 k1 + kH −kH

−kH kH + K2 −K2

−K2 K2 + K1 −K1

−K1 K1 + K0 −K0

0 −K0 K0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B8.3)
where µi = ρiAli, Ci = ci + cVi, and Ki = (GiA/li)(1 + i2βi).

Appendix 8.C: Closed-form Expression of the Inverse of
a Tri-diagonal Matrix

Consider the following symmetric tri-diagonal matrix of M × M :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dM −eM 0

−eM
. . .

. . .

. . .
. . .

. . .

. . .
. . . −e3
−e3 d2 −e2

0 −e2 d1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C8.1)

Let us define the following principal minors:

P0 = 1, P1 = d1, P2 =
∣∣∣∣ d2 −e2
−e2 d1

∣∣∣∣ , · · · , PM = det A (C8.2)

PR0 = 1, PR1 = dM , PR2 =
∣∣∣∣ dM −eM
−eM dM −1

∣∣∣∣ , · · · , PRM = det A (C8.3)

The principal minors satisfy the following recurrence formula:

Pj−1 = dj−1Pj−2 − e2
j−1Pj−3 ( j = 3, · · · , M ) (C8.4)
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The jth column of A−1 may be expressed as

1

det A

⎧⎨
⎩

⎛
⎝ M∏

i=M −j+2

ei

⎞
⎠PM −jPR0

⎛
⎝ M −1∏

i=M −j+2

ei

⎞
⎠PM −jPR1 · · ·

⎛
⎝ M −j+2∏

i=M −j+2

ei

⎞
⎠PM −jPR( j−2) PM −jPR( j−1)

⎛
⎝ M −j+1∏

i=M −j+1

ei

⎞
⎠PM −j−1PR( j−1)

· · ·
⎛
⎝M −j+1∏

i=3

ei

⎞
⎠P1PR( j−1)

⎛
⎝M −j+1∏

i=2

ei

⎞
⎠P0PR( j−1)

⎫⎬
⎭

T

(C8.5)
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9
Design of Dampers in Shear
Buildings with Uncertainties

9.1 Introduction

Sources of uncertainties in structural engineering usually come from input earth-
quake ground motions and parameter variability in structures. It is well accepted in
earthquake-prone countries that the former uncertainties govern the principal design
stage. However, the latter uncertainties are also important in the design decision stage.
In this chapter, both uncertainties are treated and a few approaches to tackling these
uncertainties simultaneously are explained.

As for the former uncertainties, the method of critical excitation was proposed
by Drenick (1970). This method is aimed at finding the excitation producing the
maximum response from a class of allowable inputs. By using the variational formu-
lation, Drenick (1970) showed that the critical excitation for a given structural system
is its impulse response function reversed in time. Just after the work by Drenick
(1970), Shinozuka (1970) discussed the same problem in the frequency domain and
presented a narrower upper bound of the maximum response. Fruitful practical appli-
cation and extension of critical excitation methods have been made (Yang and Heer,
1971; Iyengar, 1972; Drenick, 1973, 1977; Wang et al., 1978; Ahmadi, 1979; Wang
and Yun, 1979; Pirasteh et al., 1988; Srinivasan et al., 1991; Baratta et al., 1998).
Iyengar and Manohar (1987), Srinivasan et al. (1992), Manohar and Sarkar (1995),
and Sarkar and Manohar (1998) extended the concept of critical excitation to stochastic
problems. Ben-Haim and Elishakoff (1990), Ben-Haim et al. (1996), and Pantelides
and Tzan (1996) presented several interesting convex models.

One of the purposes of this chapter is to explain a probabilistic critical excitation
method and a systematic method for optimal supplemental damper placement (Zhang
and Soong, 1992; Tsuji and Nakamura, 1996) in building structures subjected to the
critical excitation. In contrast to most of the conventional critical excitation methods,

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7

WWW.BEHSAZPOLRAZAN.COM



c09.tex 27/8/2009 16: 0 Page 206

206 Building Control with Passive Dampers

a stochastic response index is treated as the objective function to be maximized.
The energy and the intensity of the excitations are fixed and the critical excitation is
found under these restrictions. The critical excitation method explained in this chap-
ter is applicable to MDOF structural systems with nonproportional damping. The
steepest direction search algorithm (Takewaki, 1998; Takewaki and Yoshitomi, 1998)
explained in Chapters 4–8 is extended to a structure subjected to the critical excitation.
While resonant steady-state responses of structures were treated in Chapters 4 and 5
(Takewaki, 1998; Takewaki and Yoshitomi, 1998), earthquake responses (mean-
square responses) to random inputs are introduced here as controlled parameters,
as in Chapters 6–8. It is shown that closed-form expressions of the inverse of the
tri-diagonal coefficient matrix in the governing equations lead to drastic reduction of
computational time of mean-square responses of the building structure to the random
earthquake input and their derivatives with respect to the design variables (damp-
ing coefficients of supplemental dampers). Optimal placement and the capacity of
the supplemental dampers are found automatically via the steepest direction search
algorithm, which is based on successive satisfaction of the optimality conditions. A
numerical example of a 6-DOF shear-building model is presented to demonstrate the
effectiveness and validity of the method explained here.

The second purpose of this chapter is to explain a new evaluation method of robust-
ness of passive control systems under both structural model and load uncertainties.
Info-gap theory due to Ben-Haim (2001, 2006) is introduced and it is shown how the
maximum robust placement of supplemental dampers can be attained under uncertain
environments of damper and load properties.

9.2 Equations of Motion and Mean-square Response

For a simple and clear presentation of the theory, consider an n-story shear building
model, as shown in Figure 9.1, subjected to a horizontal base acceleration input üg(t).
Let M, C, K, and r = {1 · · · 1}T denote the system mass, the viscous damping (original
frame damping plus supplemental viscous damping) and stiffness matrices, and the
influence coefficient vector respectively. Simple examples of M, C, and K are shown
in Appendix 9.A for a two-story shear building model.

Because the formulation in the frequency domain is suitable for the response analysis
under random vibration, it is treated in the first part of this chapter. Equations of motion
of the building in the frequency domain may be expressed by

(−ω2M + iωC + K)U(ω) = −MrÜg(ω) (9.1)

U(ω) and Üg(ω) are the Fourier transforms of the horizontal displacements of the floors
and the Fourier transform of the horizontal input acceleration üg(t). The horizontal
input acceleration is assumed to be a stationary Gaussian random process with zero
mean. Equation 9.1 can be reduced to the following compact form:

AU(ω) = BÜg(ω) (9.2)
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Figure 9.1 Shear building model. (Originally published in I. Takewaki, “Optimal damper placement
for critical excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).

where the coefficient matrix A and the vector B in the right-hand side are defined by

A = (−ω2M + iωC + K) (9.3a)

B = −Mr (9.3b)

Because the interstory drift can be a good indicator of the overall stiffness of the
building, its control plays an important role in the stiffness design of the building.
For this reason, the interstory drift is treated here as the controlled parameter. Let
us define time-domain interstory drifts d(t) = {di(t)} of the shear building model and
their Fourier transforms D(ω) = {Di(ω)}. D(ω) can be related to U(ω) by

D(ω) = TU(ω) (9.4)

The transformation matrix T is a constant matrix consisting of 1, −1, and 0.
Substitution of a modified expression of Equation 9.2 into Equation 9.4 provides

D(ω) = TA−1BÜg(ω) (9.5)

Equation 9.5 is simply expressed as

D(ω) = HD(ω)Üg(ω) (9.6)

In Equation 9.6, HD(ω) = {HDi (ω)} are the transfer functions of interstory drifts and
are described as

HD(ω) = TA−1B (9.7)

Note that A is a tri-diagonal matrix and its inverse can be obtained in closed form
(see Appendix 9.B). This property enables one to compute the transfer functions of
interstory drifts very efficiently.

The statistical characteristic of stationary random signals can be described by the
PSD function. Let Sg(ω) denote the PSD function of the input acceleration üg(t). Using
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the random vibration theory, the mean-square response of the ith interstory drift can
then be computed from

σ2
Di

=
∫ ∞

−∞
|HDi (ω)|2Sg(ω)dω =

∫ ∞

−∞
HDi (ω)H∗

Di
(ω)Sg(ω)dω (9.8)

where ( )∗ denotes the complex conjugate.

9.3 Critical Excitation

The problem of critical excitation is explained in this section. As a system flexibility
measure, the sum of the mean squares of the interstory drifts is introduced here.
By using Equation 9.8, the sum of the mean squares of the interstory drifts can be
expressed as

f =
n∑

i=1

σ2
Di

=
∫ ∞

−∞
F(ω)Sg(ω)dω (9.9)

where n denotes the number of stories of the shear building model as stated above and
the function F(ω) can be described by

F(ω) =
n∑

i=1

|HDi (ω)|2 (9.10)

The problem of defining a critical excitation for the model without added dampers
may be stated as follows.

Problem 9.1 Critical Excitation Given the floor masses, story stiffnesses, and
original structural damping of the n-story shear building model, find the critical PSD
function S̃g(ω) to maximize the sum f of the mean squares of the interstory drifts
defined by Equation 9.9 subject to∫ ∞

−∞
Sg(ω) dω ≤ S (S: given energy limit) (9.11)

sup Sg(ω) ≤ s (s: given PSD amplitude limit) (9.12)

Equation 9.11 constrains the power of the excitation (Shinozuka, 1970; Iyengar and
Manohar, 1987) and Equation 9.12 is introduced to keep the present excitation model
physically realistic by avoiding the PDF function from attaining an extremely large
value.

It is well known that a PSD function, a Fourier amplitude spectrum, and an undamped
velocity response spectrum of an earthquake have a certain relationship. If the time
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Figure 9.2 Solution procedure: (a) without PSD bound; (b) with PSD bound. (Originally published in
I. Takewaki, “Optimal damper placement for critical excitation,’’ Probabilistic Engineering Mechanics,
15, no. 4, 317–325, 2000, Elsevier B.V.).

duration of the earthquake is fixed, then the PSD function corresponds to the Fourier
amplitude spectrum and almost corresponds to the undamped velocity response spec-
trum (Hudson, 1962). Therefore, the present limitation on the peak of the PSD function
indicates approximately the introduction of a bound on the undamped velocity response
spectrum.

It is meaningful to discuss the problem structure of Problem 9.1 by focusing on
the attainability of the maximum value of the input-motion PSD function. In the case
where s is infinite, S̃g(ω) becomes the Dirac delta function (see Figure 9.2(a)) and the
value f takes the following quantity:

f = SF(ωM) (9.13)

where

F(ωM) = max
ω

F(ω) (9.14)

This implies that the critical excitation is almost resonant to the fundamental natural
frequency of the structural model.

When s is finite, the critical PSD function S̃g(ω) becomes a constant value of s
in a finite interval �̃ = S/s (see Figure 9.2(b)). The optimization procedure to be
implemented in Problem 9.1 is very simple because of the positive definiteness of the
functions F(ω) and Sg(ω) in Equation 9.9; it is sufficient to find the finite interval �̃,
which can be searched by decreasing a horizontal line in the figure of the function F(ω)
until the interval length becomes S/s and finding the intersection. This finite interval
�̃ may not necessarily be a continuous interval (see Figure 9.3) (i.e., decomposed
ones are possible) and can be defined as the interval with a fixed interval length S/s
to maximize

G(�) =
∫

ω∈�

F(ω)dω (9.15)
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Figure 9.3 Continuous and uncontinuous intervals as solutions depending on PSD bound: (a) contin-
uous; (b) uncontinuous. (Originally published in I. Takewaki, “Optimal damper placement for critical
excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).
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Figure 9.4 Example of the function F(ω) for two-DOF shear building models with three different
damping ratios. (Originally published in I. Takewaki, “Optimal damper placement for critical excitation,’’
Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).

The function G(�) defined by Equation 9.15 indicates the area of the function F(ω)
in the interval �, and maximizing the function G(�) means maximizing the area of
the function F(ω) in the interval � with a constraint on fixed interval length S/s. Note
that � is a finite interval (not necessarily a continuous interval as stated above) and
G(�) is not an ordinary function; that is, not a function of a variable. In this case, the
value f takes the following form:

f = s
∫

ω∈�̃

F(ω)dω (9.16)

Figure 9.4 shows an example of the function F(ω) for two-DOF shear building
models with three different lowest mode damping ratios. Figure 9.5 illustrates the
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Figure 9.5 Variation of the function f with respect to 1/s under a constant energy limit S. (Originally
published in I. Takewaki, “Optimal damper placement for critical excitation,’’ Probabilistic Engineering
Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).

variation of the function f defined by Equation 9.16 with respect to 1/s under a
constant energy limit S. Five lowest mode damping ratios are utilized. The case of
1/s = 0 corresponds to s attaining infinity, and its value indicates the value given by
Equation 9.13.

It is remarkable to note that the probabilistic critical excitation method explained
here is applicable to structural systems with nonproportional damping and the objective
function Equation 9.9 can easily be replaced by other response indices; for example, the
top-floor absolute acceleration. For a more detailed explanation of critical excitation
methods in earthquake engineering, Takewaki (2006) may be appropriate.

9.4 Conservativeness of Bounds (Recorded Ground Motions)

In this section, the level of conservativeness of the critical excitation explained in
Section 9.3 is investigated through comparison with the results for recorded earth-
quakes. Three representative recorded earthquake ground motions are considered: El
Centro NS 1940 (Imperial Valley), Taft EW 1952 (Kern County), and Kobe Uni-
versity NS 1995 (Hyogoken-Nanbu). For a simple and essential investigation and
comparison, an SDOF elastic model is taken as the structural model. The interstory
drift of the model is chosen as the response parameter to be compared. Two SDOF
models with different damping ratios of 0.02 and 0.10 are investigated. The model
with a rather high damping ratio represents passive control systems or base-isolated
structures.

Figure 9.6 shows the PSD functions for these three ground motions. Although
earthquake ground motions are well expressed by a nonstationary random process and
possess a nonstationary nature, the PSD function in the relaxed sense is employed
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Figure 9.6 PSD functions for three recorded ground motions. (Originally published in I. Takewaki,
“Optimal damper placement for critical excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4,
317–325, 2000, Elsevier B.V.).
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here. It can be observed that a rather sharp peak exists around the frequency of 5 rad/s
(period ∼=1.2 s) in Kobe University NS 1995.

Figure 9.7 illustrates the standard deviation of the interstory drift of the SDOF model
with the damping ratio of 0.02, plotted with respect to the undamped natural frequency
of the SDOF model, to each recorded ground motion (the PSD of input motion is substi-
tuted in Equation 9.8) and that to the corresponding critical excitation. In evaluating
the critical PSD function in Figure 9.7, the area of the PSD function and the peak
value of the PSD function have been computed for each recorded ground motion.
These values are: S = 0.278 m2/s4 and s = 0.0330 m2/s3 for El Centro NS 1940;
S = 0.0901 m2/s4 and s = 0.007 92 m2/s3 for Taft EW 1952; and S = 0.185 m2/s4

and s = 0.0364 m2/s3 for Kobe University NS 1995. It can be understood from
Figure 9.7 that, while the level of conservativeness is about 2 or 3 in the natural
frequency range of interest in El Centro NS 1940 and Taft EW 1952, a closer coin-
cidence can be found around the frequency of 5 rad/s in Kobe University NS 1995.
This means that Kobe University NS 1995 has a predominant frequency around 5 rad/s
and the resonant characteristic of this ground motion can be well represented by the
critical excitation explained in Section 9.3.

Figure 9.8 shows the standard deviation of the interstory drift of the SDOF model
with a damping ratio of 0.10. A similar tendency can also be observed from Figure 9.8.

9.5 Design of Dampers in Shear Buildings under Uncertain
Ground Motions

Consider a problem to incorporate story-installation-type viscous dampers into the
shear building model to reduce the seismic response. This problem is the same as
in Chapters 2–8. However, the properties of the input ground motion are not specified
completely in the present problem. Therefore, the methods explained in Chapters 2–8
cannot be used in the present problem. On the other hand, if the properties of the
building structure are given, then the method of finding the critical input explained in
the previous section can be utilized here. However, the structural properties are not
specified completely in the present problem because supplemental viscous dampers
can be incorporated in any story of the buildings.

In order to overcome this difficulty, the problem of optimal damper placement is
discussed here such that an optimal damper placement is found for the corresponding
critical input. This problem is a highly nonlinear problem.

Let cVi denote the damping coefficient of the supplemental viscous damper in the
ith story and let cV = {cVi} denote the set of these damping coefficients. A general
formulation is to regard the function f in Equation 9.9 as a functional of the PSD
function Sg(ω) of the input and the damping coefficient cV of the supplemental viscous
dampers; that is, the expression f (Sg(ω) : cV) may be appropriate in this problem (see
Figure 9.9). The design objective is to find the most effective distribution cV for
the worst input Sg(ω) which maximizes the function f under the given conditions of
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Figure 9.7 Standard deviation of the interstory drift of the SDOF model with a damping ratio of 0.02
for each recorded ground motion and the corresponding critical excitation plotted with respect to the
undamped natural frequency of the SDOF model. (Originally published in I. Takewaki, “Optimal damper
placement for critical excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000,
Elsevier B.V.).

WWW.BEHSAZPOLRAZAN.COM



c09.tex 27/8/2009 16: 0 Page 215

Design of Dampers in Shear Buildings with Uncertainties 215

El Centro NS 1940

recorded
critical

0

0.1

0.2

0.3

st
an

da
rd

 d
ev

ia
tio

n 
of

 d
ri

ft
 (

m
)

0 10 20 30 40 50

natural circular frequency (rad/s)

Hyogoken-Nanbu 1995
Kobe Univ. NS

recorded
critical

0

0.1

0.2

0.3

st
an

da
rd

 d
ev

ia
tio

n 
of

 d
ri

ft
 (

m
)

0 10 20 30 40 50

natural circular frequency (rad/s)

0.1

0.2

0.3
Taft EW 1952

recorded
critical

st
an

da
rd

 d
ev

ia
tio

n 
of

 d
ri

ft
 (

m
)

0 10 20 30 40 50

natural circular frequency (rad/s)

Figure 9.8 Standard deviation of the interstory drift of the SDOF model with a damping ratio of 0.10
for each recorded ground motion and the corresponding critical excitation plotted with respect to the
undamped natural frequency of the SDOF model. (Originally published in I. Takewaki, “Optimal damper
placement for critical excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000,
Elsevier B.V.).
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Figure 9.9 Design-dependent critical excitation and effective damper placement for critical excitation.
(Originally published in I. Takewaki, “Optimal damper placement for critical excitation,’’ Probabilistic
Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).

Equations 9.11 and 9.12. Since the worst input Sg(ω) is dependent on cV, the exact
treatment of this problem is complex and can be expressed by

min
cV

max
Sg(ω)

f (Sg(ω) : cV)

Furthermore, since story stiffnesses are fixed in the present problem, it is expected
that the PSD function Sg(ω) of the worst input is insensitive to the change of cV. For
example, Figure 9.10 shows the distributions of the function F(ω) defined by Equa-
tion 9.10 for two-DOF models with three different damper distributions (installed in
both stories, installed only in the first story and installed only in the second story). It
can be observed that the frequencies attaining the peak value of the function F(ω)
are almost the same irrespective of the damper distribution, and the worst input
Sg(ω) is insensitive to the change of cV. For this reason, the worst input is to be
found for the model without supplemental viscous dampers here. Then, the optimal
damper placement is found for the fixed worst input. In the case of viscoelastic
dampers, this problem becomes serious, and the dependency of the worst input on
the damper’s properties will have to be considered appropriately. This is a challenging
problem in the future.
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Figure 9.10 Distributions of the function F(ω) for two-DOF models with three different damper
distributions. (Originally published in I. Takewaki, “Optimal damper placement for critical excita-
tion,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).

In the following formulation, the PSD function of the input motion is fixed as that
of the critical excitation obtained in the previous section for the case of a finite PSD
amplitude s. The mean squares of the interstory drifts are evaluated by Equation 9.8
for that critical excitation. The problem of optimal damper placement for that critical
excitation (PODP-CE) may be described as follows.

Problem 9.2 PODP-CE Given the floor masses, story stiffnesses, and structural
damping of the shear building model and the PSD function of the input motion, find
the optimal distribution cV of supplemental viscous dampers to minimize the sum of
the mean squares of the interstory drifts

f =
n∑

i=1

σ2
Di

(9.17)

subject to the constraint on total damper capacity

n∑
i=1

cVi = W (W : specified total damper capacity) (9.18)

and to the constraints on each damper capacity

0 ≤ cVi ≤ cVi (i = 1, · · · , n) (cVi : upper bound of damping coefficient)
(9.19)
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9.5.1 Optimality Conditions

It is straightforward to use the Lagrange multiplier method for solving constrained
optimization problems. The constrained optimization problem stated above can be for-
mulated mathematically by the generalized Lagrangian formulation. The generalized
Lagrangian L for Problem 9.2 may be expressed by

L(cV, λ, µ, ν) =
n∑

i=1

σ2
Di

+ λ

(
n∑

i=1

cVi − W

)
+

n∑
i=1

µi(0 − cVi) +
n∑

i=1

νi(cVi − cVi)

(9.20)
In Equation 9.20, µ = {µi} and ν = {νi} are the Lagrange multipliers together with λ.
The principal (or major) optimality conditions for Problem 9.2 without active upper
and lower bound constraints on damping coefficients of the supplemental viscous
dampers may be derived from the stationarity conditions of L(µ = 0, ν = 0) with
respect to cV and λ:

f,j + λ = 0 for 0 < cVj < cVj ( j = 1, · · · , n) (9.21)

n∑
i=1

cVi − W = 0 (9.22)

Equation 9.13 has been derived by the differentiation with respect to cVj and
Equation 9.14 has been obtained by the differentiation with respect to λ.

Here, and in the following, the mathematical symbol ( · ),j indicates the partial dif-
ferentiation with respect to the damping coefficient cVj of the supplemental damper in
the jth story. When the lower or upper bound of the constraint on damping coefficients
of supplemental dampers is active, the optimality condition should be modified to the
following forms:

f,j + λ ≥ 0 for cVj = 0 (9.23)

f,j + λ ≤ 0 for cVj = cVj (9.24)

9.5.2 Solution Algorithm

A solution algorithm for the problem stated above is explained here. In the afore-
mentioned problem, the total damper capacity W is a fixed given value. From the
practical structural design’s point of view, however, it may be more useful if the opti-
mal damper placement is available for multiple total damper capacity levels. In this
section, a procedure is presented for finding such a set of optimal damper placements.

The model without supplemental viscous dampers, namely cVj = 0 (j = 1, · · · , n),
is employed as the initial model. This treatment is well suited to the situation where
a structural designer is starting the allocation and placement of added supplemental
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viscous dampers at appropriate positions. The damping coefficients of added supple-
mental dampers are increased gradually based on the optimality criteria stated above.
This algorithm is called the steepest direction search algorithm, as in Chapters 4–8.

Let �cVi and �W denote the increment of the damping coefficient of the ith added
damper (damper in the ith story) and the increment of the sum of the damping coeffi-
cients of added supplemental dampers respectively. Once �W is given, the problem is
to determine simultaneously the effective position and amount of the increments of the
damping coefficients of added supplemental dampers. In order to develop this algo-
rithm, the first- and second-order sensitivities of the objective function with respect to a
design variable are needed. Those quantities are derived by differentiating successively
Equation 9.8 by the design variables.

First-order derivative of mean-square interstory drift:

(σ2
Di

), j =
∫ ∞

−∞
{HDi (ω)}, jH

∗
Di

(ω)Sg(ω) dω+
∫ ∞

−∞
HDi (ω){H∗

Di
(ω)}, jSg(ω) dω (9.25)

Second-order derivative of mean-square interstory drift:

(σ2
Di

), jl =
∫ ∞

−∞
{HDi (ω)}, j{H∗

Di
(ω)},lSg(ω)dω +

∫ ∞

−∞
{HDi (ω)},l{H∗

Di
(ω)}, jSg(ω)dω

+
∫ ∞

−∞
{HDi (ω)}, jlH

∗
Di

(ω)Sg(ω)dω +
∫ ∞

−∞
HDi (ω){H∗

Di
(ω)}, jlSg(ω)dω

(9.26)

In Equations 9.25 and 9.26, the first and second-order derivatives of transfer functions
may be expressed as

{HDi (ω)}, j = TiA
−1
, j B (9.27)

{HDi (ω)}, jl = TiA
−1
, jl B (9.28)

{H∗
Di

(ω)}, j = TiA
−1∗
, j B (9.29)

{H∗
Di

(ω)}, jl = TiA
−1∗
, jl B (9.30)

In Equations 9.27–9.30, Ti is the ith row vector in the transformation matrix T defined
in Equation 9.4.

The first derivative of the inverse A−1 of the coefficient matrix can be computed
by (A−1), j = −A−1A, jA−1 obtained by differentiating AA−1 = I. Because the com-
ponents in the coefficient matrix A are linear functions of design variables, A, jl = 0.
Then the second-order derivative of the inverse A−1 can be obtained from

A−1
, jl = A−1(A, lA

−1A, j + A, jA−1A, l)A
−1 (9.31)
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The first-order derivative of the complex conjugate A−1∗ of the inverse can be
computed as {A−1

, j }∗ and the second-order derivative of A−1∗ can be found as

A−1∗
, jl = {A−1

, jl }∗.
The solution algorithm in the case satisfying the conditions cVj < cVj for all j may

be summarized as follows:

Step 0 Initialize all the damping coefficients of supplemental viscous dampers as
cVj = 0 ( j = 1, · · · , n). In the initial design stage, the structural damping
alone exists in the shear building model.

Step 1 Find the critical excitation Sg(ω) for the model without supplemental dampers.
Step 2 Assume �W .
Step 3 Compute the first-order derivative f,i of the objective function by

Equation 9.25.
Step 4 Find the index p satisfying the condition

−f,p = max
i

( − f,i) (9.32)

Step 5 Update the objective function f by the linear approximation f + f,p�cVp,
where �cVp = �W . This is because the supplemental damper is added only
in the pth story in the initial design stage.

Step 6 Update the first-order sensitivity f,i of the objective function by the linear
approximation f,i + f,ip�cVp using Equation 9.26.

Step 7 If, in Step 6, there exists a supplemental damper of an index j such that the
condition

−f, p = max
j, j �=p

(−f, j) (9.33)

is satisfied, then stop and compute the increment �c̃Vp of the damping coef-
ficient of the corresponding damper. At this stage, update f,i by f,i + f,ip�c̃Vp
using Equation 9.26.

Step 8 Repeat the procedure from Step 4 to Step 7 until the constraint in Equation 9.18
(i.e.,

∑n
i=1 cVi = W ) is satisfied.

In Step 4 and Step 5, the direction which decreases the objective function most effec-
tively under the condition

∑n
i=1 �cVi = �W is found and the design (the quantity of

supplemental dampers) is updated in that direction. It is appropriate, therefore, to call
the present algorithm “the steepest direction search algorithm,’’ as in Chapters 4–8.
As explained before, this algorithm is similar to the conventional steepest descent
method in mathematical programming (see Figure 7.2 in Chapter 7 to understand the
concept). However, while the conventional steepest descent method uses the gradient
vector itself of the objective function as the direction and does not utilize optimality
criteria, the present algorithm takes advantage of the newly derived optimality criteria
expressed by Equations 9.21, 9.23, and 9.24 and does not adopt the gradient vector
as the direction. More specifically, the explained steepest direction search guarantees
the successive and approximate satisfaction of the optimality criteria. For example,
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if �cVp is added to the pth added viscous damper in which Equation 9.32 is satis-
fied, then its damper (cVp > 0) satisfies the optimality condition in Equation 9.21 and
the other dampers (cVj = 0, j �= p) alternatively satisfy the optimality condition in
Equation 9.23. It is important to note that a series of subproblems is introduced here
tentatively in which the total damper level W is increased gradually by �W from zero
through the specified value.

It is necessary to investigate other possibilities. If multiple indices p1, · · · , pm exist
in Step 4, then the objective function f and its derivative f,j have to be updated by the
following rules:

f → f +
pm∑

i=p1

f,i�cVi (9.34a)

f,j → f,j +
pm∑

i=p1

f,ji�cVi (9.34b)

Furthermore, the index p defined in Step 7 has to be replaced by the multiple indices
p1, · · · , pm. The ratios among the magnitudes �cVi have to be determined so that the
following relations are satisfied:

f,p1 +
pm∑

i=p1

f,p1i�cVi = · · · = f,pm +
pm∑

i=p1

f,pmi�cVi (9.35)

Equation 9.35 requires that the optimality condition (9.21) continues to be satisfied in
the supplemental dampers with the indices p1, · · · , pm.

It may be the case in realistic situations that the maximum quantity of supple-
mental dampers is limited by the requirements of building design and planning. In
the case where the damping coefficients of some added supplemental dampers attain
their upper bounds, such constraints must be incorporated in the aforementioned algo-
rithm. In that case the increment �cVp is added subsequently to the supplemental
damper in which −f,p attains the maximum among all the supplemental dampers,
except for those attaining the upper bound.

9.6 Numerical Examples I

For a simple and clear presentation of the method explained above, consider a six-story
shear-building model. The energy limit of the excitation is given by S = 0.05 m2/s4

and the amplitude limit of the excitation PSD is set to s = 0.01 m2/s3. From the method
in Section 9.3, the critical excitation turns out to be the band-limited white noise, and
its PSD function is given by

Sg(ω) = 0.01 m2/s3 (−9.40 rad/s ≤ ω ≤ −6.90, 6.90 ≤ ω ≤ 9.40)

Sg(ω) = 0 otherwise
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Figure 9.11 Variation of damping coefficients for optimal damper placement with respect to the varied
total damper capacity. (Originally published in I. Takewaki, “Optimal damper placement for critical
excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).
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Figure 9.12 Variations of the objective function for optimal placement and for uniform placement with
the same total damper capacity. (Originally published in I. Takewaki, “Optimal damper placement for
critical excitation,’’ Probabilistic Engineering Mechanics, 15, no. 4, 317–325, 2000, Elsevier B.V.).

The floor masses of the shear building model are given by mi = 32 × 103 kg
(i = 1, · · · , 6) and the story stiffnesses are specified as ki = 3.76 × 107 N/m
(i = 1, · · · , 6). Then, the fundamental natural period of the structure attains 0.760 s.
The structural viscous damping matrix of the shear building model has been given
so that it is proportional to the stiffness matrix, and the lowest mode damping ratio
is equal to 0.05. The increment �W of the total damper capacity for finding a series
of optimal damper placements with respect to varied total damper capacity is set to
�W = 1.875 × 104 N s/m.

Figure 9.11 shows the variation of damping coefficients of the supplemental vis-
cous dampers for the optimal damper placement with respect to the varied total damper
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capacity. The damping coefficients of the supplemental viscous dampers for the opti-
mal placement are added first in the first story and then in the second and third
stories successively. It is useful to compare the performance of the shear building
model with the optimal placement with that of the shear building model with the
uniform distribution of dampers. Figure 9.12 illustrates the variation of the objec-
tive function for the optimal placement and that for the uniform placement with the
same total damper capacity. It is observed from this figure that the optimal place-
ment can reduce the objective function more effectively than the uniform placement.
It is noted that a series of optimal designs is found in the method explained above
with respect to total damper capacity, and the step number in Figures 9.11 and 9.12
does not mean the redesign step number in the conventional numerical optimization
algorithms. It has been found that the closed-form expressions of the inverse of the
coefficient matrix actually reduced the CPU time drastically from 130 seconds to
15 seconds.

9.7 Approach Based on Info-gap Uncertainty Analysis

As stated at the beginning of this chapter, load uncertainties and structural model
uncertainties are two major sources of actual uncertainties encountered in the design
of structures. Critical difficulties may be caused by the situation that load uncertainties
and structural model uncertainties are independent in some cases and are dependent in
a complicated manner in other cases. Analysis of such complicated dependency itself is
an important research subject (e.g., Schueller, 2008; Tsompanakis et al., 2008). While
simultaneous consideration of both the load and structural model uncertainties is very
important and challenging, as stated above, only a limited number of publications
have accumulated (Igusa and Der Kiureghian, 1988; Ghanem and Spanos, 1991;
Jensen and Iwan, 1992; Cherng and Wen, 1994a, 1994b; Koyluoglu et al., 1995;
Katafygiotis and Papadimitriou, 1996; Jensen, 2000; Qiu and Wang, 2003; Schueller,
2008; Tsompanakis et al., 2008).

Because civil engineering structures, unlike mechanical products, are not mass
produced, and because the occurrence rate of large earthquakes and other severe
disturbances critical to their safety design is very low, the probabilistic representa-
tion of the effect of these disturbances on structural systems seems to be difficult in
most cases. This implies the difficulty of applying structural reliability theory to such
problems.

The method of critical excitation is one of the powerful strategies for overcom-
ing difficulties arising in the modeling of the nonprobabilistic load uncertainty, and
many useful investigations have been made (Drenick, 1970; Shinozuka, 1970; West-
ermo, 1985; Ben-Haim and Elishakoff, 1990; Takewaki, 2001a, 2001b, 2002a, 2002b;
2004, 2006). In most of these critical excitation methods, except Westermo (1985) and
Takewaki (2004, 2006), deformation or displacement parameters were treated as

WWW.BEHSAZPOLRAZAN.COM



c09.tex 27/8/2009 16: 0 Page 224

224 Building Control with Passive Dampers

response performance functions defining the criticality of the loads. On the con-
trary, the earthquake input energy to passively controlled structures is introduced in
this chapter as a new measure of structural performance. This is because some con-
trol devices have a limitation on energy dissipation capacity and their modeling. It is
acknowledged in general that, while the structural properties and mechanical perfor-
mance of ordinary structural systems are well recognized through a lot of experiences
and databases, those of control devices installed in those ordinary structural systems
are not necessarily well defined and reliable. In this situation, it may be reasonable to
take into account the uncertainties of damping coefficients of supplemental viscous
dampers and to use the earthquake input energy to those passively controlled structures
as a new measure of structural performance.

The purpose of this section is to introduce and explain a new structural design con-
cept which combines uncertainties in both the load and the structural parameters. For
this goal, it is absolutely necessary to identify the critical load (excitation) theoreti-
cally, if possible, and the corresponding critical set of structural model parameters. As
mentioned above, it is well recognized that the critical load (excitation) depends on the
structural model parameters, and it is extremely difficult to deal with load uncertainties
and structural model parameter uncertainties simultaneously. In order to tackle these
difficult problems, the info-gap models of uncertainty (nonprobabilistic uncertainty
models) by Ben-Haim (1996, 2001, 2005, 2006) are used. This concept enables one
to represent uncertainties which exist in the Fourier amplitude spectrum of the load
(input ground acceleration) and in parameters of the vibration model of the structure.

As a simple example, let us consider a vibration model with viscous damping systems
in addition to masses and springs. It is well understood in the field of structural control
and health monitoring that viscous damping coefficients ci in a vibration model are very
uncertain in comparison with masses and stiffnesses. By using a method for describing
such uncertainty, the uncertain viscous damping coefficient can be expressed in terms
of the nominal value c̃i and the unknown uncertainty level α, as shown in Figure 9.13
(Takewaki and Ben-Haim, 2005).

C(α, c̃) =
{

c :

∣∣∣∣ci − c̃i

c̃i

∣∣∣∣ ≤ α, i = 1, · · · , N

}
α ≥ 0 (9.36a)

The inequality in Equation 9.36a can be rewritten as

(1 − α)c̃i ≤ ci ≤ (1 + α)c̃i (9.36b)

There is another method for describing such uncertainty of viscous damping. The
energy transfer function introduced in the following section or the deformation (or
acceleration) transfer function to the input acceleration can be one of the dynamic
structural performances which a vibration model or system possesses. Let F(ω, c, k)
denote the “energy transfer function’’ defined in the following section. The energy
transfer function is a function such that, when it is multiplied by the squared Fourier
amplitude spectrum of the input and integrated in the frequency range, it provides
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Figure 9.13 Uncertain damping coefficient with unknown horizon of uncertainty α. (© 2008 from
Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and
M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa plc.).

the earthquake input energy to the vibration model. The energy transfer function of a
vibration model is a function of the viscous damping coefficients ci, and the following
info-gap model may be introduced in terms of the nominal function F̃ corresponding
to the nominal viscous damping coefficients c̃i:

F(α, F̃) =
{

F(ω, c, k) :

∣∣∣∣ci − c̃i

c̃i

∣∣∣∣ ≤ α, i = 1, · · · , N

}
α ≥ 0 (9.37)

While the energy transfer functions are regarded as functions of the viscous damping
coefficients ci, as shown in Equation 9.37, the following family of sets of functions
may also be considered for the definition of the info-gap uncertainty model:

F∗(α, F̃) = {F(ω, k) : |F(ω, k) − F̃(ω, k)| ≤ α} α ≥ 0 (9.38a)

F∗∗(α, F̃) = {F(ω, k) : |F(ω, k) − F̃(ω, k)| ≤ αψ(ω)} α ≥ 0 (9.38b)

Inequalities in Equations 9.38a and 9.38b can be expressed by

F̃(ω, k) − α ≤ F(ω, k) ≤ F̃(ω, k) + α (9.39a)

F̃(ω, k) − αψ(ω) ≤ F(ω, k) ≤ F̃(ω, k) + αψ(ω) (9.39b)

It is noted that, while the nominal function F̃ in Equation 9.37 has been introduced
as the function corresponding to the nominal viscous damping coefficients c̃i, the
function F̃(ω, k) in Equations 9.38a and 9.38b may not necessarily be the function
corresponding to the nominal viscous damping coefficients c̃i. This treatment enables
one to incorporate uncertainties other than the viscous damping coefficients.
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9.7.1 Info-gap Robustness Function

The info-gap uncertainty analysis was introduced by Ben-Haim (2001) for measuring
the robustness of a structure subjected to external loads. Simply speaking, the info-
gap robustness is the greatest horizon of uncertainty α up to which the performance
function f (c, k) does not exceed a critical value fC. The performance function may be
a peak displacement, peak stress, earthquake input energy, and so on.

Let us define the following info-gap robustness function corresponding to the info-
gap uncertainty model represented by Equation 9.36a:

α̂(k, fC) = max

{
α : { max

c∈C(α,c̃)
f (c, k)} ≤ fC

}
(9.40)

Another info-gap robustness function corresponding to the info-gap uncertainty
model represented by Equation 9.37 may be introduced by

α̂(k, fC) = max

{
α : { max

F∈F(α,F̃)
f (c, k)} ≤ fC

}
(9.41)

Let us put fC0 = f (c̃, k) for the nominal damping coefficients. Then one can show
that α̂(k, fC0) = 0 for the specific value fC0, as shown in Figure 9.14. Furthermore,
let us define α̂(k, fC) = 0 if fC ≤ fC0 (see Figure 9.14). This means that, when the
performance requirement is too small, we cannot satisfy the performance requirement
for any admissible damping coefficients. The definitions in Equations 9.40 and 9.41
also imply that the robustness is the maximum level of the structural model parameter
uncertainty α satisfying the performance requirement f (c, k) ≤ fC for all admissible
variation of the structural model parameter represented by Equation 9.36a or 9.37.
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Figure 9.14 Info-gap robustness function α̂ with respect to design requirement fC. (© 2008 from
Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and
M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa plc.).
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9.7.2 Earthquake Input Energy to an SDOF System

The earthquake input energy is now introduced as the performance function of a
vibration model. Many investigations have accumulated on the topic of the earthquake
input energy since the pioneering work by Housner (1959). Housner (1959) pointed
out that the input energy, although this definition is somewhat ambiguous, can be
related to the velocity response spectrum of the input ground motion and the constant
input energy criterion may hold approximately not only in elastic structures but also in
elastic–plastic structures. Most research in this field has been conducted using the time-
domain approach, which enables the treatment of even inelastic structures. In contrast
to most of these previous studies (e.g., Housner, 1959; Akiyama, 1985; Uang and
Bertero, 1990), the earthquake input energy is formulated here in the frequency domain
(Page, 1952; Lyon, 1975; Ordaz et al., 2003; Takewaki, 2004, 2006) to facilitate
the derivation of a bound of the earthquake input energy. Although the structures to
be treated are restricted to elastic structures, this bound analysis may be useful and
meaningful in uncertainty analysis of ground motions.

For a simple but essential presentation of the theory, consider a damped linear
SDOF system of mass m, stiffness k, and damping coefficient c. Let � =√k/m,
h = c/(2�m) and x denote the undamped natural circular frequency, the damping
ratio, and the displacement of the mass relative to the ground respectively. The time
derivative is denoted by an over-dot. The earthquake input energy to this SDOF system
by a unidirectional horizontal ground acceleration üg(t) = a(t) from t = 0 to t = t0 (end
of input) can be defined by the work of the ground on this SDOF structural system
and is expressed in time domain by

EI =
∫ t0

0
m(üg + ẍ)u̇gdt (9.42)

In the system shown in Figure 9.15, the term −m(üg + ẍ) is modified from the term
in Equation 9.42 with a minus sign to indicate the inertial force on the mass at an

..

..

ugdt
.

Figure 9.15 Free-body diagram for defining input energy. (© 2008 from Structural Design Optimization
Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced
by permission of Taylor and Francis Group, LLC, a division of Informa plc.).
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arbitrary time t, which is equal to the sum of the restoring force kx and the damping
force cẋ. Integration by parts of Equation 9.42 provides

EI =
∫ t0

0
m(ẍ + üg)u̇gdt =

∫ t0

0
mẍu̇gdt +

[
1

2
mu̇2

g

]t0

0

= [mẋu̇g]t0
0 −

∫ t0

0
mẋügdt +

[
1

2
mu̇2

g

]t0

0
(9.43)

If the relative velocity satisfies ẋ = 0 at t = 0 and the velocity of ground motion
satisfies u̇g = 0 at t = 0 and t = t0, then the earthquake input energy can be reduced
simply to the following form:

EI = −
∫ t0

0
mügẋdt (9.44a)

Equation 9.44a is alternatively defined by multiplying the relative velocity ẋ on both
sides of the equation of motion and integrating from time t = 0 to t = t0 as follows:∫ t0

0
mẍẋdt +

∫ t0

0
cẋẋdt +

∫ t0

0
kxẋdt = −

∫ t0

0
mügẋdt (9.44b)

This also provides the following energy balance:

[
1

2
mẋ2

]t0

0
+
∫ t0

0
cẋ2dt +

[
1

2
kx2
]t0

0
= −

∫ t0

0
mügẋdt (9.44c)

As an actual recorded ground motion, consider the motion of El Centro NS 1940
(Imperial Valley) shown in Figure 9.16. The time history of the earthquake input energy
per unit mass is shown in Figure 9.17. This can be computed using Equation 9.44a by
regarding t0 as t.

It is known (Page, 1952; Lyon, 1975; Ordaz et al., 2003; Takewaki, 2004, 2006)
that, once the Fourier transformation is applied to üg and ẋ, the earthquake input energy
expressed by Equation 9.44a can also be expressed in the frequency domain:

EI

m
= −

∫ ∞

−∞
ẋadt = −

∫ ∞

−∞

(
1

2π

∫ ∞

−∞
Ẋ eiωtdω

)
adt

= − 1

2π

∫ ∞

−∞

(∫ ∞

−∞
aeiωtdt

)
{HV(ω; �, h)A(ω)}dω

= − 1

2π

∫ ∞

−∞
A( − ω){HV(ω; �, h)A(ω)}dω (9.45)
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Figure 9.16 Ground motion of El Centro NS 1940 (Imperial Valley). (© 2008 from Structural Design
Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds).
Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.).
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Figure 9.17 Time history of earthquake input energy under El Centro NS 1940 (Imperial Valley).
(© 2008 from Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D.
Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC,
a division of Informa plc.).

where HV(ω; �, h) is the velocity transfer function defined by Ẋ (ω) = HV(ω; �, h)A(ω)
and is expressed by HV(ω; �, h) = −iω(�2 − ω2 + 2ih�ω). The functions Ẋ and A(ω)
are the Fourier transforms of the relative velocity ẋ and input acceleration üg(t) = a(t)
respectively. The symbol i denotes the imaginary unit. Since the imaginary part of the
velocity transfer function HV(ω; �, h) is an odd function of ω, Equation 9.45 can be
simplified to

EI

m
=
∫ ∞

0
|A(ω)|2

{
− 1

π
Re[HV(ω; �, h)]

}
dω

≡
∫ ∞

0
|A(ω)|2F(ω)dω (9.46)

where F(ω) is the energy transfer function expressed by F(ω) = −Re[HV(ω; �, h)]/π.
Equation 9.46 implies that the earthquake input energy to damped linear elastic SDOF
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Figure 9.18 Fourier amplitude spectrum of ground acceleration of El Centro NS 1940 (Imperial Val-
ley). (© 2008 from Structural Design Optimization Considering Uncertainties by Y. Tsompanakis,
N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group,
LLC, a division of Informa plc.).

systems does not depend on the phase of input motions, as pointed out by Page (1952),
Lyon (1975), Ordaz et al. (2003), and Takewaki (2004).

Figure 9.18 shows the Fourier amplitude spectrum |A(ω)| of El Centro NS 1940.

9.7.3 Earthquake Input Energy to an MDOF System

Consider next a damped linear elastic MDOF shear building model of mass matrix [M ]
subjected to a unidirectional horizontal ground acceleration üg(t) = a(t). The method
explained here can be applied to both proportionally damped and nonproportionally
damped structures.

Let {x} denote a set of the horizontal floor displacements of the MDOF shear building
model relative to the ground. The time derivative is denoted by an over-dot.As in SDOF
models, the earthquake input energy to this MDOF system by the ground motion from
t = 0 to t = t0 (end of input) can be defined by the work of the ground on this MDOF
system and is expressed by

EI =
∫ t0

0
{1}T[M ]({1}üg + {ẍ})u̇gdt (9.47)

In Equation 9.47, the vector {1} is the influence coefficient vector denoted by
{1} = {1 · · · 1}T. The term {1}T[M ]({1}üg + {ẍ}) in Equation 9.47 indicates the
sum of the horizontal inertial forces with a minus sign acting on this system shown in
Figure 9.19.

As in SDOF models, integration by parts of Equation 9.47 provides

EI =
[

1

2
{1}T[M ]{1}u̇2

g

]t0

0
+
[
{ẋ}T[M ]{1}u̇g

]t0

0
−
∫ t0

0
{ẋ}T[M ]{1}ügdt (9.48)
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Figure 9.19 Free-body diagram for defining earthquake input energy to MDOF model. (© 2008
from Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and
M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa plc.).

If the relative velocity satisfies {ẋ} = {0} at t = 0 and the velocity of ground motion
satisfies u̇g = 0 at t = 0 and t = t0, then the earthquake input energy can be reduced
simply to the following form:

EI = −
∫ t0

0
{ẋ}T[M ]{1}ügdt (9.49)

The earthquake input energy can also be expressed in the frequency domain as
in the SDOF system. Let {Ẋ } denote the Fourier transform of the relative velocity
{ẋ}. Application of the Fourier inverse transformation of the relative velocities {ẋ} to
Equation 9.49 provides

EI = −
∫ ∞

−∞

[
1

2π

∫ ∞

−∞
{Ẋ }Teiωtdω

]
[M ]{1}ügdt

= − 1

2π

∫ ∞

−∞
{Ẋ }T[M ]{1}

[∫ ∞

−∞
ügeiωt dt

]
dω (9.50)

= − 1

2π

∫ ∞

−∞
{Ẋ }T[M ]{1}A(−ω)dω

In Equation 9.50, A(ω) is the Fourier transform of ground acceleration üg(t) = a(t) as
defined above.
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By using the Fourier transform of the equations of motion, the Fourier transform
Ẋ (ω) of the relative velocities can be expressed by

{Ẋ (ω)} = −iω(−ω2[M ] + iω[C] + [K])−1[M ]{1}A(ω) (9.51)

After substitution of Equation 9.51 into Equation 9.50, the earthquake input energy
may be evaluated by

EI =
∫

0

∞
FM(ω)|A(ω)|2dω (9.52)

where FM(ω) denotes the following energy transfer function for MDOF models:

FM(ω) = 1

π
Re[iω{1}T[M ]T[Y (ω)][M ]{1}] (9.53a)

In Equation 9.53a, the matrix [Y (ω)] is given by

[Y (ω)] = (−ω2[M ] + iω[C] + [K])−1 (9.53b)

9.7.4 Critical Excitation Problem for Acceleration Power

This section demonstrates that a critical excitation method for the earthquake input
energy as a performance index can provide upper bounds on earthquake input energy.
This is common in the field of critical excitation; that is, an upper bound of the objective
function in the critical excitation problem can always be derived. Over two decades
ago, Westermo (1985) discussed a similar problem for the maximum input energy
to an SDOF system subjected to external forces. His solution of critical excitation is
interesting but restrictive, because it is of the form including the velocity response
quantity containing the solution itself implicitly. To remove this restriction, a more
general solution procedure will be explained here.

In the field of earthquake engineering, the scaling of ground motions based on
an appropriate measure is quite important from the viewpoint of risk-based design.
The capacity or intensity of ground motions is often defined in terms of the time
integral of squared ground acceleration a(t)2 (Arias, 1970; Housner and Jennings,
1975; Takewaki, 2004, 2006). This quantity is well known as the Arias intensity
measure, except for a difference in the coefficient. The constraint on this quantity can
be expressed by ∫ ∞

−∞
a(t)2 dt = 1

π

∫ ∞

0
|A(ω)|2 dω = CA (9.54)

where CA is the specified value of the time integral of squared ground acceleration
and A(ω) is the Fourier transform of a(t). It is also natural to assume that the maximum
value of the Fourier amplitude spectrum of input ground acceleration is finite because
the duration is finite. The infinite Fourier amplitude spectrum may correspond to a
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perfect harmonic function with infinite duration or that multiplied by an exponen-
tial function (Drenick, 1970), which is unrealistic as an actual ground motion. The
constraint on this property may be described by

|A(ω)| ≤ A (9.55)

where A is a specified upper bound of the Fourier amplitude spectrum.
The critical excitation problem for the MDOF system may be stated as follows.

Problem 9.3 Find the Fourier amplitude spectrum |A(ω)| of ground acceleration
that maximizes the earthquake input energy expressed by Equation 9.52 subject to the
constraints in Equations 9.54 and 9.55 on ground acceleration.

It is known and clear from the work by Takewaki (2001a, 2001b, 2002b) or the
explanation in Section 9.3 on PSD functions that, if the upper bound A is infinite,
|A(ω)|2 turns out to be the Dirac delta function which has a nonzero value at the
point maximizing F(ω). On the other hand, if the upper bound A is finite, then

|A(ω)|2 yields a rectangular function attaining A
2

in a certain finite frequency range.

The band-width of the frequency can be obtained as �ω = πCA/A
2
. The position

of the rectangular function (i.e., the lower and upper frequency limits) can be com-

puted by maximizing the function A
2 ∫ωU

ωL
F(ω) dω. It is noted that the lower and

upper frequency limits satisfy the condition ωU − ωL = �ω. It can be shown that a
good and simple approximation can be obtained from (ωU + ωL)/2 = �, where �

is the undamped fundamental natural circular frequency of the MDOF system. The
essential feature of the solution procedure explained in this section is shown in the
schematic diagram in Figure 9.20. It is interesting to note that the above-mentioned
periodic solution of Westermo (1985) may correspond to the case of infinite A.

A → ∞

A(v)2

A : finite

function F(v)fu
nc

tio
n 

F
(v

)

frequency v

Dirac delta function

vL vU�

Figure 9.20 Schematic diagram of solution procedure for critical excitation problem. (© 2008 from
Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and
M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa plc.).
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9.8 Evaluation of Robustness of Shear Buildings with Uncertain Damper
Properties under Uncertain Ground Motions

9.8.1 Load Uncertainty Representation in Terms of Info-gap Models

As mentioned above, the simultaneous consideration of load and structural model
uncertainties is not easy because both uncertainties have different dimensions and
characters. To explain this simultaneous consideration, consider first an uncertainty
model of load which is expressed in terms of a Fourier amplitude spectrum of the input
acceleration.

Let Ã and αs denote the nominal Fourier amplitude spectrum of the uncertain input
acceleration and its uncertainty level. The nominal Fourier amplitude spectrum may
be interpreted as a design spectrum and the uncertainty level may be regarded as the
degree of variation resulting from various factors. An info-gap model (Ben-Haim,
2001) of load A(αs, Ã) for αs ≥ 0 is introduced here to represent uncertainty in the
Fourier amplitude spectrum of the input acceleration. This info-gap model of load
may be defined by

A[αs, Ã2(ω; �ω, CA)] =
{∣∣∣A2(ω)

∣∣∣ = s∗Ã2
(

ω;
�ω

s∗ , CA

)
:

s∗ = s

s̃
,

∣∣∣∣s − s̃

s̃

∣∣∣∣ ≤ αs

}
αs ≥ 0 (9.56a)

The inequality in Equation 9.56a can be rewritten as

(1 − αs)Ã
2 ≤ |A2(ω)| ≤ (1 + αs)Ã

2 (9.56b)

In the past, Takewaki and Ben-Haim (2005) proposed a similar info-gap model for
PSD functions.

The graphical and schematic expression of A(αs, Ã2) can be found in Figure 9.21.
Note that the quantity CA is related to the power or intensity of the input acceleration
and is assumed to be constant here. This leads to the constant area of the critical
rectangular function of the squared Fourier amplitude spectrum. For this reason, as
the amplitude changes uncertainly, the band-width varies correspondingly.

In order to explain in more detail the physical meaning of variation of the squared
Fourier amplitude spectrum shown in Figure 9.21, consider the two finite-duration
sinusoidal waves shown in Figures 9.22 and 9.23. These two finite-duration sinusoidal
waves have the same acceleration power CA. While Figure 9.22 represents a short-
duration ground acceleration (representative of near-field ground motion) which has
an intensive input during a short duration, Figure 9.23 presents a long-duration ground
acceleration and simulates approximately a far-field ground motion which has a rather
small input over a long duration. Figure 9.24 is the Fourier amplitude spectrum of the
sinusoidal wave shown in Figure 9.22 (near-field ground motion) and Figure 9.25 is
the Fourier amplitude spectrum of the sinusoidal wave shown in Figure 9.23 (far-field
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Figure 9.21 Variation of critical rectangular function of the squared Fourier amplitude spectrum of
input acceleration. (© 2008 from Structural Design Optimization Considering Uncertainties by Y. Tsom-
panakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis
Group, LLC, a division of Informa plc.).
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Figure 9.22 Short-duration sinusoidal motion. (© 2008 from Structural Design Optimization Con-
sidering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by
permission of Taylor and Francis Group, LLC, a division of Informa plc.).

ground motion). From these figures, it may be said that a smaller level and wider
range in squared Fourier amplitude spectrum represents a variation to a short-duration
ground acceleration (representative of near-field ground motion) and a larger level
and narrower range of squared Fourier amplitude spectrum assumes a variation to be
a long-duration ground motion (representative of far-field ground motion).

9.8.2 Info-gap Robustness Function for Load and Structural Uncertainties

As explained before, the info-gap model for uncertainty in the dynamic model can
be expressed by F(αm, F̃) for αm ≥ 0 in compliance with the definition (9.37). It
should be noted that two different uncertainty parameters αm and αs are eventually
used here simultaneously. The parameter αs for load uncertainty has been introduced
just above and the parameter αm for model uncertainty is defined here by including
the expression of αs.
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Figure 9.23 Long-duration sinusoidal motion. (© 2008 from Structural Design Optimization Con-
sidering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by
permission of Taylor and Francis Group, LLC, a division of Informa plc.).
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Figure 9.24 Fourier amplitude spectrum of short-duration sinusoidal motion. (© 2008 from Structural
Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis
(eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.).

0

1

2

3

4

5

0 2 4 6 8 10 12 14

Fo
ur

ie
r 

am
pl

itu
de

circular frequency (rad/s)

Figure 9.25 Fourier amplitude spectrum of long-duration sinusoidal motion. (© 2008 from Structural
Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis
(eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of Informa plc.).
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Let the function f (A, F , k) denote the performance requirement including the earth-
quake input energy by the input with the Fourier amplitude spectrum A based on the
energy transfer function F and design k. As in the definition of the robustness in
Equations 9.40 and 9.41, the performance requirement may be expressed by

f (A, F , k) ≤ fC (9.57)

The info-gap robustness function (Takewaki and Ben-Haim, 2005) can then be
introduced as a measure of robustness for model uncertainty for a given load spectral
uncertainty level αs:

α̂m(k, fC, αs) = max

⎧⎪⎪⎨
⎪⎪⎩αm :

⎧⎪⎪⎨
⎪⎪⎩ max

F ∈ F (αm, F̃)
A ∈ A(αs, Ã2)

f (A, F , k)

⎫⎪⎪⎬
⎪⎪⎭ ≤ fC

⎫⎪⎪⎬
⎪⎪⎭ (9.58)

Equation 9.58 clearly expresses the robustness (maximum robustness) of the structure
under both the load and structural model uncertainties. This enables the simultaneous
consideration of both the load and structural model uncertainties. It may be another
and future possibility to relate αs with αm and define a unified robustness function
α̂m in place of Equation 9.58. This will open a new horizon for truly simultaneous
consideration of both uncertainties.

9.9 Numerical Examples II

For a simple and clear presentation of the method explained above, consider the six-
story shear building model shown in Figure 9.26(a). Assume that this system has a
uniform structural damping of the damping coefficient of 3.76 × 105 N s/m, as shown
in Figure 9.27. This structural damping corresponds to a damping ratio of 0.04 in the
fundamental vibration mode. Each floor has the same mass mi = 32 × 103 kg and every
story stiffness has the same value of 3.76 × 107 N/m. The undamped fundamental
natural period of this six-story shear building model is T1 = 0.72 s. A supplemental
viscous damper as a passive control system is installed in the first, third, or sixth story,
as shown in Figure 9.26(b)–(d). The magnitude of the supplemental viscous damper is
shown in Figure 9.28. The nominal damping coefficient c̃d of the supplemental viscous
damper is determined so as to attain 10 times the damping coefficient of the structural
damping in the same story. The uncertain damping coefficient cd of the supplemental
viscous damper is expressed by cd = c̃d(1 ± 0.5αm), where αm is the unknown horizon
of uncertainty in the model coefficients. The damping coefficients corresponding to
three uncertainty levels αm = 0.0, 0.5, and 1.0 are shown in Figure 9.28.

The degree of uncertainty of the load is assumed to be expressed by the variation
s = s̃(1 ± αs) of the squared rectangular Fourier amplitude spectrum of the input ground
acceleration where αs is the unknown horizon of uncertainty in the load. The power
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(a) (b) (c) (d)

Figure 9.26 Six-story shear building model: (a) bare frame; (b) frame with a supplemental damper in
the first story; (c) frame with a supplemental damper in the third story; (d) frame with a supplemental
damper in the sixth story. (© 2008 from Structural Design Optimization Considering Uncertainties by
Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and
Francis Group, LLC, a division of Informa plc.).
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Figure 9.27 Structural damping coefficient. (© 2008 from Structural Design Optimization Considering
Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission
of Taylor and Francis Group, LLC, a division of Informa plc.).

of the input defined by Equation 9.54 does not vary and is given by CA = 11.4 m2/s3.
This indicates that the area of squared Fourier amplitude spectrum is constant.
The nominal level of the rectangular Fourier amplitude spectrum is Ã = 2.91 m/s
and its nominal band-width is �ω̃ = 4.21 rad/s.

It is meaningful to note that the worst case (critical case), up to uncertainties αm
and αs, can be obtained from cd = c̃d(1 − 0.5αm) and s = s̃(1 + αs). Although the
problem of finding the worst case is very complicated in general (Kanno and Takewaki,
2007), the present case is almost self-evident. This enables one to discuss the info-gap
robustness function directly with respect to the earthquake input energy performance.
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Figure 9.28 Supplemental viscous damping coefficient: (a) first-story allocation; (b) third-story alloca-
tion; (c) sixth-story allocation. (© 2008 from Structural Design Optimization Considering Uncertainties
by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and
Francis Group, LLC, a division of Informa plc.).

Figure 9.29 shows the energy transfer functions FM(ω) defined by Equation 9.52
for three different models: one with a supplemental damper in the first story, one in
the third story, and the other in the sixth story. It is observed that the energy transfer
functions FM(ω) of a passively controlled shear building model with a supplemental
damper near the fixed support (base) are smaller than those of the model with a
supplemental damper near its tip (top). This means that the allocation of passive
dampers into lower stories is effective in reducing the earthquake input energy. It is
also observed that the frequencies attaining the peak values are slightly different, but
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Figure 9.29 Energy transfer functions FM(ω) defined by Equation 9.53a for three models: one with
an added damper in the first story, one in the third story, and the other in the sixth story. (© 2008
from Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D. Lagaros, and
M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC, a division of
Informa plc.).

the critical rectangular Fourier amplitude of the input acceleration may be almost the
same.

Figure 9.30(a) plots the info-gap robustness function α̂m versus the specified limit
value of the earthquake input energy for the null load spectral uncertainty αs = 0.0; that
is, no load spectral variation. Figures 9.30(b)–(d) show the plots of α̂m for smaller load
spectral uncertainties αs = 0.1, 0.3, and 0.5; by comparing these plots we can see that
robustness to model uncertainty α̂m decreases as load uncertainty αs increases. This
is because, when the load uncertainty increases, the structural model easily violates
the performance requirement for that larger external disturbance. It is also observed
that a passively controlled shear building model with a supplemental damper near the
fixed support is “more robust’’ than that with a supplemental damper near its tip (top)
in all the cases of the load spectral uncertainties.

Figure 9.31(a) shows the plot of the info-gap robustness function α̂m, of the model
with a supplemental damper in the first story, versus the specified limit value of the
earthquake input energy for various levels of load uncertainties. It can be understood
that, as the level of load uncertainty increases, the info-gap robustness function α̂m gets
smaller; that is, less robust for variation of the structural parameter. Figures 9.31(b)
and (c) show the plots of info-gap robustness function α̂m of the models with a
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Figure 9.30 Plot of the info-gap robustness function α̂m versus the specified limit value of the earthquake
input energy for various load spectral uncertainties: (a) αs = 0.0; (b) αs = 0.1; (c) αs = 0.3; (d) αs = 0.5.
(© 2008 from Structural Design Optimization Considering Uncertainties by Y. Tsompanakis, N.D.
Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and Francis Group, LLC,
a division of Informa plc.).

supplemental damper in the third and sixth stories respectively, with respect to the
specified value of the earthquake input energy for various levels of load uncertainties.
A tendency similar to Figure 9.31(a) is observed.

Figure 9.32 is a plot of the info-gap robustness function α̂m with respect to the level
of the load spectral uncertainty αs for the model with a supplemental damper in the
first story. From this figure, the designer can understand the effect of the load spectral
uncertainty αs on the info-gap robustness function. It is also interesting to note that
the info-gap robustness function α̂m and the level of the load spectral uncertainty αs
introduce a new trade-off relationship.
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Figure 9.31 Plot of the info-gap robustness function α̂m versus the specified limit value of the earthquake
input energy for various levels of load uncertainties: (a) model with a supplemental damper in the
first story; (b) model with a supplemental damper in the third story; (c) model with a supplemental
damper in the sixth story. (© 2008 from Structural Design Optimization Considering Uncertainties by
Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission of Taylor and
Francis Group, LLC, a division of Informa plc.).
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Figure 9.32 Plot of the info-gap robustness function α̂m with respect to the level of the load spec-
tral uncertainty αs for various requirements of earthquake input energies EI = 4.0 × 106, 6.0 × 106,
8.0 × 106 N m (first-story damping model). (© 2008 from Structural Design Optimization Considering
Uncertainties by Y. Tsompanakis, N.D. Lagaros, and M. Papadrakakis (eds). Reproduced by permission
of Taylor and Francis Group, LLC, a division of Informa plc.).

9.10 Summary

The results in this chapter may be summarized as follows.

1. A probabilistic critical excitation method is developed by using a stochastic
response index as the objective function to be maximized. The energy (area of PSD
function) and the intensity (maximum value of PSD function) of the excitations
are fixed in the method.

2. Without the restriction on the excitation intensity, the PSD function of the critical
excitation is reduced to the Dirac delta function at the frequency with the maximum
transfer function. When the restriction on the excitation intensity exists, the critical
excitation has a PSD function with the maximum intensity limit in a finite interval
(band-limited white noise) for which a function including the squares of the transfer
functions is maximized.

3. The explained probabilistic critical excitation method is applicable to MDOF
structural systems with nonproportional damping.

4. While the degree of conservativeness of the explained critical excitation is about
2 or 3 for recorded ground motions without a remarkable predominant frequency,
it is close to unity for ground motions with a remarkable predominant frequency.
The resonant characteristic of such ground motion can be well represented by the
critical excitation obtained.
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5. Optimal damper placement under uncertain input acceleration is a challenging
problem. With the aid of the characteristic that the critical input is insensitive to
the damper placement of viscous dampers, the steepest direction search algorithm
explained here can be utilized for optimal damper placement in building structures
subjected to the critical excitations.

6. Since a transfer function can be obtained in closed form for MDOF systems with
nonproportional damping due to the tri-diagonal property of the coefficient matrix,
the mean-square responses of the building structure to the random earthquake input
and their derivatives with respect to the design variables (damping coefficients of
added dampers) can be computed very efficiently.

7. The optimal damper placement obtained from the present formulation can actu-
ally reduce the objective function effectively compared with uniform damper
placement.

8. The earthquake input energy is an appropriate measure for evaluating the perfor-
mance level of passively controlled structures. A critical excitation problem can
be stated for the earthquake input energy as a criticality measure. The critical
excitations depend upon the dynamic properties of the passively controlled mass–
spring–damper systems and it is necessary to deal with load and structural model
uncertainties simultaneously.

9. Info-gap uncertainty models are very useful in describing both the load and struc-
tural model uncertainties. Determination of the critical states in the load and
structural parameters is an essential step to the investigation of the robustness
of the passively controlled mass–spring–damper systems. In cases where the criti-
cal states in the load and structural parameters are not found easily, a sophisticated
method for finding those is necessary.

10. A passively controlled mass–spring–damper system with a supplemental damper
near the fixed support is more robust than that with an added damper near its tip
(top). The increased robustness can be evaluated quantitatively.

11. The simultaneous consideration of the load and structural model uncertainties intro-
duces a new class of trade-off. The robustness to structural model uncertainty
increases as the uncertainty level of the load gets smaller.

Appendix 9.A: System Mass, Damping, and Stiffness Matrices for a
Two-story Shear Building Model

The system mass, damping, and stiffness matrices for a two-story shear building model
may be expressed by

M = diag(m1 m2) (A9.1)

C =
[

C1 + C2 −C2
−C2 C2

]
(A9.2)
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K =
[

k1 + k2 −k2
−k2 k2

]
(A9.3)

where Ci = ci + cVi; ci is an original frame damping coefficient and cVi is an added
damper damping coefficient.

Appendix 9.B: Closed-form Expression of the Inverse of a
Tri-diagonal Matrix

Consider the following symmetric tri-diagonal matrix of M × M :

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

dM −eM 0

−eM
. . .

. . .

. . .
. . .

. . .

. . .
. . . −e3
−e3 d2 −e2

0 −e2 d1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

(B9.1)

Let us define the following principal minors:

P0 = 1, P1 = d1, P2 =
∣∣∣∣ d2 −e2
−e2 d1

∣∣∣∣ , . . . , PM = det A (B9.2)

PR0 = 1, PR1 = dM , PR2 =
∣∣∣∣ dM −eM
−eM dM −1

∣∣∣∣ , . . . , PRM = det A (B9.3)

The principal minors satisfy the following recurrence formula:

Pj−1 = dj−1Pj−2 − e2
j−1Pj−3 ( j = 3, . . . , M ) (B9.4)

The jth column of A−1 may be expressed as

1

det A

⎧⎨
⎩
⎛
⎝ M∏

i=M −j+2

ei

⎞
⎠PM −jPR0

⎛
⎝ M −1∏

i=M −j+2

ei

⎞
⎠PM −jPR1 · · ·

⎛
⎝ M −j+2∏

i=M −j+2

ei

⎞
⎠PM −jPR( j−2) PM −jPR( j−1)

⎛
⎝ M −j+1∏

i=M −j+1

ei

⎞
⎠PM −j−1PR( j−1)

· · ·
⎛
⎝M −j+1∏

i=3

ei

⎞
⎠P1PR( j−1)

⎛
⎝M −j+1∏

i=2

ei

⎞
⎠P0PR( j−1)

⎫⎬
⎭

T

(B9.5)
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10
Theoretical Background of
Effectiveness of Passive
Control System

10.1 Introduction

In the field of passive structural control, it is generally believed that installation of
passive dampers upgrades the performance of building structures under earthquake
ground motions (or wind disturbances) with much uncertainty (Arias, 1970; Drenick,
1970; Housner 1975; Housner and Jennings, 1975; Abrahamson et al., 1998; Hall
et al., 1995; Heaton et al., 1995). However, it seems that there have never been any
definite theoretical bases presented for this. The increase of damping with passive
control devices may be an intuitive basis, but more theoretical one would be desirable.
For this purpose, the earthquake input energy to building structures is treated here as
an index to measure the structural performance.

Many fruitful results have been accumulated on the topic of earthquake input energy
to structures (e.g., Tanabashi, 1956; Housner, 1959; Zahrah and Hall, 1984; Akiyama,
1985; Uang and Bertero, 1990; Leger and Dussault, 1992; Kuwamura et al., 1994;
Riddell and Garcia, 2001; Ordaz et al., 2003; Takewaki, 2004a, 2004b, 2005a, 2005b,
2006, 2007a, 2007b). In some countries the earthquake input energy has been incor-
porated as an earthquake input demand. The earthquake input energy has usually been
computed in the time domain. The time-domain approach has several advantages;
for example, the availability in nonlinear structures, the description of time-history
response of the input energy, and the possibility of expressing the input energy rate
especially for nonlinear structures. On the other hand, the time-domain approach
is not necessarily appropriate for probabilistic and bound analysis under uncertain-
ties (Takewaki, 2001a, 2001b, 2002a, 2002b, 2004a, 2005b, 2006; Takewaki and
Ben-Haim, 2005, 2008). For that purpose, the frequency-domain approach (Lyon,

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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1975; Ordaz et al., 2003; Takewaki, 2004a, 2004b, 2005a, 2005b, 2006, 2007a,
2007b) is suitable because it uses the Fourier amplitude spectrum of input ground
accelerations and the time-invariant energy transfer functions of the structure.

This chapter is aimed at demonstrating that (i) the time-domain and frequency-
domain methods have different advantages and can support each other, (ii) the
equi-area property of the energy transfer function in general structural models can
be derived by the time-domain method for an idealized model of input motions with a
constant Fourier amplitude spectrum, and (iii) the dissipated energy by passive control
systems can certainly upgrade the performance of building structures under earthquake
ground motions.

The remarkable equi-area property of the energy transfer functions supports the
property of a nearly constant input energy. This leads to an advantageous feature that,
if the energy consumption in the viscous dampers increases, the input energies to
buildings can be reduced drastically.

However, it should also be kept in mind that an increase of dampers in the base-
isolation story in base-isolated structures does not necessarily lead to favorable
situations. Excessive installation of dampers in the base-isolation story may cause a
larger earthquake input to the superstructures. This should be discussed in the future.

10.2 Earthquake Input Energy to SDOF model

First of all, the earthquake input energy to a damped linear SDOF system is formulated
both in the time and frequency domains.

The SDOF system has mass m, stiffness k, and viscous damping coefficient c. Let
� = √

k/m, h = c/(2�m), and x respectively denote the undamped natural circular
frequency, the damping ratio, and the displacement of the mass relative to the ground.
The earthquake input energy to this SDOF system by a ground acceleration üg(t) from
t = 0 to t = t0 (end of input) can be defined as the work of the ground on the structural
system (see Figure 10.1) and is expressed by

EI =
∫ t0

0
m(üg + ẍ)u̇g dt (10.1)

m

k
c

ug(t)

x(t)

. opposite
direction 

Free-body diagram

  

  

Figure 10.1 Work by ground on structural system. (I. Takewaki, K. Fujita, “Earthquake Input Energy
to Tall and Base-isolated Buildings in Time and Frequency Dual Domains,’’ Journal of the Structural
Design of Tall and Special Buildings © 2009 John Wiley & Sons, Ltd).

WWW.BEHSAZPOLRAZAN.COM



c10.tex 26/8/2009 17: 32 Page 251

Theoretical Background of Effectiveness of Passive Control System 251

Integration by parts of Equation 10.1 provides

EI =
∫ t0

0
m(ẍ + üg)u̇g dt =

∫ t0

0
mẍu̇g dt +

[
1

2
mu̇g

2
]t0

0

= [
mẋu̇g

]t0
0 −

∫ t0

0
mẋüg dt +

[
1

2
mu̇g

2
]t0

0
(10.2)

If ẋ = 0 at t = 0 and u̇g = 0 at t = 0 and t0, then the earthquake input energy can be
reduced to the following compact expression:

EI = −
∫ t0

0
mügẋ dt (10.3)

The earthquake input energy per unit mass can also be expressed in the frequency
domain (Lyon, 1975; Ordaz et al., 2003; Takewaki, 2004a, 2004b, 2005a, 2005b,
2006, 2007a, 2007b) by applying the Fourier transformation to ẋ and üg in Equation
10.3. The earthquake input energy per unit mass in the frequency domain may be
expressed by

EI

m
=

∫ ∞

0
|Üg(ω)|2F(ω) dω (10.4)

where F(ω) = −Re[HV(ω; �, h)]/π is called the energy transfer function and
HV(ω; �, h) is the transfer function defined by Ẋ (ω) = HV(ω; �, h)Üg(ω). Ẋ and
Üg(ω) are the Fourier transforms of ẋ and üg(t) respectively. The symbol i denotes the
imaginary unit. HV(ω; �, h) can be expressed explicitly by

HV(ω; �, h) = − iω

�2 − ω2 + 2ih�ω
(10.5)

Equation 10.4 indicates that the earthquake input energy to damped linear elastic
SDOF systems does not depend on the phase of input motions (Lyon, 1975; Kuwamura
et al., 1994; Ordaz et al., 2003; Takewaki, 2004a, 2004b, 2005a, 2005b, 2006, 2007a,
2007b). It can also be understood from Equation 10.4 that the energy transfer function
F(ω) plays an important role in the evaluation of the earthquake input energy and may
have some influence on the investigation of constancy of the earthquake input energy
in structures with various model parameters.

Assume that the Fourier amplitude spectrum |Üg(ω)| of the ground acceleration is
constant (=A). Then, Equation 10.4 can be reduced to the following form:

EI

m
= A

2
∫ ∞

0
F(ω) dω (10.6)
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With the help of the residue theorem, the relation ∫∞
0 F(ω) dω = 1/2 holds regardless

of � and h (Ordaz et al., 2003; Takewaki, 2004a). Figure 10.2 shows the plot of the
energy transfer function F(ω) for various fundamental natural periods and damping
ratios of the SDOF system. Equation 10.6 is then reduced to

EI

m
= 1

2
A

2
(10.7)

Equation 10.7 implies that the constancy criterion of the earthquake input energy
to the SDOF system is related directly to the Fourier amplitude spectrum. This is not
coincident with the theory due to Housner (1959) and Akiyama (1985) supporting the
role of the velocity response spectrum. However, it should be noted that the Fourier
amplitude spectrum and the velocity response spectrum have an approximate relation
(Hudson, 1962) and further discussion would be necessary.

10.3 Constant Earthquake Input Energy Criterion in Time Domain

In the case where the Fourier amplitude spectrum of a ground acceleration is ideally
constant, the discussion on constancy of earthquake input energy can be made in the
time domain. The essence of this procedure is shown in this section.

Consider a ground acceleration as the Dirac delta function:

üg(t) = Aδ(t) (10.8)

Figure 10.2 Energy transfer functions for various fundamental natural periods and damping ratios. With
permission from ASCE. For oBook – With permission from ASCE. This material may be downloaded for
personal use only. Any other use requires prior permission of the American Society of Civil Engineers.
This material may be found at http://cedb.asce.org/cgi/WWWdisplay.cgi?0411843.
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where δ(t) is the Dirac delta function and the following relation holds:∫ ∞

−∞
üg(t)e−iωt dt =

∫ ∞

−∞
Aδ(t)e−iωt dt = A (10.9)

Assume that the mass is at rest at first. The velocity change (initial velocity) of the
mass may be evaluated by the impulse divided by the mass:

1

m

∫ ∞

−∞
{−müg(t)} dt =

∫ ∞

−∞
{−Aδ(t)} dt = −A (10.10)

Because the constant Fourier amplitude spectrum of a ground acceleration corre-
sponds to the Dirac delta function in the time domain, the initial input energy may be
given by

EI = 1

2
mA

2
(10.11)

This energy will be dissipated later by the viscous damping system.

10.4 Constant Earthquake Input Energy Criterion to MDOF
Model in Frequency Domain

Consider a proportionally damped MDOF structure of the mass matrix [M ]. Let {x}
denote the horizontal nodal displacements of masses relative to the ground and let {1}
denote the influence coefficient vector. The input energy to this MDOF structure may
be described as

EI = −
∫ ∞

−∞
{ẋ}T[M ]{1}üg dt

= −
∫ ∞

−∞

[
1

2π

∫ ∞

−∞
{Ẋ }Teiωtdω

]
[M ]{1}üg dt

=
∫ ∞

0

∣∣Üg(ω)
∣∣2

FMP(ω) dω (10.12)

In Equation 10.12, FMP(ω) may be defined by

FMP(ω) = − 1

π
{Re[HV(ω; �i, hi)]}T[�]T[M ]{1} (10.13)

where {HV(ω; �i, hi)}, �i, hi, and [�] denote the velocity transfer function, the ith
undamped natural circular frequency, the ith damping ratio, and the modal matrix.
By use of {HV(ω; �i, hi)}, the Fourier transform of the nodal velocity vector may be
expressed as

{Ẋ (ω)} = [�]{HV(ω; �i, hi)}Üg(ω) (10.14)
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If |Üg(ω)| is constant (=A) with respect to frequency, then the input energy may be
expressed as

EI = A
2
∫ ∞

0
FMP(ω) dω (10.15)

Substitution of Equation 10.13 into Equation 10.15 leads to

EI = −A
2

π

{∫ ∞

0
Re[HV(ω; �i, hi)] dω

}T

[�]T[M ]{1} (10.16)

With the help of the residue theorem in each mode, the input energy to the
proportionally damped MDOF structure may result in

EI = 1

2
A

2{1}T[�]T[M ]{1} = 1

2
A

2
N∑

j=1

mj (10.17)

N denotes the number of masses and mj is the mass corresponding to the jth horizontal
nodal displacement. Equation 10.17 implies that, if the Fourier amplitude is constant
with respect to frequency, the input energy to the proportionally damped MDOF
structure depends only on the total mass of the model.

The relation of Equation 10.17 can also be derived by the idea of Equations 10.8–
10.11 in the time domain because the initial velocity −A is given simultaneously
at all the masses by an ideal input with a constant Fourier amplitude spectrum (see
Figure 10.3).

time-domain
formulation 

frequency-domain
formulation 

initial
velocity 

constant
Fourier
amplitude
spectrum

A

Figure 10.3 Correspondence of time- and frequency-domain dual formulations. (I. Takewaki, K. Fujita,
“Earthquake Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual Domains,’’
Journal of the Structural Design of Tall and Special Buildings © 2009 John Wiley & Sons, Ltd).
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10.5 Earthquake Input Energy as Sum of Input Energies
to Subassemblages

As a representative model of structures including passive dampers, consider the con-
nected N -story MDOF building structure shown in Figure 10.4. Let {m(1)

i } and {m(2)
i }

denote the masses of building FL (flexible) and building ST (stiff) respectively. The
story stiffnesses and viscous damping coefficients of building FL are denoted by {k(1)

i }
and {c(1)

i } and those of building ST are denoted by {k(2)
i } and {c(2)

i }. Let {c(3)
i } denote the

damping coefficients of the connecting viscous dampers. These connected building
structures are subjected to a horizontal ground motion üg(t). The seismic horizontal

displacements of the masses in building FL under üg(t) are denoted by {u(1)
i } and those

of building ST are denoted by {u(2)
i }.

The equations of motion of this interconnected building system subjected to the
ground acceleration üg(t) may be expressed by

Mü + (CF + CD)u̇ + Ku = −M1üg (10.18)

where M, K, CF, and CD are the mass, the stiffness, and the damping matrices for
the frame and the damping matrix for the connecting viscous dampers. The vector 1
indicates 1 = {1 · · · 1}T and u = {u(1)

1 · · · u(1)
N u(2)

1 · · · u(2)
N }T is the set of displacements

including those for both buildings.
Consider the three subassemblages shown in Figure 10.5. The work done by the

boundary forces around a subassemblage on the corresponding displacements can
be regarded as the input energy to the subassemblage. The earthquake input energy
to the overall system in the time domain may be obtained by summing up all the
energies; that is, E1

I in building FL, E2
I in building ST, and E3

I in connecting viscous

building FLbuilding ST

connecting
damper 

Figure 10.4 Two buildings connected by viscous dampers (ST, stiff; FL, flexible).
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building ST building FL building ST building FL building ST building FL

subassemblage subassemblage subassemblage

building ST building FL

(a) Free-body for building FL (b) Free-body for building ST (c) Free-body for dampers

Figure 10.5 Free-body diagram for each structural subsystem.

dampers (see Figure 10.5):

EA
I = E1

I + E2
I + E3

I =
∫ ∞

0

{
N∑

i=1

m(1)
i (üg + ü(1)

i ) +
N∑

i=1

m(2)
i (üg + ü(2)

i )

}
u̇g dt

(10.19)

On the other hand, the earthquake input energy to the overall system in the frequency
domain may be obtained by summing up all the energies stated above. Actually,
the earthquake input energy to the overall system in the frequency domain can be
derived as follows by applying the Fourier transformation to üg(t) and the relative floor
velocities:

EA
I = E1

I + E2
I + E3

I =
∫ ∞

0
{F (1)

C (ω) + F (2)
C (ω) + F (3)

C (ω)}|Üg(ω)|2 dω (10.20)

In Equation 10.20, F (1)
C (ω), F (2)

C (ω), and F (3)
C (ω) are the energy transfer functions

defined for building FL, building ST, and connecting viscous dampers respectively.
These functions can be expressed as follows (Takewaki, 2007b):

F (1)
C (ω) = 1

π
Re

[{
N∑

i=1

ω2c(3)
i (H (2)

i (ω) − H (1)
i (ω))H (1)

i (ω)∗
}

+ i

ω
(−k(1)

1 − iωc(1)
1 )H (1)

1 (ω)

]
(10.21a)

F (2)
C (ω) = 1

π
Re

[
−

{
N∑

i=1

ω2c(3)
i (H (2)

i (ω) − H (1)
i (ω))H (2)

i (ω)∗
}

+ i

ω
(−k(2)

1 − iωc(2)
1 )H (2)

1 (ω)

]
(10.21b)
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F (3)
C (ω) = 1

π
Re

[
N∑

i=1

ω2c(3)
i |H (2)

i (ω) − H (1)
i (ω)|2

]
(10.21c)

{H (1)
1 · · · H (1)

N H (2)
1 · · · H (2)

N } in Equations 10.21a–10.21c are the displacement transfer
functions defined by

H = { H (1)
1 · · · H (1)

N H (2)
1 · · · H (2)

N
}T = U

Üg
= −[−ω2M + iω(CF + CD) + K]−1M1

(10.22)

It can also be found that, even if the stiffness and damping properties vary in
buildings and connecting viscous dampers, FC(ω) = F (1)

C (ω) + F (2)
C (ω) + F (3)

C (ω) has
an equi-area property under the assumption that the total mass of the buildings does
not change. This can be proved by applying the idea in Section 10.3 to the present
model.

It should be remarked that the equi-area property exists in general elastic structures
when the total mass of the structures does not change. This guarantees the stable
characteristic of an approximately constant earthquake input energy in wide-range
stiffness and damping parameters.

Numerical examples are presented here. Consider five-story connected build-
ing models. As stated before, the right building is called “building FL’’ and the
left building is called “building ST.’’ Note again that building FL is the build-
ing with low stiffness and damping and building ST is the building with high
stiffness and damping. The given parameters in the two buildings are as fol-
lows: m(1)

i = m(2)
i = 32.0 × 103 kg (i = 1, · · ·, 5), k(1)

i = 1.88×107 N/m, c(1)
i = 1.88 ×

105 N s/m (i = 1, · · ·, 4), k(1)
5 = 3.76 × 107 N/m, c(1)

5 = 3.76×105 N s/m, k(2)
i =

3.76 × 107 N/m, c(2)
i = 3.76 × 105 N s/m (i = 1, · · ·, 5). The lowest mode damping

ratio of building FL is 0.035 and that of building ST is 0.049. The fundamental natural
period of building FL is 0.90 s and that of building ST is 0.64 s.

Two damping design cases are treated first. These two cases have different
levels of supplemental viscous dampers (see Figure 10.6); that is, Model DL (dis-
tributed/low damping) and Model DH (distributed/high damping). While Model DL
indicates the buildings connected by distributed viscous dampers with small damp-
ing, Model DH represents the buildings connected by distributed viscous dampers
with large damping. The added dampers are equally located at all the floor lev-
els. The damping coefficients of the supplemental viscous dampers in Model DL
are c(3)

i = c(2)
i /100 = 3.76 × 103 N s/m(i = 1, · · ·, 5) and those in Model DH are

c(3)
i = c(2)

i /10 = 3.76 × 104 N s/m. This means that the damping coefficients of the
supplemental viscous dampers are 0.01 times the structural damping of building ST
in Model DL and 0.1 times the structural damping of building ST in Model DH.
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Model O
(no damping)

Model DL
(distributed low damping)

Model DH
(distributed high damping)

Model C1 Model C3 Model C5

small damping large damping

(concentrated damping model)

Figure 10.6 Various models (Model O, disconnected; Model DL, distributed/low damping; Model DH,
distributed/high damping; Model C1, concentrated at first floor; Model C3, concentrated at third floor;
Model C5, concentrated at fifth floor).

The ground motion of El Centro NS (Imperial Valley 1940) is used here as the input
acceleration. Figures 10.7(a)–(c) show the time histories of input energy in Model
O (without any connecting viscous damper; see Figure 10.6), Model DL, and Model
DH. In Figures 10.7(a)–(c), the time-domain method has been used. It is observed
that a lot of energy is absorbed by the connecting viscous dampers in Model DH and
the input energies to both buildings are reduced greatly, especially in Model DH. It
is interesting to note that the total input energies are almost the same irrespective of
difference in the models. In order to use the frequency-domain method in obtaining
the time history of input energy, the Fourier transform of a truncated input ground
motion is required (see Takewaki, 2005c).

Figure 10.8 shows the time histories of input energy in Models C1, C3, and C5 (see
Figure 10.6 for these models). It is observed that Model C5 is the most effective, as
stated just before from the configuration of the energy transfer function. It is also inter-
esting to note that, although the input energies to building FL, building ST, and added
connecting viscous dampers are different model by model, the overall input energies in
the final state are almost the same. This means that, if it is possible to dissipate a lot of
energy in the connecting viscous dampers, the input energies to the buildings can be
reduced drastically. The constancy of the area of F (1)

C (ω) + F (2)
C (ω) + F (3)

C (ω) may
be proved by introducing the virtual input with a constant Fourier amplitude spectrum
and discussing that the energy input in this case is provided only at the initial moment by
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Figure 10.7 Input energy time-history for distributed damping models (El Centro NS 1940). With
permission from ASCE. For oBook – With permission from ASCE. This material may be downloaded for
personal use only. Any other use requires prior permission of the American Society of Civil Engineers.
This material may be found at http://cedb.asce.org/cgi/WWWdisplay.cgi?0702403.

the initial impulse causing the initial velocity and the initial kinetic energy. This initial
kinetic energy does not depend on the structural properties except for the total mass.

10.6 Effectiveness of Passive Dampers in Terms of Earthquake
Input Energy

In Section 10.3, the constant input energy criterion has been proved in the time domain
so long as the input acceleration can be expressed by a constant Fourier amplitude
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Figure 10.8 Input energy time-history for concentrated damping models (El Centro NS 1940). With
permission from ASCE. For oBook – With permission from ASCE. This material may be downloaded for
personal use only. Any other use requires prior permission of the American Society of Civil Engineers.
This material may be found at http://cedb.asce.org/cgi/WWWdisplay.cgi?0702403.

spectrum. The input acceleration with a constant Fourier amplitude spectrum is equiv-
alent to the Dirac delta function in the time domain. Moreover, in Section 10.4, the
constant input energy criterion has been verified for proportionally damped MDOF
systems in the frequency domain. With the aid of the proof in the time domain, it
can be shown that this proof can be extended to nonproportionally damped MDOF
systems (Takewaki and Fujita, 2008). It should be noted that, because actual recorded
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Figure 10.9 Schematic explanation of effectiveness of supplemental dampers.

ground motions do not have the property of a constant Fourier amplitude spectrum,
this criterion is approximate. However, the backbone constructed for an idealized
ground motion reveals a specific property on the energy transfer function which
plays a central role in the formulation of earthquake input energy in the frequency
domain.

Figure 10.9 shows a schematic explanation of the effectiveness of supplemental
dampers. More specifically, if the supplemental passive dampers can absorb the
earthquake input energy as much as possible, then the input energy to the frame
can be reduced drastically. Without the constant input energy criterion, the proof of
the effectiveness of passive dampers is not straightforward.

10.7 Advantageous Feature of Frequency-domain Method

As shown in Sections 10.2, 10.4, and 10.5, the earthquake input energy is usually
formulated in the time domain. The time-domain method has an advantage that the
idea explained in Equations 10.8–10.11 can be applied to any elastic structures. It is
also interesting to note that this idea can be applied even to inelastic structures. On
the other hand, the frequency-domain method has another advantage.

Consider again an SDOF model. Assume that the Fourier amplitude spectrum of the
ground acceleration is bounded by AL ≤ |Üg(ω)| ≤ AU in terms of two constant lines

WWW.BEHSAZPOLRAZAN.COM



c10.tex 26/8/2009 17: 32 Page 262

262 Building Control with Passive Dampers

AU
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A0

Bounding
curve 

(a) simple model (b) realistic model

Figure 10.10 Bounding of Fourier amplitude spectrum of ground acceleration. (I. Takewaki, K. Fujita,
“Earthquake Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual Domains,’’
Journal of the Structural Design of Tall and Special Buildings © 2009 John Wiley & Sons, Ltd).

(see Figure 10.10(a)). It can then be shown from Equations 10.7 and 10.11 that the
earthquake input energy EI is bounded by the following relation:

1

2
m(AL)2 ≤ EI ≤ 1

2
m(AU)2 (10.23)

In another case, assume that the upper bound of the Fourier amplitude spectrum
|Üg(ω)| of the ground acceleration is given by the following form (see Figure 10.10(b)):

|Üg(ω)|U =
{

A0 + AV(ω) (0 ≤ ω ≤ ωC)
A0 (ωC ≤ ω)

(10.24)

Equation 10.24 implies that the Fourier amplitude spectrum of the ground acceleration
in higher frequency ranges is bounded by a constant line, while that in lower frequency
ranges is bounded by a nonlinear function. Then the earthquake input energy EI can
be bounded by the following relation:

EI ≤ 1

2
mA2

0 +
∫ ωC

0
F(ω){2A0AV(ω) + AV(ω)2} dω (10.25)

The second term in the right-hand side of Equation 10.25 can be evaluated numerically.
Since the earthquake ground motion has a lot of uncertainties (e.g., the occurrence
probability, intensity, frequency content, and duration), it appears difficult to specify
its Fourier amplitude uniquely. However, even in such a case, it may be possible
to set an upper bound of its Fourier amplitude based on the database or theoretical
background. These bounding relations, Equations 10.23 and 10.25, are expected to be
useful for estimating the upper bound of the energy demand. It should be noted that
this bound estimate is difficult in the time-domain method.
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tall buildings

20-story 40-story 60-story 80-story 100-story

base-isolated buildings

2010 30 40 50

Figure 10.11 Tall buildings of 10–100 stories and base-isolated buildings of 10–50 stories. (I. Takewaki,
K. Fujita, “Earthquake Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual
Domains,’’Journal of the Structural Design of Tall and Special Buildings © 2009 JohnWiley & Sons, Ltd).

10.8 Numerical Examples for Tall Buildings with Supplemental Viscous
Dampers and Base-isolated Tall Buildings

10.8.1 Tall Buildings with Supplemental Viscous Dampers

The 10- to 100-story standard buildings shown in Figure 10.11 are considered. The
plan of these buildings is 40 m × 40 m and the mass per unit floor is 1.28 × 106 kg.
The buildings are designed so that the fundamental natural period of the model is
given by T1 = 0.1N (N is the number of stories in the building) and the buildings have
a straight-line lowest eigenmode. The structural damping ratio is specified as 0.02.
In this section, two kinds of buildings are considered: one without passive viscous
dampers and the other with passive viscous dampers. The amount of passive viscous
dampers is determined from the condition that the additional damping ratio attains
0.08. It is well known that the passive dampers are not effective in upper stories in
tall buildings. This effect is included here by introducing the effective coefficients.
These effective coefficients multiplied by the original damping coefficients are set as
0.9 in the first story and 0.5 in the topmost story (linear interpolation). The additional
damping ratio 0.08 is evaluated for the case of the effective coefficients equal to 1.0.

The energy transfer functions divided by the total mass for these 20-, 40-, 60-,
80-, and 100-story buildings without and with passive viscous dampers are shown in
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Figure 10.12 Energy transfer functions for tall buildings without and with passive dampers.
(I. Takewaki, K. Fujita, “Earthquake Input Energy to Tall and Base-isolated Buildings in Time and
Frequency Dual Domains,’’ Journal of the Structural Design of Tall and Special Buildings © 2009 John
Wiley & Sons, Ltd).

Figures 10.12(a) and (b). Those with passive viscous dampers including consideration
of the effective coefficients are shown in Figure 10.12(c). It is observed that, because
the passive dampers in lower stories are effective for structural control and the overall
bending deformation does not affect those dampers so much, the difference between
Figures 10.12(b) and (c) is small. As the amount of damping increases, the amplitude
of the energy transfer function at the fundamental natural frequency becomes smaller.
However, it should be noted that, for buildings with a specified number of stories, the
area of the energy transfer functions is constant and the input energy exhibits a stable
characteristic.

Figure 10.13 shows the comparison of energy transfer functions divided by the total
mass of the overall models and those due to passive dampers. The energy transfer
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Figure 10.13 Energy transfer functions for overall models and passive dampers in tall buildings.
(I. Takewaki, K. Fujita, “Earthquake Input Energy to Tall and Base-isolated Buildings in Time and
Frequency Dual Domains,’’ Journal of the Structural Design of Tall and Special Buildings © 2009 John
Wiley & Sons, Ltd).

functions of subassemblages have been discussed by Takewaki (2007b) and the cor-
responding expression has been used for computation. It is observed that most parts
are governed by the passive dampers in this case. This shows that the expression in
terms of the energy transfer functions is appropriate for a clear understanding of the
location of the principal energy consumption.

10.8.2 Base-isolated Tall Buildings

Consider next mid-rise and high-rise base-isolated buildings. In Japan, not a few
high-rise base-isolated buildings have been constructed to meet the requirements on
safety and serviceability. In order to present the input energy characteristics to mid-
and high-rise base-isolated buildings, energy transfer functions for these buildings
are investigated here. The plan of the buildings is 40 m × 40 m, as in the case of tall
buildings stated above, and the mass per unit floor is set to 1.28 × 106 kg. The masses
of the super-buildings are shown in Table 10.1 and the mass of the isolation floor is
specified as three times the floor mass in the super-building. A natural-rubber isolator
of diameter 800 mm is used. The vertical and horizontal stiffnesses of the isolator are
assumed to be 4.03 × 109 N/m and 1.42 × 106 N/m respectively.

The super-buildings are designed so that the fundamental natural period of the model
with a fixed base is given by T1 = 0.1N (N is the number of stories in the building)
and the lowest eigenmode of the model with fixed base becomes the straight line.
On the other hand, the horizontal stiffness of the isolation story is determined from
the hybrid inverse formulation (Takewaki, 1998) in which the fundamental natural
period of the overall model attains a specified value (see Table 10.2) for a given
super-building. The damping coefficient of the viscous-type damper in the isolation
story is determined from the requirement that the nominal lowest damping ratio of the
overall model attains 0.1. The structural damping ratio of the super-building is given
as 0.02 for the fixed-base model (isolation-story is fixed). It should be noted that a
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Table 10.1 Parameters determined from the condition under gravity loading. (I. Takewaki, K. Fujita,
“Earthquake Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual Domains,’’
Journal of the Structural Design of Tall and Special Buildings © 2009 John Wiley & Sons, Ltd).

Required minimum number Horizontal
Stiffness of of isolators from compressive stiffness of

Total mass of building (SDOF stress condition under isolation story
No. of stories building (kg) model) (N/m) gravity loading (N/m)

10 1.28 × 107 5.05 × 108 17 2.42 × 107

20 2.56 × 107 2.53 × 108 34 4.83 × 107

30 3.84 × 107 1.68 × 108 51 7.25 × 107

40 5.12 × 107 1.26 × 108 68 9.66 × 107

50 6.42 × 107 1.01 × 108 85 1.21 × 108

Table 10.2 Parameters determined from the natural period condition. (I. Takewaki, K. Fujita, “Earth-
quake Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual Domains,’’ Journal
of the Structural Design of Tall and Special Buildings © 2009 John Wiley & Sons, Ltd).

Allowable maximum
No. of Fundamental natural period number of isolators from Fundamental natural period (s)
stories (s) (isolator only) natural period condition (isolator + friction damper)

10 5.29 17 (no friction damper) 5.29
20 5.25 25 (26.5 % friction damper) 5.63
30 5.60 32 (37.3 % friction damper) 6.47
40 6.15 40 (41.2 % friction damper) 7.24
50 6.82 47 (44.7 % friction damper) 8.01

two-DOF model is used in this hybrid inverse formulation only. Because the compres-
sive stress of the isolator under gravity loading also has to satisfy a certain constraint
(see Table 10.1 for the minimum number of isolators), friction-type bearings are used;
that is, a certain part of gravity load is sustained by the friction-type bearings (see
Table 10.2 for the necessary number of friction-type bearings). Owing to an extremely
small friction coefficient of the friction-type bearings, the dissipation energy in the
friction-type bearings has been ignored.

The energy transfer functions divided by the total mass for 10-, 20-, 30-, 40-, and
50-story base-isolated buildings (see Figure 10.11) are shown in Figure 10.14.As stated
before, the areas of the energy transfer functions divided by the total mass are constant.
In Figure 10.14, both the overall energy transfer function and that corresponding to the
damper in the isolation story are plotted. It can be seen that the largest part of the energy
transfer function is governed by the quantity due to the damper in the isolation story.

10.8.3 Energy Spectra for Recorded Ground Motions

In order to investigate the property of energy spectra
√

2EI/M (M is the total mass of
the building) (see Akiyama, 1985; Ordaz et al., 2003) for recorded ground motions,
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Figure 10.14 Energy transfer functions for overall models and isolation dampers in base-isolated build-
ings. (I. Takewaki, K. Fujita, “Earthquake Input Energy to Tall and Base-isolated Buildings in Time and
Frequency Dual Domains,’’ Journal of the Structural Design of Tall and Special Buildings © 2009 John
Wiley & Sons, Ltd).

six recorded ground motions are used: El Centro NS (Imperial Valley 1940), Taft EW
(Kern County 1952), Hachinohe EW 1968 (Tokachi-oki 1968) (far-field motion), JMA
Kobe NS (Hyogoken-Nanbu 1995) (near-field motion), KBU NS (Hyogoken-Nanbu
1995) (near-field motion), Port of Tomokomai EW (Tokachi-oki 2003) (long-period
ground motion). The Fourier amplitude spectra of these ground motions are shown in
Figure 10.15.

Figure 10.16(a) shows the energy spectra for above-mentioned tall buildings with
respect to their fundamental natural periods for El Centro NS 1940. It is observed
that the energy spectra exhibit a stable property regardless of the inclusion of passive
dampers, except for the models of 10, 20, and 30 stories. After further investigation, it
was found that the Fourier amplitude spectra corresponding to the fundamental natural
frequencies (natural periods of 1, 2, and 3 seconds) of the models of 10, 20, and 30
stories exhibit larger values than other frequency ranges. On the other hand, Figure
10.16(b) indicates the energy spectra of the above-mentioned base-isolated buildings
with respect to their fundamental natural periods for El Centro NS 1940. It is found
that the energy spectra for base-isolated buildings exhibit a good correlation with those
for tall buildings, as long as the fundamental natural period is the same.

Figures 10.17–10.21 show these energy spectra for Taft EW 1952, Hachinohe EW
1968, JMA Kobe NS 1995, KBU NS 1995, and Port of Tomokomai EW 2003 respec-
tively. It is found that Port of Tomokomai EW 2003 has a strong effect on the response
of the models with long fundamental natural periods (Ariga et al., 2006). The irregular
phenomena in the models of 10, 20, and 30 stories for Hachinohe EW 1968 and KBU
NS 1995 are due to the same reason stated above (small magnitude of Fourier ampli-
tude spectra in the long-period range). It can be concluded that, although the energy
spectra depend on the intensity of ground motions, the energy spectra for base-isolated
buildings exhibit a good correspondence to some extent with those for tall buildings,
as long as the fundamental natural period is the same.
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Figure 10.15 Fourier amplitude spectra for El Centro NS 1940, Taft EW 1952, Hachinohe EW 1968,
JMA Kobe NS 1995, KBU NS 1995, Port of Tomokomai EW 2003. (I. Takewaki, K. Fujita, “Earthquake
Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual Domains,’’ Journal of the
Structural Design of Tall and Special Buildings © 2009 John Wiley & Sons, Ltd).
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Figure 10.16 Energy spectra for tall buildings and base-isolated buildings (El Centro NS 1940).
(I. Takewaki, K. Fujita, “Earthquake Input Energy to Tall and Base-isolated Buildings in Time and
Frequency Dual Domains,’’ Journal of the Structural Design of Tall and Special Buildings © 2009 John
Wiley & Sons, Ltd).
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Figure 10.17 Energy spectra for tall buildings and base-isolated buildings (Taft EW 1952). (I. Takewaki,
K. Fujita, “Earthquake Input Energy to Tall and Base-isolated Buildings in Time and Frequency Dual
Domains,’’Journal of the Structural Design of Tall and Special Buildings © 2009 JohnWiley & Sons, Ltd).
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10.9 Summary

The results may be summarized as follows.

1. The energy transfer function F(ω) of an SDOF model can be characterized as
the function such that multiplication with the Fourier amplitude of the ground
motion squared and the integration of the resulting function in the frequency domain
provide the earthquake input energy. The energy transfer function, a function of fre-
quency, has an equi-area property. The residue theorem can be used for evaluating
the integration of the energy transfer function in the infinite frequency range. This
property guarantees that, if the Fourier amplitude spectrum of a ground acceleration
is uniform, the constancy criterion of the earthquake input energy holds strictly.
Otherwise, its constancy is not guaranteed. However, this equi-area property of
the energy transfer function guarantees the stable characteristic of the earthquake
input energy to elastic structures.

2. This equi-area property of the energy transfer function F(ω) in more general struc-
tural models can be proved by using the time-domain method for an idealized
model of input ground motions with a constant Fourier amplitude spectrum. This
idealized input model represents the Dirac delta function in the time domain and the
earthquake input energy can be characterized by the initially given kinetic energy
depending only on the total mass.

3. In two buildings connected by viscous dampers, the earthquake input energy to
the overall system including these two buildings is nearly constant irrespective
of the quantity of connecting viscous dampers. This property is also guaranteed by
the equi-area property of the energy transfer function and leads to an advantageous
feature that, if the energy consumption in the connecting dampers increases, the
earthquake input energies to the buildings can be reduced effectively.

4. The frequency-domain method can provide a theoretical basis for damper effec-
tiveness in view of the equi-area property of the energy transfer function.

5. As for tall buildings including viscous or visco-elastic dampers, the input energy to
the buildings is approximately constant regardless of the quantity of those viscous or
visco-elastic dampers. This property is also guaranteed by the equi-area property of
the energy transfer function and leads to an advantageous feature that, if the energy
consumption in the passive dampers increases, the input energies to the buildings
can be reduced effectively. The same advantage exists in base-isolated buildings.

6. The frequency-domain method is appropriate for bound analysis of input energy
in which the lower and/or upper bounds of the Fourier amplitude spectrum of
input motions are specified. Dual use of the frequency-domain and time-domain
techniques may be preferable in an advanced seismic analysis for more robust
design.

7. Although the energy spectra depend on the intensity of ground motions, the energy
spectra for base-isolated buildings exhibit a good correspondence to some extent
with those for tall buildings, as long as the fundamental natural period is the same.
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11
Inelastic Dynamic Critical
Response of Building Structures
with Passive Dampers

11.1 Introduction

There are many investigations on the seismic response of passively controlled struc-
tures. Among them, the studies related to the topic explained in this chapter include
those by Zhang and Soong (1992), Connor and Klink (1996), Connor et al. (1997),
Kasai et al. (1998), Singh and Moreschi (2001), Uetani et al. (2003), Attard (2007),
Aydin et al. (2007), and Paola and Navarra (2009). Most of these investigations were
carried out for recorded or spectrum-compatible ground motions.

Owing to the inherent irregularities and uncertainties of earthquake occurrence
mechanisms and ground properties, it is very difficult to predict the properties of
ground motions, the site of occurrence, and the time of occurrence within a reason-
able accuracy to be allowed in the seismic-resistant design practice (Drenick, 1970;
Takewaki, 2004, 2006). It is desirable, therefore, to develop an approach using the
most unfavorable ground motion (critical excitation) among the possible ones for
structural design.

The usual intensity normalization method of ground motions using the maximum
acceleration and velocity may not necessarily be reasonable from the viewpoint of
physical and risk-based evaluation. While some intensity normalization methods of
ground motions including structural properties have been proposed (e.g., response
spectrum, energy spectrum), there are quite a few treating only the ground motion
parameters.

The objective of this chapter is to present the critical excitations for passively con-
trolled building structures with viscous or hysteretic dampers and to disclose the
response properties of these structures under critical excitations. A sinusoidal motion,

Building Control with Passive Dampers: Optimal Performance-based Design for Earthquakes      Izuru Takewaki
© 2009 John Wiley & Sons (Asia) Pte Ltd. ISBN: 978-0-470-82491-7
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with a variable duration, resonant to the fundamental natural period of these build-
ing structures is treated as an approximate critical excitation for such structures. A
long-duration far-field ground motion is shown to be a critical excitation for high-rise
buildings with longer natural periods, and a near-field ground motion can be a critical
excitation for low-rise buildings with shorter natural periods. It is also shown that,
as far as the resonant sinusoidal ground motions are concerned and where the usual
relation is used between the fundamental natural period of buildings and the number of
stories, the maximum elastic interstory drift is directly related to the maximum velocity
of the sinusoidal ground motion irrespective of the number of stories and the total input
energy to structures in the elastic range is directly related to the velocity power of the
input motion irrespective of the number of stories. Because the maximum deformation
and the maximum input (or dissipation) energy are two major performance indices in
performance-based structural design practice, these properties appear to be very useful
in constructing intensity normalization measures of ground motions. It is further shown
that the former relationship holds even in the case under spectrum-compatible ground
motions.

In the last part, that these relationships may hold approximately even in the inelastic
range is discussed. While it is usual in the current structural design practice that
passive dampers are installed in order for structures to remain elastic even under severe
earthquakes, it may also be true that clarification of the limit state in the inelastic range
of such structures is useful and meaningful from the viewpoint of ensuring the true
structural safety margin. It may be possible and useful to estimate the upper bound
of the total input energy in the inelastic range under a resonant sinusoidal motion in
terms of the maximum displacement at the equivalent height of the reduced SDOF
model. This possibility will also be discussed.

11.2 Input Ground Motion

11.2.1 Acceleration Power and Velocity Power of Sinusoidal Motion

The acceleration power is defined by
∫ ∞
−∞ üg(t)2 dt = CA and the velocity power

is defined by
∫ ∞
−∞ u̇g(t)2dt = CV (Arias, 1970; Drenick, 1970; Housner and Jen-

nings, 1975; Takewaki, 2004, 2006). It is known that the resonant sinusoidal motion
can be an approximate critical excitation to elastic and inelastic structures under
the constraint of acceleration power or velocity power (Drenick, 1970; Takewaki,
2004, 2006). Therefore, a resonant sinusoidal motion will be used here as an input
motion.

Let üg(t) = amax sin ωGt denote the acceleration of ground motion, where amax and
ωG are the maximum ground acceleration and the circular frequency of the sinusoidal
ground motion. The duration and frequency of the ground motion are denoted by
t0 and TG = 2π/ωG respectively. When the duration of the ground motion is given
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by t0 = nTG/4 (n = 1, 2, · · · ), the acceleration power and velocity power can be
expressed by

CA =
∫ t0

0
üg(t)2dt = a2

max

2
t0 (11.1)

CV =
∫ t0

0
u̇g(t)2dt = v2

max

2
t0 (11.2)

where vmax = amax/ωG is the maximum ground velocity.
Let tA and tV denote arbitrary times before the ending time t0 of input motion. The

ratios a(tA) and v(tV) are defined by

a(tA) =
∫ tA

0 üg(t)2 dt∫ t0
0 üg(t)2 dt

(11.3)

v(tV) =
∫ tV

0 u̇g(t)2 dt∫ t0
0 u̇g(t)2 dt

(11.4)

The times tA10 and tA90 denote the times corresponding to a(tA10) = 0.1 and
a(tA90) = 0.9 respectively, and the times tV10 and tV90 denote the times corre-
sponding to v(tV10) = 0.1 and v(tV90) = 0.9 respectively. The effective duration of
primary (intensive) ground motion is defined by the acceleration point of view
etA0 = tA90 − tA10 or the velocity point of view etV0 = tV90 − tV10. An example of
the effective duration etA0 = tA90 − tA10 based on the acceleration power is shown in
Figure 11.1.

The duration of the sinusoidal ground motion is determined from the natural period
of the objective building structure (for treating resonant cases) and the data of the
effective durations of actual ground motions. In this chapter, the near-field ground
motion is characterized by a period of 0.5 s and a duration of 4 s (this is critical to
the five-story building model) and the far-field ground motion is characterized by a
period of 2.0 s and a duration of 36 s (this is critical to the 20-story building model). The
acceleration power, velocity power, and the effective duration of the representative
actual ground motions are shown in Table 11.1 for reference.

11.2.2 Pulse-like Wave and Long-period Ground Motion

The pulse-like velocity wave is simulated (Xu et al., 2007) by a modulated sinusoidal
wave which is defined by

u̇p = Ctne−at sin ωpt (11.5)

üp = Ctne−at[(n/t − a) sin ωpt + ωp cos ωpt] (11.6)
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Figure 11.1 An example of effective duration etA0 = tA90 − tA10 based on acceleration power.

where C, a, n, and ωp denote the amplitude scaling factor, decay factor, nonnegative
integer parameter controlling the skewness of the pulse envelope with respect to time,
and the pulse circular frequency. Figure 11.2 indicates the comparison between the
pulse-like velocity wave expressed by Tp = 2π/ωp = 0.5 s, n = 2, a = 1.5, and C = 2.0,
and the sinusoidal velocity wave expressed by a period of 0.5 s, a duration of 4 s, and
a maximum velocity of 0.4 m/s.

It has also been reported that there is a velocity wave similar to a sinusoidal motion in
the recorded long-period ground motions and that wave could be resonant to the build-
ing structure with a long natural period. Figure 11.3 shows the comparison between
the Tomakomai EW and NS velocity waves (Tokachioki Earthquake of 2003) and the
sinusoidal motion with a period of 7.0 s.

The representation of near-field ground motions and long-period ground motions by
sinusoidal waves enables one to remove uncertainties resulting from ground properties,
and so on, and to understand clearly the response characteristics of building structures
with passive dampers under critical inputs.
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Table 11.1 Acceleration power, velocity power, and effective duration of representative recorded
ground motions.

Earthquake Site and component CA(m2/s3) CV(m2/s) etA0 (s) etV0 (s)

Near fault motion
Rock records
Loma Prieta 1989 Los Gatos NS 49.5 1.49 9.1 5.9

Los Gatos EW 19.4 0.26 6.1 5.7
Hyogoken–Nanbu JMA Kobe NS 52.4 0.79 5.8 7.9
1995 JMA Kobe EW 34.0 0.52 7.5 8.5

Soil records
Cape Mendocino Petrolia NS 21.5 0.25 16.0 14.8
1992 Petrolia EW 23.9 0.51 13.9 5.6
Northridge 1994 Rinaldi NS 25.0 0.62 5.5 4.2

Rinaldi EW 46.3 1.13 7.0 6.5
Sylmar N S 31.3 0.86 4.4 3.9
Sylmar EW 16.3 0.45 5.2 4.6

Imperial Valley 1979 Meloland NS 5.4 0.36 5.5 16.6
Meloland EW 6.9 1.06 4.8 23.3

Long-duration motion
Rock records
Michoacan 1985 Caleta de Campos NS 4.0 0.08 18.9 14.7

Caleta de Campos EW 2.9 0.04 23.3 23.5
Miyagiken-oki 1978 Ofunato NS 2.4 0.01 11.8 12.1

Ofunato EW 4.2 0.03 11.8 25.7

Soil records
Chile 1985 Vina del Mar NS 34.3 0.46 41.5 43.1

Vina del Mar EW 18.7 0.20 40.7 43.4
Olympia 1949 Seattle Army Base NS 1.3 2.29 28.0 39.6

Seattle Army Base EW 0.9 0.02 31.8 40.3
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Figure 11.2 Pulse-like velocity wave and sinusoidal velocity wave.
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Figure 11.3 Velocity waves ofTomakomai EWand NS (Tokachioki Earthquake 2003) as a representative
long-period ground motion and the corresponding sinusoidal velocity wave.

11.3 Structural Model

11.3.1 Main Frame

Consider four building structures of 5, 10, 20, and 40 stories with the same
floor plan, as shown in Figure 11.4(a). These building structures are modeled by
shear building models, as shown in Figure 11.4(b). The building parameters are
shown in Table 11.2. The yield story displacement of the main frame is given by
3500 mm × 1/150 rad = 23 mm, where 1/150 rad is the yield story deformation
angle. The ratio of the post-yield stiffness of the main frame to the initial stiffness is
0.01 and the structural damping ratio is specified as hf = 0.02. The case of a ratio of
the post-yield stiffness to the initial stiffness of 0.5 will also be investigated to dis-
cover the effect of this ratio. The response analysis is conducted by a reduced SDOF
model. The equivalent mass of the reduced SDOF model is calculated by the equiv-
alence of the base shear in the lowest mode vibration component and the equivalent
height of the mass of the reduced SDOF model is obtained from the equivalence
of the overturning moment at the base in the lowest mode vibration component.
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Figure 11.4 Floor plan of example buildings, shear building model, and frames with hysteretic or
viscous dampers.

Table 11.2 Parameters of main frame.

Building width 6 m × 6 bays
Building length 8 m × 5 bays
Story height 3.5 m
Mass/unit floor area 800 kg/m2

Fundamental natural period T Proportional to number of stories N (T = 0.1 N )
Story mass M mi = 1152 × 103 kg
Story stiffness ki Determined from lowest mode of straight line
Damping coefficient ci Stiffness-proportional damping

The fundamental natural period T of the building structure with the number of stories
N is assumed to be expressed as T = 0.1N .

11.3.2 Building Model with Hysteretic Dampers

The low-yield-point steel LYP100 is used as a hysteretic passive damper and is installed
as a wall-type system into the main frame, as shown in Figure 11.4(c). Figure 11.5
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Figure 11.5 Restoring-force characteristic in the representative story of the building including the
hysteretic passive damper.

shows the restoring-force characteristic in the representative story of a building includ-
ing these hysteretic passive dampers. The hysteretic passive dampers are assumed to
have an elastic–perfectly plastic restoring-force characteristic. The story shear, the
interstory drift, and the ratio of the strength of these hysteretic passive dampers to the
total story strength are denoted by Q, δ, and β respectively.

Let ψ denote the trigger-level coefficient, which indicates the ratio of the story shear
at the yield displacement of the hysteretic passive dampers to the story shear (total
story strength) at the yield displacement of the main frame. The ratio of the elastic
damper stiffness kd to the elastic main frame stiffness kf is called the stiffness ratio
and is expressed by K . If the frame ductility ratio is indicated by γF, then the equiv-
alent viscous damping ratio he of this hysteretic system (main frame with hysteretic
dampers) may be expressed by

he = 2

π

[
1 − β2

(1 − β)KγF
− 1 − β

γF

]
(11.7)

Figure 11.6 shows the he − β relation for two stiffness ratios K (1 and 3) and two
frame ductility ratios γF (1 and 2).

In this chapter, the stiffness ratio is given by K = 1. In this case, β = 1/11
.= 0.091

and ψ
.= 0.182. The equivalent viscous damping ratio at the frame yield point is given

by he
.= 0.052 from γF = 1 (see Figure 11.6).

For comparison, the stiffness ratio of K = 3 is also investigated additionally. In this
case, β = 3/13

.= 0.231 and ψ
.= 0.308. The equivalent damping ratio in this case is

turned out to be he
.= 0.132 from γF = 1 (see Figure 11.6).

WWW.BEHSAZPOLRAZAN.COM



c11.tex 26/8/2009 16: 48 Page 283

Inelastic Dynamic Critical Response of Building Structures with Passive Dampers 283

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

h e

b

gF�1 K�1
gF�1 K�3
gF�2 K�1
gF�2 K�3

Figure 11.6 The he − β relation for two stiffness ratios K and two frame ductility ratios γF.

11.3.3 Building Model with Viscous Dampers

An oil damper is used as a viscous passive damper (see Figure 11.4(c)). The capacity of
the damper is given by the specified damping ratio ha, which is equal to the equivalent
viscous damping ratio at the frame yield point in the frame including the hysteretic
passive dampers. In this chapter, the equivalent viscous damping ratio is given by
ha = 0.052.

11.3.4 Dynamic Response Evaluation

In this chapter, the dynamic response of building models under a resonant sinusoidal
wave and a spectrum-compatible motion is obtained by using a reduced SDOF model.
Figure 11.7 shows the schematic diagram for response evaluation by the reduced SDOF
model. Once the earthquake response of the reduced SDOF model is computed, the
local responses of the MDOF model can be obtained approximately in terms of this
response of the reduced SDOF model and the lowest eigenmode (straight line in
this chapter). The accuracy of this method has been confirmed by comparison with
the results by time-history response analysis for the original MDOF model under a
resonant sinusoidal wave and a spectrum-compatible ground motion. An example is
shown in Figure 11.7.

11.4 Response Properties of Buildings with Hysteretic or
Viscous Dampers

11.4.1 Two-dimensional Sweeping Performance Curves

In order to evaluate the overall performance of building structures with passive
dampers, it is effective and useful to sweep out various responses (peak interstory
drift, total input energy, etc.) with respect to an appropriate level parameter of
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Figure 11.7 Schematic diagram for response evaluation by reduced SDOF model.

ground motion. First, the peak interstory drift and total input energy are swept
out with respect to the maximum acceleration of the resonant sinusoidal wave.
This figure is called the sweeping performance curve. The sweeping performance
curve enables one to express effectively the response performance of structures with
passive dampers to the ground motion. In the sweeping performance curve, overall
shapes are important.

As stated before, the near-field ground motion is characterized by a period of
0.5 s and a duration of 4 s (this is critical to the five-story building model with
viscous dampers) and the far-field ground motion is characterized by a period of
2.0 s and a duration of 36 s (this is critical to the 20-story building model with
viscous dampers). For the building models with hysteretic dampers, a slightly
shorter equivalent fundamental natural period is introduced by using the frame yield-
ing point as the target point for defining the equivalent stiffness of the building
models.
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Figure 11.8 Sweeping performance curves of the maximum interstory drift and the total input energy
with respect to the maximum acceleration of the sinusoidal motion.
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Figure 11.9 Sweeping performance curves of the maximum interstory drift and the total input energy
with respect to the acceleration power of the sinusoidal motion.

11.4.2 Two-dimensional Sweeping Performance Curves with Respect
to Various Normalization Indices of Ground Motion

The sweeping performance curve is useful in comparing the performances of the
structures with viscous dampers and those with hysteretic dampers. Figures 11.8–11.12
plot the sweeping performance curves for structures (5- and 20-story buildings) with
hysteretic dampers with a stiffness ratio K = 1 and those with viscous dampers with
an equivalent viscous damping ratio ha

.= 0.052.
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Figure 11.10 Sweeping performance curves of the maximum interstory drift and the total input energy
with respect to the maximum velocity of the sinusoidal motion.
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Figure 11.11 Sweeping performance curves of the maximum interstory drift and the total input energy
with respect to the velocity power of the sinusoidal motion.

Figures 11.8–11.11 show the sweeping performance curves of the maximum inter-
story drift and the total input energy with respect to the maximum acceleration, the
acceleration power, the maximum velocity, and the velocity power of the resonant
sinusoidal motion. It is seen from Figure 11.8 that hysteretic dampers are effective for
reducing the interstory drifts, especially in the elastic range.

It is observed from Figure 11.10 that, when the maximum ground velocity is adopted
as the normalization index, the maximum interstory drift exhibits a stable property in
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Figure 11.12 Sweeping performance curves of the maximum interstory drift and the total input energy
with respect to the intensity level of the response spectrum.

the elastic range irrespective of the number of stories and damper type. This property
can be proved theoretically (seeAppendix 11.A). Furthermore, this property also holds
approximately in the inelastic range.

It is also observed from Figures 11.8–11.11 that, when the velocity power is
adopted as the normalization index, the total input energy in the elastic range
exhibits a stable property irrespective of the number of stories and damper type (see
Appendix 11.B). This property also holds approximately in the inelastic range. Fur-
thermore, a tight upper bound of the total input energy in the inelastic range can
be derived from the sweeping performance curve of the maximum displacement of
the reduced SDOF model defined before with respect to an intensity normalization
index.

On the other hand, Figure 11.12 shows the sweeping performance curves of the
maximum interstory drift and the total input energy with respect to the intensity
of the response spectrum (Newmark and Hall, 1982; see Appendix 11.C). The
value 1 on the horizontal axis corresponds to the response spectrum of level 1
with the maximum ground velocity vmax = 0.25 m/s. Ten simulated motions com-
patible with this response spectrum of level 1 have been generated and used in
the construction of the sweeping performance curves. Figure 11.12 shows that the
hysteretic dampers exhibit a high response reduction property in the frame of five
stories.

Figures 11.13–11.15 show the displacement response spectrum due to Newmark
and Hall (1982), a sample of acceleration of spectrum-compatible motion, and the
velocity response spectra for various damping ratios respectively.
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Figure 11.13 Displacement response spectrum due to Newmark and Hall (1982) and mean spectrum of
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Figure 11.14 A sample of acceleration of spectrum-compatible motion.

11.5 Upper Bound of Total Input Energy to Passively Controlled
Inelastic Structures Subjected to Resonant Sinusoidal Motion

In this section, a method is explained for predicting the upper bound of total input
energy to passively controlled inelastic structures subjected to a resonant sinusoidal
motion. A reduced SDOF model is used here again, as in the previous sections. The
original MDOF shear building model has also been used to investigate the accuracy of
the present method. Figure 11.16 shows a schematic diagram of the relation between
the story shear force and the corresponding displacement at the equivalent height in
the reduced SDOF model. The following notation is used:

�max : maximum horizontal displacement of reduced SDOF model
ha

.= 0.052 : additional equivalent viscous damping ratio of frame as SDOF model
with hysteretic damper at frame yield point
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Figure 11.15 Velocity response spectrum for various damping ratios.
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Figure 11.16 Schematic diagram of relation between story shear force and drift in reduced SDOF model.

n : number of cycles of resonant sinusoidal motion
M : equivalent mass of reduced SDOF model
kf : elastic stiffness of frame as SDOF model
cf : structural damping coefficient of frame as SDOF model
hf : structural damping ratio of frame as SDOF model
k0: sum of elastic stiffness of frame as SDOF model and elastic stiffness of

hysteretic damper in SDOF model
γ1: ratio of elastic stiffness of frame as SDOF model to k0
γ2: ratio of post-yield stiffness of frame as SDOF model to k0
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�Y1 : yield interstory drift of hysteretic damper in SDOF model
�Y2 : yield interstory drift of frame as SDOF model
QY1 : story shear force at yield point of hysteretic damper in SDOF model
QY2 : story shear force at yield point of frame as SDOF model
ωG: circular frequency of sinusoidal input motion
ke: equivalent stiffness of frame as SDOF model at maximum deformation

�max.

11.5.1 Structure with Supplemental Viscous Dampers

The dissipation energy due to plastic deformation of the main frame may be
expressed by

Wp = 4(1 − γ2)(�max − �Y2)kf �Y2n (11.8)

The dissipation energy due to structural damping of the main fame may be described by

Whf = πcf ωG�2
maxn = 2πhf M ω2

G�2
maxn (11.9)

The dissipation energy by supplemental viscous dampers may be obtained using

Whd = πcdωG�2
maxn = 2πhdM ω2

G�2
maxn (11.10)

The strain energy just after the input of sinusoidal motion can be evaluated
approximately by

1

2
ke�

2
max (11.11)

The total input energy E to the frame with supplemental viscous dampers can then be
expressed as follows, depending on the magnitude of �max.

1. When �max ≤ �Y2:

E = Whf + Whd + 1

2
ke�

2
max

(11.12)
= [2π(hf + hd)M ω2

G�2
max]n + 1

2
ke�

2
max

2. When �Y2 < �max:

E = Wp + Whf + Whd + 1

2
ke�

2
max

(11.13)
= [4(1 − γ2)(�max − �Y2)kf �Y2 + 2π(hf + hd)M ω2

G�2
max]n + 1

2
ke�

2
max
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11.5.2 Structure with Supplemental Hysteretic Dampers

The total input energy E to the frame with supplemental hysteretic dampers can be
expressed as follows, depending on the magnitude of �max.

1. When �max ≤ �Y1:

E = Whf + 1

2
ke�

2
max

(11.14)
= (2πhf M ω2

G�2
max)n + 1

2
ke�

2
max

2. When �Y1 < �max ≤ �Y2:

E = Whf + Whd + 1

2
ke�

2
max

(11.15)
= [4(1 − γ1)(�max − �Y 1)k0�Y1 + 2πhf M ω2

G�2
max]n + 1

2
ke�

2
max

3. When �Y2 < �max:

E = Wp + Whf + Whd + 1

2
ke�

2
max

= {4(1 − γ2){�max − (�Y1 + l0)}k0(�Y1 + l0) − 4[(�Y2 − �Y1)

× k0 − QY2 − QY1]l0 + 2πhf Mω2
G�2

max}n + 1

2
ke�

2
max (11.16)

In Equation 11.16, l0 denotes the following quantity:

l0 = QY2 − QY1 − γ2k0(�Y2 − �Y1)

k0(1 − γ2)
(11.17)

Figure 11.17(a) shows the two-dimensional sweeping performance curve (maximum
drift) for the corresponding inelastic SDOF model (post-yield stiffness ratio γ2 = 0.01)
including supplemental viscous dampers with respect to the maximum acceleration of
the resonant sinusoidal ground motion. Figure 11.17(b) illustrates the corresponding
diagram for post-yield stiffness ratio γ2 = 0.5. It is observed that the model with
a ratio of 0.5 exhibits a stable property even in the inelastic range. On the other
hand, Figure 11.18(a) presents the corresponding diagram for the inelastic SDOF
model including supplemental hysteretic dampers. These figures were obtained by
time-history response analysis for the SDOF model. Figure 11.18(b) illustrates the
corresponding diagram for post-yield stiffness ratio γ2 = 0.5.

The maximum drifts �max obtained in Figures11.17 and 11.18 are used in Equa-
tions 11.12–11.16. Figure 11.19(a) and Figure 11.20(a) show the comparison between
the predicted upper bound of total input energy and the result by the time-history
response analysis (post-yield stiffness ratio of 0.01). The elements of dissipation
energy consisting of the upper bound are also illustrated in Figures 11.19(a) and
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Figure 11.17 Two-dimensional sweeping performance curve (maximum drift) for the corresponding
inelastic SDOF system including supplemental viscous dampers with respect to the maximum acceleration
of the resonant sinusoidal ground motion: (a) post-yield stiffness ratio of 0.01; (b) post-yield stiffness
ratio of 0.5.
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Figure 11.18 Two-dimensional sweeping performance curve (maximum drift) for the corresponding
inelastic SDOF system including supplemental hysteretic dampers with respect to the maximum accel-
eration of the resonant sinusoidal ground motion: (a) post-yield stiffness ratio of 0.01; (b) post-yield
stiffness ratio of 0.5.

11.20(a). Figures 11.19(b) and 11.20(b) illustrate the corresponding diagram for post-
yield stiffness ratio γ2 = 0.5. This shows that the method of predicting the upper bound
in terms of the two-dimensional sweeping performance curve for the corresponding
inelastic SDOF model including supplemental dampers can provide a reasonably accu-
rate upper bound and can be used in the preliminary design stage of supplemental
dampers.
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Figure 11.19 Comparison between the predicted upper bound of total input energy and the result by
the time-history response analysis and the elements of dissipation energy consisting of the upper bound:
(a) supplemental viscous dampers, post-yield stiffness ratio of 0.01; (b) supplemental viscous dampers,
post-yield stiffness ratio of 0.5.
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Figure 11.20 Comparison between the predicted upper bound of total input energy and the result by the
time-history response analysis and the elements of dissipation energy consisting of the upper bound: (a)
supplemental hysteretic dampers, post-yield stiffness ratio of 0.01; (b) supplemental hysteretic dampers,
post-yield stiffness ratio of 0.5.

11.6 Relationship of Maximum Interstory Drift of Uncontrolled
Structures with Maximum Velocity of Ground Motion

Figure 11.21 shows the two-dimensional sweeping performance curve (maximum
interstory drift) for the original inelastic MDOF model without supplemental dampers
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Figure 11.21 Two-dimensional sweeping performance curve (maximum interstory drift) for the corre-
sponding inelastic SDOF system without supplemental dampers with respect to the maximum velocity
of the resonant sinusoidal ground motion (post-yield stiffness ratio of 0.01).
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Figure 11.22 Two-dimensional sweeping performance curve (mean value of the maximum interstory
drifts to 10 spectrum-compatible motions) for the corresponding inelastic SDOF system without supple-
mental dampers with respect to the intensity level of the spectrum-compatible ground motions (post-yield
stiffness ratio of 0.01).

with respect to the maximum velocity of the resonant sinusoidal ground motion. The
interstory drift has been transformed from the response of the corresponding reduced
SDOF model, as in the previous sections. Furthermore, Figure 11.22 illustrates the
two-dimensional sweeping performance curve (mean value of the maximum interstory
drifts to 10 spectrum-compatible motions) for the original inelastic MDOF model
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Figure 11.23 Relation of total input energy with velocity power of resonant sinusoidal ground motion
(post-yield stiffness ratio of 0.01).

without supplemental dampers with respect to the maximum velocity of the spectrum-
compatible ground motions. These figures were obtained by time-history response
analysis. Figures 11.21 and 11.22 support the validity of the fact that, when the maxi-
mum ground velocity is adopted as the normalization index, the maximum interstory
drift exhibits a stable property irrespective of the number of stories.

These properties also hold for the spectrum-compatible ground motions. When the
response amplification factor in the velocity-sensitive region is denoted by AV(h)
in terms of the damping ratio h and the lowest mode vibration component only is
employed, then the maximum interstory drift is obtained by

δi max ∼= 3N

20π(2N + 1)
vmaxAV(h1) (11.18)

where h1 is the lowest-mode damping ratio. The expression 3N/[20π(2N + 1)] in
Equation 11.18 exhibits an almost constant value irrespective of the number of stories
N (see Appendix 11.A), and this indicates clearly the one-to-one correspondence of
the maximum interstory drift with the maximum ground velocity irrespective of the
number of stories.

11.7 Relationship of Total Input Energy to Uncontrolled Structures
with Velocity Power of Ground Motion

Figure 11.23 shows the relation of the total input energy with the velocity power. This
figure has been obtained by time-history response analysis. It is observed that the total
input energy to elastic buildings is strongly related to the velocity power regardless of
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the number of stories so far as the resonant sinusoidal ground motions are concerned.
This can be proved by noting that the coefficient 30π(N + 1)/[2(2N + 1)] becomes
almost constant for N ≥ 5(see Appendix 11.B). Figure 11.23 shows that this property
can also hold approximately in the elastic–plastic buildings.

11.8 Summary

The results are summarized as follows.

1. Since a resonant sinusoidal motion can be an approximate critical excitation to elas-
tic and inelastic structures under the constraint of acceleration or velocity power,
a resonant sinusoidal motion with variable period and duration has been used
as an input wave of the near-field and far-field ground motions. This enables
one to understand clearly the relation of the intensity normalization index of
ground motion (maximum acceleration, maximum velocity, acceleration power,
velocity power) with the response performance (peak interstory drift, total input
energy).

2. In order to evaluate the overall performance of building structures with passive
dampers, it is effective to sweep out various responses (peak interstory drift, total
input energy, etc.) with respect to the maximum acceleration of the sinusoidal wave.
This figure is called the sweeping performance curve. The sweeping performance
curve enables one to express effectively the response performance of structures with
passive dampers to the ground motion represented by a resonant sinusoidal wave or
a suite of response spectrum-compatible motions. The sweeping performance curve
is useful in comparing the performances of the structures with viscous dampers and
those with hysteretic dampers.

3. When the fundamental natural period T of the building structure with the number
of stories N is assumed to be expressed as T = 0.1N , the maximum ground veloc-
ity plays an important role in the sweeping performance curve of the maximum
interstory drift. More specifically, when the maximum ground velocity is adopted
as the normalization index, the maximum interstory drift exhibits a stable property
irrespective of the number of stories and damper type. This fact can be proved by
introducing the relationship of the fundamental natural period T of the building
structure with the number of stories N in the response evaluation. This property
also holds approximately in the inelastic range.

4. When the fundamental natural period T of the building structure with the number
of stories N is assumed to be expressed as T = 0.1N , the velocity power plays an
important role in the sweeping performance curve of the total input energy. More
specifically, when the velocity power is adopted as the normalization index, the
total input energy exhibits a stable property irrespective of the number of stories
and damper type. This fact can be proved in the time and frequency dual domains.
This property also holds approximately in the inelastic range.
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5. The upper bound of total input energy to passively controlled inelastic structures
subjected to resonant sinusoidal ground motions can be derived in terms of the
two-dimensional sweeping performance curve (maximum interstory drift) for the
corresponding inelastic SDOF model with respect to the maximum velocity of the
resonant sinusoidal ground motion.

Appendix 11.A: Relationship of the Maximum Interstory Drift with the
Maximum Velocity of the Resonant Sinusoidal Ground Motion

Consider the following resonant sinusoidal ground motion:

üg(t) = amax sin ωGt (A11.1a)

u̇g(t) = −vmax cos ωGt (A11.1b)

In Equations A11.1a and A11.1b, amax and vmax denote the acceleration amplitude and
velocity amplitude of the sinusoidal ground motion respectively, and ωG indicates the
circular frequency of that ground motion. In this case, the equations of motion for an
MDOF shear building model may be expressed by

Mü + Cu̇ + Ku = −M1amax sin ωGt (A11.2)

Assume that the present MDOF model of N stories has an equal mass m in all stories
and a straight-line lowest eigenmode. Assume also proportional damping for structural
damping. Then, the response of the sth normal coordinate system (ωs: sth natural
circular frequency, hs: sth damping ratio) can be described as

q̈0s(t) + 2hsωsq̇0s(t) + ω2
s q0s(t) = −amax sin ωGt (A11.3)

Consider the resonant case, which is expressed by

ω1 = ωG (A11.4)

If the damping ratio is small, then the first normal coordinate can be expressed as

q01 ∼= (q01st)0
1

2h1
(e−h1ωGt − 1) cos ωGt (A11.5)

(q01st)0 = −amax

ω2
G

(A11.6)

Assume that the higher order components can be neglected in the resonant situation
with the first natural vibration. Then, the response is described by

u ∼= u1γ1q01 ∼= u1γ1(q01st)0
1

2h1
(e−h1ωGt − 1) cos ωGt (A11.7)
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where γ1 is the lowest mode participation factor. As a normalization condition of the
lowest eigenmode, put the first component of u1 as unity. If we take the limit t → ∞,
the maximum interstory drift can be reduced to

δj max ∼= − 1

2h1
γ1(q01st)0 (A11.8)

The straight-line lowest eigenmode with the above-mentioned normalization
condition leads to the following lowest mode participation factor γ1:

γ1 = 3

2N + 1
(A11.9)

Substitution of Equations A11.6 and A11.9 into Equation A11.8 provides

δj max ∼= 3

2N + 1

amax

ω2
G

1

2h1
= 3

2N + 1

vmax

ωG

1

2h1
(A11.10)

Assume that the fundamental natural period of the shear building model is given by
the relation T1 = 0.1N (N : number of stories). Then, EquationA11.10 can be reduced to

δj max ∼= 3N

20π(2N + 1)

1

2h1
vmax (A11.11)

The number 3N/[20π(2N + 1)] in Equation A11.11 can be shown to be almost con-
stant (0.0217 for N = 5, 0.0227 for N = 10, 0.0233 for N = 20, 0.0236 for N = 40),
irrespective of the number of stories. Therefore, Equation A11.11 implies that, if the
lowest mode damping ratio h1 is specified, the maximum interstory drift δj max is
proportional to the maximum ground velocity vmax.

Appendix 11.B: Relationship of the Total Input Energy with the Velocity
Power of the Resonant Sinusoidal Ground Motion

Consider the same model as in Appendix 11.A. The equivalent mass M as a reduced
SDOF model can be expressed by M = [3N (N + 1)m]/[2(2N + 1)] in terms of the
floor mass m and the number of stories N . In addition, the displacement � of this
reduced SDOF model can be described in terms of the corresponding interstory drift
δ (equal in every story) as

� = 2N + 1

3
δ (B11.1)

For the amplitude, �max = (2N + 1)δmax/3 holds.
When the number of cycles n of the sinusoidal ground motion is large, the elastic

strain energy just after the end of the sinusoidal input is negligible. In this case, the
total input energy during n cycles (=t0/0.1 N ) is equal to the energy dissipated by
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the viscous damping. By using Equations 11.2 and A11.11, the total input energy can
be expressed by

E ∼= Wh

= (2πh1M ω2
G�2

max)n

= (2πh1�
2
max)M

(
20π

N

)2 (
t0

0.1N

)

= π

2h1

[
2h1δmax

20π(2N + 1)

3N

]2 3N (N + 1)m

2(2N + 1)

(
t0

0.1N

)
. (B11.2)

= π

2h1
v2

max
3N (N + 1)m

2(2N + 1)

(
t0

0.1N

)

= 30π(N + 1)

2h1(2N + 1)
mCV

The number 2πh1Mω2
G�2

max in Equation B11.2 indicates the energy dissipated in the
reduced SDOF model by the viscous damping in one cycle. Furthermore, the num-
ber [30π(N + 1)]/[2(2N + 1)] in Equation B11.2 can be shown to be almost constant
(25.69 for N = 5, 24.67 for N = 10, 24.12 for N = 20, and 23.84 for N = 40) irrespec-
tive of the number of stories. Therefore, Equation B11.2 implies that, if the lowest
mode damping ratio h1 is specified, the total input energy E is proportional to the
velocity power CV of ground motion.

This fact can also be proved in the frequency domain. The displacement � of the
reduced SDOF model is denoted by u hereafter. The total input energy per unit mass
to the reduced SDOF model can be expressed in the frequency domain by

E

M
= −

∫ ∞

−∞
u̇ügdt

= −
∫ ∞

−∞

(
1

2π

∫ ∞

−∞
U̇eiωt dω

)
ügdt

= − 1

2π

∫ ∞

−∞
U̇

(∫ ∞

−∞
ügeiωt dt

)
dω (B11.3)

= − 1

2π

∫ ∞

−∞
Üg(−ω)U̇dω

= − 1

2π

∫ ∞

−∞
Üg(−ω)[HV(ω; �, h)Üg(ω)]dω

where HV(ω; �, h) = − iω/(�2 − ω2 + 2ih�ω) is the velocity transfer function
defined by U̇ (ω) = HV(ω; �, h)Üg(ω). Üg(ω) is the Fourier transform of üg(t).
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By using the relations Üg(−ω) = Ü ∗
g (ω) and Üg(ω)Ü ∗

g (ω) = |Üg(ω)|2, Equation B11.3
can be reduced to

E

M
= 1

2π

∫ ∞

−∞
|Üg(ω)|2{ − Re[HV(ω; �, h)]}dω

(B11.4)

=
∫ ∞

0
|Üg(ω)|2

{
− 1

π
Re[HV(ω; �, h)]

}
dω

In Equation B11.4, Re[HV(ω; �, h)] = −2h�ω2/[(�2 − ω2)2 + 4h2�2ω2].
It is interesting to note that the long-duration sinusoidal motion corresponds to the

Dirac delta function in the frequency domain with the infinite peak at the frequency
ωG of the sinusoidal ground motion. Thus, substitute ω = � = ωG in Equation B11.4.
By using the relation

CV =
∫ ∞

−∞
v(t)2 dt = 1

π

∫ ∞

0
|U̇g(ω)|2 dω = 1

π

∫ ∞

0

1

ω2
|Üg(ω)|2dω (B11.5)

Equation B11.4 is arranged to

E

M
=

∫ ∞

0
|Üg(ω)|2 1

2hωGπ
dω = ωGCV

2h
(B11.6)

Let us rewrite the lowest mode damping ratio by h1 in place of h. Since the mass M
of the reduced SDOF model can be expressed by M = 3N (N + 1)m/[2(2N + 1)] in
terms of floor mass m as stated before, the total input energy to the equivalent SDOF
model can be reduced to

E = ωGCV

2h1
M = 30π(N + 1)

2h1(2N + 1)
mCV (B11.7)

Equation B11.7 is equivalent to Equation B11.2.

Appendix 11.C: Design Response Spectrum by Newmark and Hall (1982)

A simplified version of the design displacement response spectrum by Newmark and
Hall (1982) can be expressed by

SD(ω; h) = SA
D (ω; h) = üg max[3.21 − 0.68 ln (100h)]

ω2
(ωU ≤ ω) (C11.1a)

SD(ω; h) = SV
D (ω; h) = u̇g max[2.31 − 0.41 ln (100h)]

ω
(ωL ≤ ω ≤ ωU)

(C11.1b)

SD(ω; h) = SD
D (ω; h) = ug max[1.82 − 0.27 ln (100h)] (ω ≤ ωL) (C11.1c)
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In Equations C11.1a–C11.1c, ug max, u̇g max, and üg max are the maximum ground
displacement, maximum ground velocity, and maximum ground acceleration respec-
tively, and the circular frequencies ωU and ωL are derived from the relations
SA

D (ωU; h) = SV
D (ωU; h) and SV

D (ωL; h) = SD
D (ωL; h).
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base acceleration input, 19
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base shear, 280
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classically damped model, 14
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complex eigenvalue analysis, 93
complex stiffness, 4, 166
connected building structures, 255
connecting viscous dampers, 255
consistent mass matrix, 134, 158
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critical damping ratio, 126
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damper configurations, 43
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damping force, 228
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dashpot, 4
decay factor, 278
decomposed model, 182, 196
deformation and acceleration, 6
deformation-displacement transformation, 19
design decision, 205
design objective, 8
design variables, 39
Dirac delta function, 233, 252
displacement-acceleration simultaneous control, 54
displacement control, 54
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distributed viscous dampers, 257
dynamic compliance, 77, 111

earthquake ground motions, 1
earthquake input demand, 249
earthquake input energy, 224, 249
earthquake occurrence mechanisms, 275
earthquake response, 2, 132, 154
eccentricity, 111
effective coefficients, 263
effective damper placement, 153
effective duration, 277
effectiveness of passive control, 249
eigenvalue analysis, 22
eigenvibration, 126
elastic–perfectly plastic restoring-force

characteristic, 282
elastic–plastic structures, 227
elastic structures, 227
element stiffness matrices, 156
energy balance, 228
energy dissipation capacity, 224
energy limit, 211

of excitation, 221
energy principle, 3
energy spectra, 266, 275
energy transfer function, 224
engineering bedrock, 132
equations of motion, 15, 52, 78
equi-area property of energy transfer function, 250
equivalent height, 276
equivalent linear model, 131, 153
equivalent viscous damping ratio, 282
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far-field motion, 267
finite-duration sinusoidal waves, 234
finite element (FE) model, 132
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first-order sensitivities, 17, 82
floor accelerations, 53
force-displacement relation, 4
forced steady-state vibration, 92
Fourier amplitude spectra, 208, 224, 250, 252, 267
Fourier transformation, 14, 53
frame ductility ratio, 282
frequency content, 262
frequency-domain approach, 4, 227, 249
frequency-domain formulation, 79
frequency response function, 95
friction coefficient, 266
friction dampers, 3
friction-type bearings, 266
fundamental natural frequency, 6, 51
fundamental natural period, 141, 263

generalized displacements, 78
generalized Lagrangian, 136, 218
gradient algorithm, 2
gradient direction, 84
gradient vector, 47
ground properties, 275

H∞ control, 81
high-rise base-isolated buildings, 265
higher-mode effects, 108
higher-order design sensitivities, 59
hybrid inverse formulation, 265
hysteretic damper, 3, 131, 275
hysteretic damping factors, 19
hysteretic passive damper, 281
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info-gap theory, 206
info-gap uncertainty analysis, 8, 226
info-gap uncertainty model, 225
initial input energy, 253
initial kinetic energy, 259
input acceleration, 79
input energy to subassemblage, 255
intensity of ground motions, 232, 267
interaction model, 131
interaction spring stiffnesses, 166
interconnected building system, 255
interstory drift, 2, 53, 135
inverse eigenmode problems, 13
inverse problem, 2, 13
isolation floor, 265

isolation story, 265
isolator, 265

Kanai–Tajimi power spectrum, 63
Kelvin–Voigt model, 4, 52, 92

Lagrange multiplier method, 33, 55, 218
Lagrangian, 33, 55
lateral-torsional vibration, 112
layered surface ground, 132
limit state in inelastic range, 276
linear displacement function, 133
load spectral uncertainty level, 237
load uncertainty, 223, 240
local interstory drifts, 111
long-duration ground acceleration, 234
long-period ground motion, 267, 278
low-yield-point steel, 281
lowest eigenmode, 263
lowest eigenvalue, 17
lowest eigenvibration, 88
lowest-mode damping ratio, 89, 93
lowest-mode vibration component, 280
lumped mass matrix, 134

main structures, 8
mass matrices, 19
mass moment of inertia, 78, 88, 112
mass-proportional damping, 44
mass ratio, 196
mathematical programming, 84
maximum acceleration and velocity, 275
maximum damper forces, 44
maximum deformation, 276
maximum input energy, 276
maximum robust placement of supplemental

dampers, 206
maximum structural displacement, 44
maximum velocity, 276
Maxwell-type damper–spring model, 91
Maxwell-type model, 4, 78, 91
mean-square interstory drifts, 51, 64
member coordinate system, 92, 156
member cross-sections, 78
member-end displacements, 156
member-end forces, 156
modal damping ratios, 14
model uncertainty, 240
modulated sinusoidal wave, 277
moment-resisting frame, 7, 77
mono-eccentricity, 112
most unfavorable ground motion, 275
multicriteria plot, 73, 196
multi-degree of freedom (MDOF) system, 2
multiple criteria, 51

natural-rubber isolator, 265
near-field ground motion, 234, 278
near-field motion, 267
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negative damping, 123
Newmark–Hall design spectrum, 106
nodal displacements, 19
nodal mass, 78
nominal value, 224
nonlinear amplification of ground motion

131, 153
nonlinear structures, 249
non-monotonic sensitivity case, 7, 104
nonprobabilistic load uncertainty, 223
nonprobabilistic uncertainty models, 224
nonproportional damping, 52, 206, 211
nonstationary random process, 211
normal coordinate system, 297
normalization condition, 298
numerical instability, 199

objective function, 42, 55
occurrence probability, 262
occurrence rate of large earthquakes, 223
oil damper, 4
optimal damper placement, 51, 111, 131,

180, 211
optimal damper positioning, 77
optimal damping coefficient, 2
optimal design methods, 2, 3
optimal passive damper placement, 1, 51
optimal placement, 2

of supplemental viscous dampers, 131
optimal sensitivity, 2
optimal sensitivity-based design, 131, 153, 179
optimal story stiffness, 51
optimal viscous damper placement, 153
optimality conditions, 6, 52, 112, 132, 154
optimality criteria, 2, 56, 111, 119
optimality criteria-based design, 6
optimization algorithm, 117
optimization problem, 81
optimization procedure, 7
overall bending deformation, 264
overturning moment, 280

parameter switching, 112
parameter variability, 205
participation factor, 298
passive control devices, 131, 153
passive control system, 237
passive dampers, 1
passive structural control, 249
passively controlled building structures, 275
peak factor, 133
performance-based design, 3, 32, 51
performance-based structural design, 276
performance function, 84
performance index, 232
performance of building structures, 250
performance requirement, 240
performance sensitivities, 9
phase of input motions, 230

planar shear building model, 77
plastic deformation, 290
Poisson’s ratio, 166
positive definiteness, 209
post-yield stiffness, 280
power spectral density (PSD) function, 32, 208
predominant frequency of surface ground, 144
probabilistic and bound analysis, 249
probabilistic critical excitation method, 205
proportional, 52
pulse-like velocity wave, 277

radiation damping, 131, 153
radius of gyration, 112
random earthquake input, 132, 206
random excitation, 2, 52
random ground motions, 132
random vibration theory, 53
Rayleigh damping systems, 44
recorded ground motions, 43, 266
redesign, 13
redesign direction, 84
reduced SDOF model, 283
residue theorem, 252
resonant amplitude, 16
resonant sinusoidal waves, 9
resonant steady-state responses, 132, 154, 206
response mean squares, 32
response spectrum, 275
response suppression, 78
restoring force, 228
restoring-force characteristic, 282
risk-based design, 232
risk-based evaluation, 275
robust design, 271
robustness

of buildings, 8
of passive control systems, 206
of structure, 226

safety and serviceability, 265
safety design, 223
scaling factor, 278
scaling of ground motions, 232
second moments of area, 87
second-order design sensitivities, 59
second-order sensitivity, 82
seismic design method, 2
seismic performance, 111
seismic resistant design method, 131
seismic resistant design practice, 275
seismic response, 275

analysis, 154
semi-infinite ground, 131
semi-infinite visco-elastic ground, 132
severe earthquakes, 276
SHAKE program, 133
shear beam model, 132
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shear building model, 6, 51
shear deformation, 87, 167
shear-flexural building models, 153
shear modulus, 132
shear wave velocity, 132
Simplified Sequential Search Algorithm, 43
simulated motions, 287
simultaneous optimization, 51
site of occurrence, 275
skewness of pulse envelope, 278
soil–structure interaction, 108, 131, 153
soil–structure system, 14
solution algorithm, 82
spectrum-compatible ground motions, 275
square tube-type cross-section, 93
stationarity conditions, 33, 56, 218
stationary Gaussian random process, 134
stationary random base acceleration, 52
stationary random excitations, 51
steady-state resonant response, 116
steady-state response, 16
steel building frame, 93
steepest descent method, 84, 121
steepest direction search algorithm, 84, 119,

121, 132, 154, 180, 206
stiffness, 19

design, 51, 135
and strength, 131
and strength-type resisting elements, 131

stiffness-proportional system, 44
stiffness ratio, 282
stiffness reduction ratios, 141
stochastic excitations, 2
stochastic problems, 205
structural control, 1
structural damping, 46, 52, 78
structural design, 8, 14
structural design concept, 224
structural members, 6
structural model uncertainties, 223
structural optimization, 18
structural performance, 131, 249
structural redesign problems, 116
structural reliability theory, 223
structural safety margin, 276
structural vibration, 131
super-building, 265
supplemental dampers, 1, 51–2, 78
supplemental viscous dampers, 81
support-member stiffness, 78, 103
supporting spring, 4, 78
surface ground, 8, 131, 153
surface ground properties, 167
sweeping performance curve, 284
system coordinate system, 78, 157
system coordinates, 92
system damping matrix, 78, 116, 158
system flexibility measure, 208

system mass matrix, 78
system stiffness matrix, 78, 116, 157

tall buildings, 263
theoretical bases, 249
three-dimensional (3-D) shear building model, 111
three-dimensional structures, 7
time-domain approach, 227, 249
time-history response, 249

analysis, 291
time of occurrence, 275
torsional effect, 8, 111
total input energy, 276
total mass of buildings, 257
trade-off of deformation and acceleration, 74
trade-off relationship, 241
transfer function amplitudes, 6, 51, 81, 111
tri-diagonal coefficient matrix, 20, 132
tri-diagonal matrix, 62
trigger-level coefficient, 282
truncated input ground motion, 258
tuned mass damper (TMD), 3, 179
tuned mode, 179
two-step design method, 52

uncertain viscous damping coefficient, 224
uncertainties of damping coefficients of

supplemental viscous dampers, 224
uncertainty analysis, 8
undamped fundamental natural circular

frequency, 78
undamped fundamental natural frequency, 111
undamped velocity response spectrum, 208
upper bound

of energy demand, 262
of fourier amplitude spectrum, 262
of total input energy, 276

variation of damping coefficients, 222
variational formulation, 205
velocity power, 276
velocity response spectrum, 252
velocity transfer function, 229
vibration control, 2
visco-elastic dampers, 3
viscous boundary, 132
viscous damper, 2, 275
viscous damping, 52
viscous-type model, 78

wall-type system, 281
wave propagation theory, 132
whole model, 182, 196
wide-band frequency content, 123
wide-flange cross-section, 93
worst input, 213

yield story deformation angle, 280
yield story displacement, 280
Young’s modulus, 87
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